CN106557612B - 一种汽车护风罩的气动性能仿真计算方法 - Google Patents

一种汽车护风罩的气动性能仿真计算方法 Download PDF

Info

Publication number
CN106557612B
CN106557612B CN201610909288.3A CN201610909288A CN106557612B CN 106557612 B CN106557612 B CN 106557612B CN 201610909288 A CN201610909288 A CN 201610909288A CN 106557612 B CN106557612 B CN 106557612B
Authority
CN
China
Prior art keywords
fan
calculation
model
grid
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610909288.3A
Other languages
English (en)
Other versions
CN106557612A (zh
Inventor
潘登辉
上官文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610909288.3A priority Critical patent/CN106557612B/zh
Publication of CN106557612A publication Critical patent/CN106557612A/zh
Application granted granted Critical
Publication of CN106557612B publication Critical patent/CN106557612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明专利公开了一种汽车护风罩的气动性能仿真计算方法,包括步骤一、风扇护风罩实物模型建立;步骤二、计算区域设置和网格划分;步骤二、边界条件设定;步骤四、利用CFD仿真软件Fluent进行仿真计算给定风扇转速下护风罩的气动性能;步骤五、根据Fluent数值计算结果,基于涡动力学理论和叶片周围流场特性优化护风圈结构,并与实验数据对标验证模型的准确性。本发明通过对仿真计算结果后处理,利用涡动力学和风扇周边流线的特性,对护风罩的结构进行优化,从而提升风扇护风罩的性能。

Description

一种汽车护风罩的气动性能仿真计算方法
技术领域
本发明是一种汽车护风罩气动性能仿真计算方法,特别涉及一种用于与环形风扇相适配使用的汽车护风罩总成的仿真计算。
背景技术
汽车发动机运转过程产生大量热量使得发动机内各部件温度上升,降低发动机工作效率,长期处于过热温度增加零件损坏风险,缩短发动机的使用寿命。现代的发动机散热系统在水箱散热的基础上,配以冷却风扇起到更好的散热效果。提升冷却风扇的工作效率能够以更低的能耗带走更多散热量,高效率风扇研究一直是发动机散热领域的一个重点。
在实际应用中,通常有两个措施提升冷却风扇散热效果:一是优化风扇的设计,开发性能更为优异的冷却风扇,这是提升风扇散热效果的主要途径,二是开发与风扇相适配的护风罩,由于风扇周围流场复杂,配备适合的汽车护风罩能充分发挥冷却风扇效果,从而提高散热效率。目前风扇造型研究已经非常充分,仅从风扇造型角度研究提升风扇的性能的效果也非常有限,因此对汽车发动机护风罩的研究有重要的意义。
传统的护风罩设计方法,需要通过大量实验获得数据,研究的周期长,成本的投入也比较高,目前商业化流体仿真软件发展很成熟,仿真结果的精度也有很大提高,因此通过数值计算方法进行汽车护风罩研究具有重要意义。
发明内容
本发明提供一种汽车护风罩模拟计算方法,特别是对环形风扇适配的护风罩的气动性能计算,建立仿真分析模型,并与实验结果对标,在保证模型准确性基础上,对不同结构参数的护风罩仿真,优化护风罩设计。
本发明的技术方案是:
一种汽车护风罩的气动性能仿真计算方法,包括以下步骤:
步骤一、使用三维建模软件CATIA建立冷却风扇与护风罩的几何模型,取 Z轴为风扇的旋转轴,风扇旋转方向为正转方向,Z轴负方向为来流方向;
步骤二、计算区域模型建立与网格划分,计算模型的尺寸与管道实体尺寸相一致,为提高Fluent仿真计算精度,风扇叶片与护风圈面网格采用三角形网格,最大尺寸控制在10mm以内,风扇前、后缘尺寸较小,网格尺寸控制在1mm 以内;整个计算域模型体网格分为5个部分,顺着流线方向依次为入口区,入口过渡区,旋转区,出口过渡区,出口区域。风扇面网格为三角形网格,过渡区流场复杂,在旋转区和过渡区采用四面体网格可以提升网格质量和计算精度;入口区与出口区流量较为平稳,在入口区域出口区网格采用六面体网格可以减小网格数量,保证计算精度;
步骤三、在Gambit中设立面边界条件,包括入口边界条件,出口边界条件,监测面,交界面,风扇表面边界条件;
步骤四、采用基于有限体积法的商业软件Fluent计算给定风扇转速下流体的纳维-斯托克斯方程,设置求解参数、边界条件、初值条件、控制方程求解器、离散方法、参考系类型、压力梯度的解耦方法;
步骤五、根据数值计算的结果与实验数据对标,误差在可接受范围内时,可认定模型正确,若误差超出接受范围,则返回步骤二,重新调整网格再次计算;基于涡动力学和风扇周边流场特性,建立具有不同筋条几何尺寸参数护风圈模型,仿真计算得到最佳筋条布置的护风圈设计方案。
进一步地,所述步骤二中还包括进行网格无关性验证的步骤,若两套网格计算结果的偏差在1%之内,则认为计算结果与网格数量无关,无需进一步增加网格数量。
进一步地,所述步骤三中的入口边界条件采用质量入口边界条件,出口边界条件采用压力出口边界条件。
进一步地,所述步骤四中,采用基于压力求解器,先求解动量方程获得速度场,继而进行压力修正以满足连续性方程,从而保证流场同时满足动力方程与连续性方程;采用RNG k-epsilon湍流模型;采用基于格林高斯节点的速度梯度插值方案;采用SIMPLE算法进行压力-速度耦合方程求解,采用标准格式离散求解连续性方程,采用一阶迎风格式离散求解动量方程,采用二阶迎风格式离散求解湍流动能与湍流耗散率;采用多参考系方法,旋转区采用动参考系,其余区域采用静坐标系。
进一步地,所述步骤五中,通过编辑journal文件给定的不同质量流量入口边界条件,设定Fluent在每个流量点自动保存计算的结果,并设定自动读取下个流量点的入口边界条件,避免大量的手动操作。
进一步地,所述步骤五,若仿真计算的结果与实验数据偏差≤6%,可认为模型具有足够准确性。
相比现有技术,本发明有以下积极效果:
(1)网格无关性验证验证仿真计算模型网格划分尺寸的合理性,减小计算量,提高优化设计效率;
(2)通过分析旋转区大小对结果的影响,保证计算结果的具有高精度;
(3)利用Fluent的journal文件,自动读取不同入口流量大小,保存结果数据,减小的重复性的工作;
(4)本发明根据计算结果,给出了一种新型护风罩的设计方案,能够起到更好的护风作用。
附图说明
图1是流场区域网格。
图2是改进前护风罩的正视图。
图3是改进后护风罩的正视图。
图4是改进前护风罩的左视图半剖示意图。
图5是改进后护风罩的左视图半剖示意图。
具体实施方式
下面通过具体实施例对本发明的目的作进一步详细地描述,实施例不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施例。
一种汽车护风罩的气动性能仿真计算方法,为适配的环形风扇相护风罩的优化设计提供一气动性能数值计算方法,按以下步骤实现:
步骤一:风扇护风罩实物模型建立;
使用三维建模软件CATIA建立冷却风扇与护风罩的几何模型,取Z轴为风扇的旋转轴,风扇旋转方向为正转方向,Z轴负方向为来流方向。本实施例建模采用7叶片、直径为286mm,护风罩内径为292mm。
步骤二:仿真模型网格划分;
计算区域模型建立和网格划分,计算模型尺寸与风管实体尺寸相一致。风管入口直径为550mm,风管长6000mm,自由流场区域为圆柱形,直径为 4000mm,风扇叶片与护风圈面网格采用三角形网格,最大尺寸控制在10mm以内,风扇前、后缘尺寸较小,面网格尺寸控制在1mm以内(见图1)。
整个计算域模型体网格分为5个部分,顺着流线方向依次为入口区,入口过渡区,旋转区,出口过渡区,出口区域。风扇面网格为三角形网格,过渡区流场复杂,在旋转区和过渡区采用四面体网格,要求四面体网格的vol skew低于0.75;入口区与出口区流量较为平稳,在入口区域出口区网格采用六面体网格可以减小迭代误差,要求六面体网格jacobian高于0.6。
网格无关性验证:
影响仿真计算结果准确性的因素主要有几个方面:模型误差、不同湍流模型、离散误差、迭代误差等几个方面。离散误差随着网格总数增加而降低,但同时迭代误差随网格总数增加而增加,网格数量过多可能导致模型收敛性变差。因此在满足计算准确性前提下,减小网格数量,加快收敛速度可以缩短计算周期。通常两套疏密不同的网格模型计算结果偏差在1%以内可认为计算结果与网格数量总量无关。网格无关性验证结果如表1,可见当网格总数大于128万后,两套网格偏差为0.26%,因此之后计算网格数量控制在128万以上可以保证有较高的计算精度。
表1网格无关性验证结果
旋转区大小确定:
采用多坐标系方法进行计算时,在动坐标系中求解动量方程需要考虑科氏力和旋转离心力作用,而静坐标系无需考虑这两个力作用。通常认为旋转区划分时不宜太小,旋转区尺寸必须要将风扇周边复杂的流线区包含在内,否则计算结果会有明显偏差。定义Lu为前旋转区到风扇轴向距离,Ld为后旋转区到风扇轴向距离,R为风扇半径,旋转区大小分析结果如表2所示,可见当 Lu/R=0.03时,大小流量点的静压偏差都比较大,但Lu/R取值为0.1和0.2时,静压的偏差都在6%以下,且当Lu/R值取为0.1时,大流量点的误差为-4.2%,小流量点误差为5.8%,该方案在大流量点的误差更小,当Lu/R为0.2时,这种旋转区在小流量点的准确性更高,考虑到该风扇的设计流量点更接近0.514 (m3/s),在之后计算中选取Lu/R=0.1左右,可认为仿真结果的准确性满足计算要求。
表2不同旋转区大小误差分析
步骤三:边界条件确定;
在Gambit中设立面边界条件,包括入口边界条件,出口边界条件,监测面,交界面,风扇表面边界条件。相比于压力入口,质量入口有更快收敛速度,故之后计算中边界条件选用质量入口条件,出口边界条件选用压力出口;在四面体网格与六面体网格交接面设为interface面。
步骤四:Fluent仿真计算;
采用基于有限体积法的商业软件Fluent计算给定风扇转速下流体的纳维-斯托克斯方程,湍流模型选用RNG k-epsilon,利用SIMPLE算法求解,离散格式为一阶精度,求解器具体设置如下:
表3求解器参数设置
步骤五:利用Fluent的journal脚本文件实现仿真的自动计算,只要启动 Fluent后读取journal,按照设定入口边界条件以及自动保存计算结果,计算结果通过文本文件读取。根据Fluent数值计算结果,基于涡动力学理论和叶片周围流场特性优化护风圈结构。
经过上述计算后的到的护风罩的结构如图3和图5所示,优化前的护风罩结构如图2和图4所示。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (3)

1.一种汽车护风罩的气动性能仿真计算方法,为与 环形风扇相适配的 护风罩的优化设计提供一气动性能数值计算方法,其特征在于,按以下步骤实现:
步骤一、使用三维建模软件CATIA建立冷却风扇与护风罩的几何模型,取Z轴为风扇的旋转轴,风扇旋转方向为正转方向,Z轴负方向为来流方向;
步骤二、计算区域模型建立与网格划分,计算模型的尺寸与管道实体尺寸相一致,风扇叶片与护风圈面采用三角形网格,最大尺寸控制在5mm以内,风扇前、后缘尺寸较小,网格尺寸控制在1mm以内;整个计算域模型体网格分为5个部分,顺着流线方向依次为入口区、入口过渡区、旋转区、出口过渡区、出口区域;在旋转区和过渡区采用四面体网格;在入口区域出口区网格采用六面体网格;
步骤三、在Gambit中设立面边界条件,包括入口边界条件,出口边界条件,监测面,交界面,风扇表面边界条件;
步骤四、采用基于有限体积法的商业软件Fluent计算给定风扇转速下流体的纳维-斯托克斯方程,设置求解参数、边界条件、初值条件、控制方程求解器、离散方法、参考系类型、压力梯度的解耦方法;
步骤五、根据数值计算的结果与实验数据对标,误差在可接受范围内时,可认定模型正确,若误差超出接受范围,则返回步骤二,重新调整网格再次计算;基于涡动力学和风扇周边流场特性,建立具有不同筋条几何尺寸参数护风圈模型,仿真计算得到最佳筋条布置的护风圈设计方案;
所述步骤二中还包括进行网格无关性验证的步骤,若两套网格计算结果的偏差在1%之内,则认为计算结果与网格数量无关,无需进一步增加网格数量;
所述步骤三中的入口边界条件采用质量入口边界条件,出口边界条件采用压力出口边界条件;
所述步骤四中,采用基于压力求解器,先求解动量方程获得速度场,继而进行压力修正以满足连续性方程,从而保证流场同时满足动力方程与连续性方程;采用RNG k-epsilon湍流模型;采用基于格林高斯节点的速度梯度插值方案;采用SIMPLE算法进行压力-速度耦合方程求解,采用标准格式离散求解连续性方程,采用一阶迎风格式离散求解动量方程,采用二阶迎风格式离散求解湍流动能与湍流耗散率;采用多参考系方法,旋转区采用动参考系,其余区域采用静坐标系。
2.根据权利要求1所述的汽车护风罩的气动性能仿真计算方法,其特征在于:所述步骤五中,通过编辑journal文件给定的不同质量流量入口边界条件,设定Fluent在每个流量点自动保存计算的结果,并设定自动读取下个流量点的入口边界条件,避免大量的手动操作。
3.根据权利要求1所述的汽车护风罩的气动性能仿真计算方法,其特征在于:所述步骤五,若仿真计算的结果与实验数据偏差≤6%,可认为模型具有足够准确性。
CN201610909288.3A 2016-10-18 2016-10-18 一种汽车护风罩的气动性能仿真计算方法 Active CN106557612B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610909288.3A CN106557612B (zh) 2016-10-18 2016-10-18 一种汽车护风罩的气动性能仿真计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610909288.3A CN106557612B (zh) 2016-10-18 2016-10-18 一种汽车护风罩的气动性能仿真计算方法

Publications (2)

Publication Number Publication Date
CN106557612A CN106557612A (zh) 2017-04-05
CN106557612B true CN106557612B (zh) 2019-12-10

Family

ID=58443289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610909288.3A Active CN106557612B (zh) 2016-10-18 2016-10-18 一种汽车护风罩的气动性能仿真计算方法

Country Status (1)

Country Link
CN (1) CN106557612B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109388815A (zh) * 2017-08-04 2019-02-26 中车大同电力机车有限公司 一种机车机械间微正压计算方法
CN107704665A (zh) * 2017-09-16 2018-02-16 吉利汽车研究院(宁波)有限公司 车载风扇设计方法
CN107844673A (zh) * 2017-12-14 2018-03-27 中国航发沈阳发动机研究所 一种航空发动机整机三维气动仿真方法
CN109989821B (zh) * 2017-12-29 2020-07-03 上海博泽电机有限公司 护风圈和冷却风扇系统以及其风门布局方法和设备
CN109408934B (zh) * 2018-10-16 2022-10-14 北京动力机械研究所 涡轮发动机整机准三维流动虚拟数值试验方法
CN109063402B (zh) * 2018-10-18 2023-01-10 中国北方车辆研究所 一种复杂流场下散热系统风侧仿真方法
CN109858074B (zh) * 2018-12-13 2023-06-13 云南电网有限责任公司电力科学研究院 一种基于有限体积法的变压器油流涌动的仿真模拟方法
CN109948233A (zh) * 2019-03-14 2019-06-28 哈尔滨汽轮机厂有限责任公司 基于cfd的小焓降宽负荷叶片设计优化系统及方法
CN110489832B (zh) * 2019-07-31 2023-05-23 中国航发沈阳发动机研究所 一种用于湍流控制屏单元体气动性能的仿真试验方法
CN110837707B (zh) * 2019-11-04 2023-06-06 南京麦慎数字科技有限公司 一种有限元分析系统、方法、计算机设备及存储介质
CN111444594B (zh) * 2020-03-04 2023-02-24 湖南科技大学 一种用于优化气体降温服结构的模拟方法
CN111666627A (zh) * 2020-05-08 2020-09-15 中国北方车辆研究所 一种散热系统设计方法
CN111709142B (zh) * 2020-06-18 2023-06-16 北京新研创能科技有限公司 燃料电池整堆流体仿真模型的简化方法
CN111783253A (zh) * 2020-07-20 2020-10-16 华南农业大学 一种基于cfd的风送式喷雾机结构参数优化设计方法
CN113420364B (zh) * 2021-01-25 2022-07-22 中国第一汽车股份有限公司 一种基于流固耦合的电泳过程车身结构变形仿真方法
CN113128137A (zh) * 2021-04-06 2021-07-16 中国辐射防护研究院 一种放射性污染通风防护服的设计方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742434A (zh) * 2014-01-17 2014-04-23 雪龙集团股份有限公司 一种发动机冷却风扇能耗测试与分析试验台及方法
WO2015007913A1 (en) * 2013-07-19 2015-01-22 Agco International Gmbh Vehicle cooling arrangement
CN105677964A (zh) * 2016-01-07 2016-06-15 江苏神通阀门股份有限公司 一种基于cfd仿真和网格自适应的阀门流量系数计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007913A1 (en) * 2013-07-19 2015-01-22 Agco International Gmbh Vehicle cooling arrangement
CN103742434A (zh) * 2014-01-17 2014-04-23 雪龙集团股份有限公司 一种发动机冷却风扇能耗测试与分析试验台及方法
CN105677964A (zh) * 2016-01-07 2016-06-15 江苏神通阀门股份有限公司 一种基于cfd仿真和网格自适应的阀门流量系数计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
发动机环形冷却风扇结构与参数对其性能影响的研究;莫伟标;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20151215(第12期);第C035-106/正文23-36、49-54页 *

Also Published As

Publication number Publication date
CN106557612A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
CN106557612B (zh) 一种汽车护风罩的气动性能仿真计算方法
CN110929357A (zh) 一种高性能舰船燃机压气机气动设计方法
CN107679319B (zh) 一种叶轮机通流模型中周向脉动应力项的代数建模方法
CN103939389A (zh) 一种导叶式离心泵多工况水力设计方法
CN106777482A (zh) 一种基于网格参数化的结构多学科设计优化方法
CN108167229A (zh) 一种叶片前缘凸起的冷却风扇及其气动噪声计算方法
CN104200012B (zh) 用于比较机匣处理方案扩稳能力的方法
Wang et al. A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers
Ju et al. Optimization of centrifugal impellers for uniform discharge flow and wide operating range
Vasilopoulos et al. CAD-based aerodynamic optimization of a compressor stator using conventional and adjoint-driven approaches
Liou et al. Challenges and progress in aerodynamic design of hybrid wingbody aircraft with embedded engines
CN108757516B (zh) 一种离心风机设计优化方法
CN114186513A (zh) 一种具有反s型前缘的轴流压气机叶片造型设计方法
Rezaeiha et al. CFD simulation of two tandem floating offshore wind turbines in surge motion
CN104675713B (zh) 一种基于数据样本的离心泵无过载设计方法
CN208153385U (zh) 一种叶片前缘凸起的冷却风扇
CN116595874A (zh) 叶轮机械性能预测模型参数优化方法及装置、存储介质
Asghari et al. Aerodynamic optimization of the tangential stacking line of a transonic axial flow compressor rotor using genetic algorithm
Walther et al. An adjoint-based multi-point optimization method for robust turbomachinery design
CN116011089A (zh) 涡轮导叶层板冷却结构设计方法及装置、终端和存储介质
CN203939528U (zh) 一种提高燃气轮机气动性能的带叶顶叶栅结构的转子叶片
Bonaiuti et al. On the coupling of inverse design and optimization techniques for turbomachinery blade design
Yang et al. Multi-row inverse method based on the adjoint optimization
CN106089788A (zh) 一种轴流压气机尾缘周向喷气扩稳装置
Hield Semi-inverse design applied to an eight stage transonic axial flow compressor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant