CN106557090B - 一种磁力线圈结合动量轮的航天器姿态联合控制方法 - Google Patents

一种磁力线圈结合动量轮的航天器姿态联合控制方法 Download PDF

Info

Publication number
CN106557090B
CN106557090B CN201610980662.9A CN201610980662A CN106557090B CN 106557090 B CN106557090 B CN 106557090B CN 201610980662 A CN201610980662 A CN 201610980662A CN 106557090 B CN106557090 B CN 106557090B
Authority
CN
China
Prior art keywords
momenttum wheel
magnetic coil
output
spacecraft
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610980662.9A
Other languages
English (en)
Other versions
CN106557090A (zh
Inventor
卫国宁
康志宇
唐生勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace System Engineering Institute
Original Assignee
Shanghai Aerospace System Engineering Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace System Engineering Institute filed Critical Shanghai Aerospace System Engineering Institute
Priority to CN201610980662.9A priority Critical patent/CN106557090B/zh
Publication of CN106557090A publication Critical patent/CN106557090A/zh
Application granted granted Critical
Publication of CN106557090B publication Critical patent/CN106557090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种磁力线圈结合动量轮的航天器姿态联合控制方法,其包括:获取航天器的姿态信息,同时获取航天器所处轨道环境的磁场信息;求解期望的姿态控制力矩;求解磁力线圈的期望输出;求解磁力线圈的实际输出;求解动量轮的期望输出;求解动量轮的实际输出;根据磁力线圈的实际输出和动量轮的实际输出进行姿态控制。本发明的磁力线圈结合动量轮的航天器姿态联合控制方法,控制方式简单,对航天器的导航系统、控制系统等无额外需求,可综合利用星上资源,节约工质,具有算法先进、控制精度高、姿态收敛速度快的优点。

Description

一种磁力线圈结合动量轮的航天器姿态联合控制方法
技术领域
本发明涉及航天器姿态控制技术领域,特别涉及一种磁力线圈结合动量轮的航天器姿态联合控制方法。
背景技术
磁控方式主要用于大卫星章、进动消除及动量轮卸载,直接采用纯磁控进行三轴稳定控制的航天器相对较少。近几年,微小型航天器发展迅速,由于微小型航天器体积小、质量轻、功耗低等约束,微小型航天器尤其是微纳航天器在进行姿态控制时,多采用纯磁控作为其姿态控制方式。为了进一步提高微小型航天器姿态稳定度,动量轮结合磁控的控制方式逐渐得到了更广泛的应用。同纯磁控相比,该方法具有姿态稳定度高、控制方式简单等优点,但当前磁力线圈同动量轮进行姿态控制时,不同通道的姿态控制独立进行,导致动量轮控制通道姿态收敛速度快、指向精度高,而磁控制通道收敛速度慢、指向精度低、抗干扰能力弱。同时当前的磁控与其它控制相结合控制方式多不适宜完成大角度快速机动任务,限制航天器在轨任务拓展及后续发展。
微小型航天器空间任务多样化,灵活化和精细化趋势对微小型航天器的空间操作能力提出了新的要求,当前采用磁控结合其它简单控制方式来实现航天器快速姿态稳定及姿态指向成为了一种迫切的需求。
发明内容
本发明针对上述现有技术中存在的问题,提出一种磁力线圈结合动量轮的航天器姿态联合控制方法,控制方式简单,对航天器的导航系统、控制系统等无额外需求,可综合利用星上资源,节约工质,具有算法先进、控制精度高、姿态收敛速度快的优点。
为解决上述技术问题,本发明是通过如下技术方案实现的:
本发明提供一种磁力线圈结合动量轮的航天器姿态联合控制方法,其包括以下步骤:
S11:获取航天器的姿态信息,同时获取所述航天器所处轨道环境的磁场信息;
S12:将所述姿态信息带入控制律中解算出期望的姿态控制力矩;
S13:根据所述期望的姿态控制力矩反算出磁力线圈的期望输出;
S14:根据所述磁力线圈的期望输出以及所述磁力线圈的输出限制得出所述磁力线圈的实际输出;
S15:根据所述期望的姿态控制力矩以及所述磁力线圈的实际输出反算出动量轮的期望输出;
S16:根据所述动量轮的期望输出以及所述动量轮的输出限制得出所述动量轮的实际输出;
S17:根据所述磁力线圈的实际输出以及所述动量轮的实际输出对所述航天器的姿态进行联合控制。
较佳地,所述步骤S17之后还包括:
S18:重复步骤S11-S17,直至所述航天器的姿态收敛期望范围。
较佳地,所述步骤S11中获取的所述航天器的姿态信息包括:姿态四元素q和姿态角速度ω,所述磁场信息包括:磁场强度Bb
较佳地,所述步骤S12中的控制律为PD控制律,所述期望的姿态控制力矩为:
Texp=-Kpq-Kdω,
其中,Kp和Kd分别为姿态四元素q和姿态角速度ω对应的系数矩阵。
较佳地,所述步骤S13中:所述磁力线圈为三轴磁力线圈,所述磁力线圈的期望输出Mex为使目标函数达到最小时得出的,所述目标函数为:
其中,Mexx、Mexy、Mexz分别为Mex的xb轴分量、yb轴分量、zb轴分量。
较佳地,所述步骤S14中的所述磁力线圈的输出限制为输出最大值Mmax的限制,所述磁力线圈的实际输出为:
式中,Mex为所述磁力线圈的期望输出,函数max(|Mex|)表示向量Mex中元素绝对值最大者。
较佳地,所述步骤S15中:所述动量轮为单轴动量轮;
当所述单轴动量轮置于xb轴时,所述动量轮的期望输出为:
当所述单轴动量轮置于yb轴时,所述动量轮的期望输出为:
当所述单轴动量轮置于zb轴时,所述动量轮的期望输出为:
其中,Mmx、Mmy、Mmz分别为所述磁力线圈的实际输出Mm的xb轴分量、yb轴分量、zb轴分量,Texpx、Texpy、Texpz分别为所述期望的姿态控制力矩Texp的xb轴分量、yb轴分量、zb轴分量。
较佳地,所述步骤S16中的所述动量轮的输出限制为输出最大值的限制,所述动量轮的实际输出为:
其中,为所述动量轮的期望输出。
相较于现有技术,本发明具有以下优点:
(1)本发明提供的磁力线圈结合动量轮的航天器姿态联合控制方法,为以磁力线圈和动量轮为执行机构的航天器姿态协同控制方法,解决以磁力线圈和动量轮为姿态控制执行机构时对航天器快速姿态稳定或姿态指向问题,无需额外设备和功耗,对航天器姿态测量系统及控制系统无额外要求,具有算法先进、控制精度高等优点;
(2)本发明采用动量轮通磁力线圈系统控制的方式,能够实现航天器三自由度的快速控制,弥补采用纯磁控仅能提供垂直磁场面内控制力矩的不足,能够在姿态执行机构简单的情形下,实现三自由度较高精度的姿态控制,在微钠型航天器姿态控制领域中有着巨大的应用前景。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
下面结合附图对本发明的实施方式作进一步说明:
图1为本发明的实施例的磁力线圈结合动量轮的航天器姿态联合控制方法的流程图;
图2为本发明的实施例的体坐标系示意图;
图3为本发明的实施例的航天器的姿态角速度仿真曲线图;
图4为本发明的实施例的航天器的姿态四元素仿真曲线图;
图5为本发明的实施例的磁力线圈的实际输出仿真曲线图;
图6为本发明的实施例的置于yb轴的动量轮的实际输出仿真曲线图;
图7为本发明的实施例的置于yb轴的动量轮的角动量变化仿真曲线图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
结合图1-图7,对本发明的磁力线圈结合动量轮的航天器姿态联合控制方法进行详细描述,如图1所示为其流程图,其包括以下步骤:
S11:依据控制律需求,获取航天器体坐标系相对惯性系的姿态四元数q和角速度ω信息,同时获取航天器体坐标系下的磁场强度矢量Bb。该过程在ts时间段内完成。ts依据实际情况选定。
S12:将姿态信息q和ω带入控制律得期望的姿态控制力矩Texp;本实施例中,控制律选用飞行器相对惯性空间定向的PD控制律,即期望的姿态控制力矩Texp=-Kpq-Kdω,其中Kp和Kd分别为两种姿态信息对应的系数矩阵,期望的姿态控制力矩Texp在体坐标系下三轴对应分量分别为:Texpx、Texpy、Texpz
S13:磁力线圈的期望输出为使目标函数达到最小时,以偏置动量轮置于yb轴为例,将磁场强度Bb和期望控制力矩Texp带入(1)式解得三轴磁力线圈期望输出Mex
其中,E=Bby/Bbx,F=-Texpz/Bbx,H=-TexpzBbz/(BbxBby)-Texpx/BbyG=Bbz/Bby,此时可利用期望姿态控制力矩确切得到Texpx、Texpz
S14:结合三轴磁力线圈的输出最大值Mmax的限制,得出磁力线圈实际输出Mm。由式(2)确定磁力线圈实际输出Mm
式中,函数max(|Mex|)表示向量Mex中元素绝对值最大者。
S15:将磁力线圈实际输出Mm、磁场强度Bb、期望控制力矩Texp带入式(3)得动量轮期望输出
此时,yb轴的期望姿态控制力矩Texpy通过动量轮同磁力矩线圈的协同作用而确切得到。
S17:由于动量轮受输出最大值的限制,将期望的姿态控制力矩及动量轮输出最大值带入式(4)得动量轮输出
S17:将磁力线圈以Mm矢量输出、动量轮以输出,进行姿态控制,时间长度为tc。tc依据实际情况选定。
执行完步骤S17后,重新返回步骤S11进行姿态测量工作,如此不断循环,直至航天器的姿态收敛至期望范围。
如图2所示为体坐标系的示意图,磁力线圈以及动量轮协同输出获得期望的姿态控制力矩的示意在图中示出。
上述实施例中,是以动量轮置于yb轴为例,由于坐标系定义的任意性,可类似得出将动量轮置于xb轴以及zb轴的情况,此处不再赘述。
进一步的,给出更为具体的算例,对本发明进行详细描述。取期望的姿态控制力矩的控制律的控制参数Kp=diag([3×10-5 5×10-4 3×10-5]),Kd=diag([8×10-4 5×10-4 8×10-4]);动量轮标称转速为0;动量轮最大输出磁力线圈最大输出Mmax=0.2A·m2;ts=0.2s;tc=0.8s;期望的姿态指向四元数[1 0 0 0]T;起始姿态四元数姿态角速度ω0=[0.01 0.01 0.01]Trad/s。航天器的惯量矩阵取:
设COTV同末子级分离时,COTV体坐标系相对惯性系姿态四元数。地磁场模型取2015年10阶TGRF国际地磁场参考模型。
通过循环执行步骤S11至S17,分别得到姿态机动过程星体角速度、姿态四元数、磁力矩线圈输出、动量轮输出及角动量变化仿真结果分别如图3、图4、图5、图6、图7所示。由仿真结果可得:经过300s左右的姿态控制,体坐标系x轴和z轴姿态指向精度小于0.05°,角速度小于0.01°/s。一般的动量轮结合磁力矩线圈控制方式需要经过2~3个轨道周期即11000s至17000s左右姿态才能收敛且达到相应精度,证明了本发明的有效性及优势所在。
此处公开的仅为本发明的优选实施例,本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,并不是对本发明的限定。任何本领域技术人员在说明书范围内所做的修改和变化,均应落在本发明所保护的范围内。

Claims (8)

1.一种磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,包括以下步骤:
S11:获取航天器的姿态信息,同时获取所述航天器所处轨道环境的磁场信息;
S12:将所述姿态信息带入控制律中解算出期望的姿态控制力矩;
S13:根据所述期望的姿态控制力矩反算出磁力线圈的期望输出;
S14:根据所述磁力线圈的期望输出以及所述磁力线圈的输出限制得出所述磁力线圈的实际输出;
S15:根据所述期望的姿态控制力矩以及所述磁力线圈的实际输出反算出动量轮的期望输出;
S16:根据所述动量轮的期望输出以及所述动量轮的输出限制得出所述动量轮的实际输出;
S17:根据所述磁力线圈的实际输出以及所述动量轮的实际输出对所述航天器的姿态进行联合控制。
2.根据权利要求1所述的磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,所述步骤S17之后还包括:
S18:重复步骤S11-S17,直至所述航天器的姿态收敛期望范围。
3.根据权利要求1所述的磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,所述步骤S11中获取的所述航天器的姿态信息包括:姿态四元素q和姿态角速度ω,所述磁场信息包括:磁场强度Bb
4.根据权利要求3所述的磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,所述步骤S12中的控制律为PD控制律,所述期望的姿态控制力矩为:
Texp=-Kpq-Kdω,
其中,Kp和Kd分别为姿态四元素q和姿态角速度ω对应的系数矩阵。
5.根据权利要求1所述的磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,所述步骤S13中:所述磁力线圈为三轴磁力线圈,所述磁力线圈的期望输出Mex为使目标函数达到最小时得出的,所述目标函数为:
其中,Mexx、Mexy、Mexz分别为Mex的xb轴分量、yb轴分量、zb轴分量。
6.根据权利要求1所述的磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,所述步骤S14中的所述磁力线圈的输出限制为输出最大值Mmax的限制,所述磁力线圈的实际输出为:
式中,Mex为所述磁力线圈的期望输出,函数max(|Mex|)表示向量Mex中元素绝对值最大者。
7.根据权利要求1所述的磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,所述步骤S15中:所述动量轮为单轴动量轮;
当所述单轴动量轮置于xb轴时,所述动量轮的期望输出为:
当所述单轴动量轮置于yb轴时,所述动量轮的期望输出为:
当所述单轴动量轮置于zb轴时,所述动量轮的期望输出为:
其中,Mmx、Mmy、Mmz分别为所述磁力线圈的实际输出Mm的xb轴分量、yb轴分量、zb轴分量,Texpx、Texpy、Texpz分别为所述期望的姿态控制力矩Texp的xb轴分量、yb轴分量、zb轴分量。
8.根据权利要求1所述的磁力线圈结合动量轮的航天器姿态联合控制方法,其特征在于,所述步骤S16中的所述动量轮的输出限制为输出最大值的限制,所述动量轮的实际输出为:
其中,为所述动量轮的期望输出。
CN201610980662.9A 2016-11-08 2016-11-08 一种磁力线圈结合动量轮的航天器姿态联合控制方法 Active CN106557090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610980662.9A CN106557090B (zh) 2016-11-08 2016-11-08 一种磁力线圈结合动量轮的航天器姿态联合控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610980662.9A CN106557090B (zh) 2016-11-08 2016-11-08 一种磁力线圈结合动量轮的航天器姿态联合控制方法

Publications (2)

Publication Number Publication Date
CN106557090A CN106557090A (zh) 2017-04-05
CN106557090B true CN106557090B (zh) 2019-06-28

Family

ID=58444221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610980662.9A Active CN106557090B (zh) 2016-11-08 2016-11-08 一种磁力线圈结合动量轮的航天器姿态联合控制方法

Country Status (1)

Country Link
CN (1) CN106557090B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158243B (zh) * 2020-04-08 2020-07-24 北京前沿探索深空科技有限公司 卫星姿态自适应控制方法、装置以及控制器和介质
CN115327921B (zh) * 2022-09-01 2024-05-28 深圳航天东方红卫星有限公司 一种在轨航天器纯三轴磁控方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123617A (en) * 1990-03-05 1992-06-23 General Electric Company Spacecraft momentum unloading using controlled magnetic torques
JPH09325045A (ja) * 1996-01-16 1997-12-16 Globalstar Lp 軌道でのヨー操縦の力学的バイアス
CN1983098A (zh) * 2005-12-14 2007-06-20 上海微小卫星工程中心 主动磁控为主的微小卫星姿态控制方法及系统
CN101226561A (zh) * 2007-12-28 2008-07-23 南京航空航天大学 用于微型航天器姿态轨道控制系统的微型仿真支持系统及工作方法
CN101934863A (zh) * 2010-09-29 2011-01-05 哈尔滨工业大学 基于磁力矩器和飞轮的卫星姿态全方位控制方法
CN103092209A (zh) * 2013-01-30 2013-05-08 北京控制工程研究所 一种基于动量轮控制的全姿态捕获方法
CN105892478A (zh) * 2016-06-29 2016-08-24 哈尔滨工业大学 一种面向姿轨一体化控制的多执行机构协同控制分配方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123617A (en) * 1990-03-05 1992-06-23 General Electric Company Spacecraft momentum unloading using controlled magnetic torques
JPH09325045A (ja) * 1996-01-16 1997-12-16 Globalstar Lp 軌道でのヨー操縦の力学的バイアス
CN1983098A (zh) * 2005-12-14 2007-06-20 上海微小卫星工程中心 主动磁控为主的微小卫星姿态控制方法及系统
CN101226561A (zh) * 2007-12-28 2008-07-23 南京航空航天大学 用于微型航天器姿态轨道控制系统的微型仿真支持系统及工作方法
CN101934863A (zh) * 2010-09-29 2011-01-05 哈尔滨工业大学 基于磁力矩器和飞轮的卫星姿态全方位控制方法
CN103092209A (zh) * 2013-01-30 2013-05-08 北京控制工程研究所 一种基于动量轮控制的全姿态捕获方法
CN105892478A (zh) * 2016-06-29 2016-08-24 哈尔滨工业大学 一种面向姿轨一体化控制的多执行机构协同控制分配方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An Optimal Attitude Control of Small Satellite with Momentum Wheel and Magnetic Torquerods;Fan Z;《World Congress on Intelligent Control & Automation. IEEE》;20021231;第1395-1398页
卫星自主避险姿态快速机动与高精度稳定控制;唐生勇,等;《中国空天安全会议》;20151231;第403-407页

Also Published As

Publication number Publication date
CN106557090A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
Slavinskis et al. High spin rate magnetic controller for nanosatellites
EP2279947A1 (en) Gyroless transfer orbit sun acquisition using only wing current measurement feedback
CN106557090B (zh) 一种磁力线圈结合动量轮的航天器姿态联合控制方法
CN107444675B (zh) 一种航天器速率阻尼控制方法
CN108583938B (zh) 一种可应用于运行于太阳同步晨昏轨道的全向天线通信卫星姿态控制系统及其方法
Ni et al. Attitude determination of nano satellite based on gyroscope, sun sensor and magnetometer
CN104176275A (zh) 一种使用动量轮与磁力矩器联合的速率阻尼方法
EP3457230B1 (en) Single-axis pointing pure magnetic control algorithm for spacecraft based on geometrical analysis
US4807835A (en) Spacecraft attitude stabilization system
Liu et al. Mass and mass center identification of target satellite after rendezvous and docking
Shmyrov et al. The estimation of controllability area in the problem of controllable movement in a neighborhood of collinear libration point
Vega et al. Design and modeling of an active attitude control system for CubeSat class satellites
Leomanni Comparison of control laws for magnetic detumbling
Chen et al. High precision attitude estimation algorithm using three star trackers
Nasirian et al. Design of a satellite attitude control simulator
Mahdi et al. Attitude determination and control system design of KufaSat
Liu et al. In-orbit estimation of inertia parameters of target satellite after capturing the tracking satellite
Zhang et al. Attitude Control for an Agile Satellite using Four Variable Speed Control Moment Gyros
Gao et al. Semi-physical simulation platform of a parafoil nonlinear dynamic system
Houjun et al. Research on Angular Momentum Management in Touchless Attitude Control of Spacecraft
Cheon Spin-axis stabilization of gyroless and underactuated rigid spacecraft using modified Rodrigues parameters
Sease et al. L 1 adaptive attitude control for a picoscale satellite test bed
CN106081167B (zh) 一种省工质的磁控与喷气控制联合的高精度姿态控制方法
Xing et al. An efficient momentum dumping method through an alternative sun pointing strategy for small Near Equatorial Orbit satellite
Zhai Deterministic Algorithms to Estimate Spacecraft Angular Velocity from Single Vector Measurements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant