CN106555683B - 一种沼气发动机点火控制方法 - Google Patents

一种沼气发动机点火控制方法 Download PDF

Info

Publication number
CN106555683B
CN106555683B CN201611028057.8A CN201611028057A CN106555683B CN 106555683 B CN106555683 B CN 106555683B CN 201611028057 A CN201611028057 A CN 201611028057A CN 106555683 B CN106555683 B CN 106555683B
Authority
CN
China
Prior art keywords
engine
effective
methane fuelled
performance
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611028057.8A
Other languages
English (en)
Other versions
CN106555683A (zh
Inventor
陈庆协
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan University
Original Assignee
Longyan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan University filed Critical Longyan University
Priority to CN201611028057.8A priority Critical patent/CN106555683B/zh
Publication of CN106555683A publication Critical patent/CN106555683A/zh
Application granted granted Critical
Publication of CN106555683B publication Critical patent/CN106555683B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明公开了一种沼气发动机点火控制方法,与现有技术相比,本发明在缓解能源、环境危机的双重压力下,可再生、低污染性的生物质能日益受到世界各国的关注,其中的沼气能,由于其分布广泛、建设成本低、综合效益显著、更是成为能源建设中优先发展重点,同时也为沼气发动机研究发展奠定良好的发展趋势,具有推广使用的价值。

Description

一种沼气发动机点火控制方法
技术领域
本发明涉及一种发动机控制方法,尤其涉及一种沼气发动机点火控制方法。
背景技术
在当前全球能源和环境严峻情况下,以高新技术将可再生的生物质能转化为洁净的高品质气体和液体燃料作为化石燃料的替代能源,并应用于电力、交通运输等方面,已经受世界各国的重视。沼气发动机在沼气发电技术领域中作为沼气能量转换的关键设备,国内对沼气发动机的研究始于上世纪八十年代初,先后有一些单位进行过沼气发动机的结构改装的研究工作,主要是针对沼气、柴油双燃料发动机的研究,技术上相对于国外还是有一定的差距,主要体现在沼气发动机存在的动力不足、燃气消耗高、排放性差和起动困难等运行可靠性问题,给用户带来不便,是制约和影响沼气发电产业发展进程的技术瓶颈。
发明内容
本发明的目的就在于为了解决上述问题而提供一种沼气发动机点火控制方法。
本发明通过以下技术方案来实现上述目的:
本发明包括以下步骤:
(1)燃气喷射控制:要准确给发动机提供沼气质量,采用速度一密度法来确定,数学关系如下:
上式中:mcyl每工作循环进入气缸的空气质量流量率;ηV为气缸的充气效率;Vcyl为气缸容积(m3);n为发动机转速(r/min);pm为进气管压力为(kPa);Tm为进气管温度(K);
(2)点火控制:点火提前角是决定发动机性能好坏的一个重要参数,为了在沼气发动机工作中准确提供点火时间,内燃机燃烧理论,结合相关理论,可求得点火提前角,其数学关系如下:
上式中:σ为点火提前角;a,b为待定系数,可通过标定的方式求得;D为气缸直径;ω为曲轴旋转角速度;φ为过量空气系数;z,ξ,γ是由燃料性质决定的;l,η分别为湍流积分尺度和柯尔莫戈洛夫(Kol-mogrov)尺度,对于沼气发动机燃烧过程,一般根据经验取值;p0,T0分别取300K和lbar,α和β为温度指数和压力指数;f是废气残余系数,f的取值范围0<f<0.3;Tu和p为未燃混合气的温度和压力;
(3)动力性能计算:评价发动机动力性能的指标一般为曲轴对外输出的有效功率或者有效力矩,发动机的有效力矩可表示为:
(4)燃气消耗计算:表征发动机燃气经济性能指标通常是有效燃气消耗率,可表示为:be=1000B/Pe
上式中,be为有效燃气消耗率;B为每小时耗气量;Pe为有效功率(kW);通常在实际发动机工作过程中,B和Pe可实际测定。
本发明的有益效果在于:
本发明是一种沼气发动机点火控制方法,与现有技术相比,本发明在缓解能源、环境危机的双重压力下,可再生、低污染性的生物质能日益受到世界各国的关注,其中的沼气能,由于其分布广泛、建设成本低、综合效益显著、更是成为能源建设中优先发展重点,同时也为沼气发动机研究发展奠定良好的发展趋势,具有推广使用的价值。
具体实施方式
下面对本发明作进一步说明:
本发明包括以下步骤:
(1)燃气喷射控制:要准确给发动机提供沼气质量,采用速度一密度法来确定,数学关系如下:
上式中:mcyl每工作循环进入气缸的空气质量流量率;ηV为气缸的充气效率;Vcyl为气缸容积(m3);n为发动机转速(r/min);pm为进气管压力为(kPa);Tm为进气管温度(K);
(2)点火控制:点火提前角是决定发动机性能好坏的一个重要参数,为了在沼气发动机工作中准确提供点火时间,内燃机燃烧理论,结合相关理论,可求得点火提前角,其数学关系如下:
上式中:σ为点火提前角;a,b为待定系数,可通过标定的方式求得;D为气缸直径;ω为曲轴旋转角速度;φ为过量空气系数;z,ξ,γ是由燃料性质决定的;l,η分别为湍流积分尺度和柯尔莫戈洛夫(Kol-mogrov)尺度,对于沼气发动机燃烧过程,一般根据经验取值;p0,T0分别取300K和lbar,α和β为温度指数和压力指数;f是废气残余系数,f的取值范围0<f<0.3;Tu和p为未燃混合气的温度和压力;
(4)动力性能计算:评价发动机动力性能的指标一般为曲轴对外输出的有效功率或者有效力矩,发动机的有效力矩可表示为:
(4)燃气消耗计算:表征发动机燃气经济性能指标通常是有效燃气消耗率,可表示为:be=1000B/Pe
上式中,be为有效燃气消耗率;B为每小时耗气量;Pe为有效功率(kW);通常在实际发动机工作过程中,B和Pe可实际测定。
以上显示和描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (1)

1.一种沼气发动机点火控制方法,其特征在于,包括以下步骤:
(1)燃气喷射控制:要准确给发动机提供沼气质量,采用速度一密度法来确定,数学关系如下:
上式中:mcyl每工作循环进入气缸的空气质量流量率;ηV为气缸的充气效率;Vcyl为气缸容积(m3);n为发动机转速(r/min);pm为进气管压力为(kPa);Tm为进气管温度(K);
(2)点火控制:点火提前角是决定发动机性能好坏的一个重要参数,为了在沼气发动机工作中准确提供点火时间,内燃机燃烧理论,结合相关理论,可求得点火提前角,其数学关系如下:
上式中:σ为点火提前角;a,b为待定系数,可通过标定的方式求得;D为气缸直径;ω为曲轴旋转角速度;φ为过量空气系数;z,ξ,γ是由燃料性质决定的;l,η分别为湍流积分尺度和柯尔莫戈洛夫(Kol-mogrov)尺度,对于沼气发动机燃烧过程,一般根据经验取值;T0,p0分别取300K和lbar,α和β为温度指数和压力指数;f是废气残余系数,f的取值范围0<f<0.3;Tu和p为未燃混合气的温度和压力;
(3)动力性能计算:评价发动机动力性能的指标一般为曲轴对外输出的有效功率或者有效力矩,发动机的有效力矩可表示为:
(4)燃气消耗计算:表征发动机燃气经济性能指标通常是有效燃气消耗率,可表示为:be=1000B/Pe
上式中,be为有效燃气消耗率;B为每小时耗气量;Pe为有效功率(kW);通常在实际发动机工作过程中,B和Pe可实际测定。
CN201611028057.8A 2016-11-18 2016-11-18 一种沼气发动机点火控制方法 Expired - Fee Related CN106555683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611028057.8A CN106555683B (zh) 2016-11-18 2016-11-18 一种沼气发动机点火控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611028057.8A CN106555683B (zh) 2016-11-18 2016-11-18 一种沼气发动机点火控制方法

Publications (2)

Publication Number Publication Date
CN106555683A CN106555683A (zh) 2017-04-05
CN106555683B true CN106555683B (zh) 2019-05-31

Family

ID=58443618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611028057.8A Expired - Fee Related CN106555683B (zh) 2016-11-18 2016-11-18 一种沼气发动机点火控制方法

Country Status (1)

Country Link
CN (1) CN106555683B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213366A (zh) * 2005-05-05 2008-07-02 范应用物理研究院 用于内燃发动机的点火系统
CN102297031A (zh) * 2010-06-28 2011-12-28 通用汽车环球科技运作有限责任公司 用于测量发动机气流的系统和方法
CN102428260A (zh) * 2009-03-16 2012-04-25 标致·雪铁龙汽车公司 确定热力发动机点火提前量的方法
CN105628387A (zh) * 2015-12-30 2016-06-01 北京航天三发高科技有限公司 采用预测控制法调节试车台进气状态参数的调试方法
CN105756787A (zh) * 2016-03-28 2016-07-13 龙岩学院 一种沼气发动机控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213366A (zh) * 2005-05-05 2008-07-02 范应用物理研究院 用于内燃发动机的点火系统
CN102428260A (zh) * 2009-03-16 2012-04-25 标致·雪铁龙汽车公司 确定热力发动机点火提前量的方法
CN102297031A (zh) * 2010-06-28 2011-12-28 通用汽车环球科技运作有限责任公司 用于测量发动机气流的系统和方法
CN105628387A (zh) * 2015-12-30 2016-06-01 北京航天三发高科技有限公司 采用预测控制法调节试车台进气状态参数的调试方法
CN105756787A (zh) * 2016-03-28 2016-07-13 龙岩学院 一种沼气发动机控制系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于发动机模型的神经网络点火控制器;张晟恺;《湖北汽车工业学院学报》;20131231;全文
基于模型的LPG单一燃料发动机电控系统的研究;杨世春;《中国优秀博硕士学位论文全文数据库 (博士)工程科技Ⅱ辑》;20041215;全文

Also Published As

Publication number Publication date
CN106555683A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
CN101532910B (zh) 涡轮增压器加速性能评价测试方法及试验装置
Fan et al. The influence of hydrogen injection strategy on mixture formation and combustion process in a port injection (PI) rotary engine fueled with natural gas/hydrogen blends
Srivastava et al. Effect of compression ratio on performance, emission and combustion characteristics of diesel–acetylene-fuelled single-cylinder stationary CI engine
CN106762182A (zh) 汽油发动机瞬态空燃比的控制方法及系统
Misra et al. Energy and exergy analyses of a CI engine fuelled with palm biodiesel based on experimental data
Kaya Experimental comparative study on combustion, performance and emissions characteristics of ethanol-gasoline blends in a two stroke uniflow gasoline engine
Van Ga et al. Utilization of poor biogas as fuel for hybrid biogas-diesel dual fuel stationary engine
Kosar et al. THE USAGE OF HYDROGEN FOR IMPROVING EMISSIONS AND FUEL CONSUMPTION IN A SMALL GASOLINE ENGINE.
Wang et al. Study of fuel-controlled aircraft engine for fuel-powered unmanned aerial vehicle: Energy conversion analysis and optimization
CN106555683B (zh) 一种沼气发动机点火控制方法
Pesic et al. Aspects of volumetric efficiency measurement for reciprocating engines
Wang et al. Controlling emissions and correcting power of nonroad naturally aspirated diesel engine operating at high altitude
Gęca et al. Mean effective pressure oscillations in an IC-SI engine after the addition of hydrogen-rich gas
Kaisan et al. Determination of Engine Performance Parameters of a Stationary Single Cylinder Compression Ignition Engine Run on Biodiesel from Wild Grape Seeds/Diesel Blends of Engine Performance Parameters Using Biodiesel From Wild Grape Seeds
CN110388296A (zh) 一种汽油直喷发动机最优点火提前角的控制方法
Wang et al. Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined with EGR
Chmielewski et al. The test stand research on Honda NHX 110 powered with alternative fuels: a case study
Glawar et al. Engine Cleanliness in an Industry Standard Mercedes-Benz M111 Bench Engine: Effects of Inlet Valve Deposits on Combustion
CN204101295U (zh) 单缸机模拟整机的试验装置
ElHelew et al. Technical and economic evaluation of an engine and irrigation pump using a T-type mixer for natural gas
Liang Study on Efficiency Model of Gasoline Engine Used by Hybrid Electrical Vehicle
CN116181511B (zh) 基于热力学的双燃料喷射量控制方法、装置、设备和介质
Zhu INTEGRATED PARAMETER TEST SYSTEM FOR DUAL FUEL ENGINES OF SPECIAL HEAVY VEHICLES
Flärdh et al. Analysis of a Quasi-Steady Extension to the Turbine Model in Mean Value Engine Models
Mikita et al. Simulation model of the combustion processes of a diesel engine.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190531

Termination date: 20211118

CF01 Termination of patent right due to non-payment of annual fee