CN106549434B - 与可再生能量生成集成的双向电池充电器 - Google Patents

与可再生能量生成集成的双向电池充电器 Download PDF

Info

Publication number
CN106549434B
CN106549434B CN201511010842.6A CN201511010842A CN106549434B CN 106549434 B CN106549434 B CN 106549434B CN 201511010842 A CN201511010842 A CN 201511010842A CN 106549434 B CN106549434 B CN 106549434B
Authority
CN
China
Prior art keywords
power
renewable energy
coupled
energy generator
boost converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201511010842.6A
Other languages
English (en)
Other versions
CN106549434A (zh
Inventor
H.白
A.巴罗格
X.王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conductive Holding LLC
Original Assignee
Conductive Holding LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conductive Holding LLC filed Critical Conductive Holding LLC
Publication of CN106549434A publication Critical patent/CN106549434A/zh
Application granted granted Critical
Publication of CN106549434B publication Critical patent/CN106549434B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J3/382
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及与可再生能量生成集成的双向电池充电器。在一个实施例中,与可再生能量生成集成的双向电池充电器包括耦合到电网和第一DC总线的初级侧AC/DC整流器、耦合到第一DC总线和初级绕组的DC/AC逆变器、耦合到次级绕组和电池的次级侧AC/DC整流器,以及耦合到可再生能量生成器和第一DC总线的升压转换器。升压转换器包括由控制算法控制的有源开关,所述控制算法在可再生电力可用时,以允许电力从可再生能量生成器流动到第一DC总线并且继续以便为电池充电(不经过初级侧AC/DC整流器)或者继续以供给电网(不经过DC/AC逆变器和次级侧AC/DC整流器)的占空比操作有源开关,并且当不可用时,禁用有源开关。

Description

与可再生能量生成集成的双向电池充电器
技术领域
本申请一般地涉及用于供电动车辆或其它电池供电的设备使用的电池充电器,并且更具体地涉及与可再生能量生成集成的双向电池充电器。
背景技术
在过去的十年间,在使用电动车辆和其它类型的电池供电的设备方面已经存在显著增加。与该增加一起地,在电池充电器的使用中已经存在类似增加。在电动车辆的情况中,电池充电器通常采取1级或2级交流(AC)慢充电器的形式。这样的慢充电器典型地在1级充电器的情况中利用大约1.8千瓦(kW),并且在2级充电器的情况中利用7.2kW的电网供给的电力。已经做出生产具有高效率的AC快速充电器的一些尝试。这样的快速充电器可以利用大约11kW的电力。
不论类型如何,由大多数电池充电器使用的电力t典型地是电网供给的,而没有来自任何本地可再生能量生成(例如可以位于充电器附近的太阳能电池板、风轮机、地热发电机等)的贡献。当可再生能量生成在电池充电器旁使用时,这样的系统典型地与彼此完全隔离,这导致高成本、有限的控制灵活性和低于所期望的效率。
图1是电池充电器和可再生能量生成器的典型隔离布置的示意图100。电网110经由电感元件L向电池充电器120供给电力AC。电池充电器可以包括耦合到单向直流/直流(DC/DC)转换器的(未示出的)交流/直流(AC/DC)整流器。电池充电器的输出是可以耦合到电动车辆的电池(具有电阻Rb)的电压Vb。另外,可再生能量生成器130(例如太阳能阵列、风轮机、地热发电机等)可以向直流/直流(DC/AC)逆变器140供给DC电力,并且结果得到的AC电力朝向电网110馈送回去。
电池充电器120和分离的DC/AC逆变器140二者的使用导致增加的部署成本。附加的增加的成本通常由超裕度设计(overdesign)电池充电器120以应对并发地从电网110和DC/AC逆变器140供给的电力的需要所招致。电池充电器120和DC/AC逆变器140的分离防止涉及两个组件的任何种类的响应控制。最终,对于使源自可再生能量生成器130的DC电力在其后来被转换回到DC电力(经由电池充电器120)之前首先被转换成AC电力(经由DC/AC逆变器140)的需要导致低系统效率。
所需要的是与可再生能量生成集成的双向电池充电器(例如用于电动车辆),其可以解决在先设计的一些或全部缺陷。
发明内容
在示例实施例中,双向电池充电器(例如用于电动车辆)与可再生能量生成(例如太阳能阵列、风轮机、地热发电机等)集成,使得来自可再生能量生成器的电力可以流动以便为电池充电而不经过充电器的初级侧AC/DC整流器,或者流动以供给电网而不经过DC/AC逆变器或充电器的次级侧AC/DC整流器。集成使用将可再生能量生成器耦合到双向电池充电器内的第一DC总线的升压转换器。升压转换器可以包括有源开关(例如金属氧化物半导体场效应晶体管(MOSFET))、电感元件和二极管。
更具体地,在示例实施例中,与可再生能量生成集成的双向电池充电器可以是用于电动车辆的双向AC快速充电器。双向AC快速充电器包括耦合到电网和第一DC总线的初级侧AC/DC整流器,以及耦合到第一DC总线和变压器的初级绕组的DC/AC逆变器。DC/AC逆变器可以包括耦合到电容器和电感元件的网络的有源开关(例如MOSFET)。包括被耦合在串联布置的电感元件与二极管之间的有源开关(例如MOSFET)的升压转换器还耦合到第一DC总线。次级侧AC/DC整流器耦合到变压器的次级绕组。次级侧AC/DC整流器可以包括执行DC偏置电流阻断的电容器和四个有源开关(例如MOSFET)的桥式配置。次级侧AC/DC整流器耦合到第二DC总线,其耦合到电动车辆的电池。
微控制器耦合到升压转换器、DC/AC逆变器和次级侧AC/DC整流器的有源开关,并且被配置成根据控制算法向那里提供控制信号(例如脉冲宽度调制(PWM)的信号)。控制算法可以被配置成当可再生电力可用时,发送控制信号来以允许电力从可再生能量生成器流动到第一DC总线并且继续以便为电池充电(不经过初级侧AC/DC整流器)或者继续以供给电网(不经过DC/AC逆变器和次级侧AC/DC整流器)的占空比操作升压转换器的有源开关,并且当可再生电力不可用时,发送控制信号以禁用升压转换器的有源开关以将可再生能量生成器从第一DC总线隔离。控制算法可以控制来自可再生能量生成器的电力是被指引向电池还是电网。控制算法可以在为电池充电时发送控制信号来以50%占空比操作DC/AC逆变器的有源开关并且禁用次级侧AC/DC整流器的有源开关,并且当向电网供给电力时,发送控制信号以禁用DC/AC逆变器的有源开关并且以50%占空比操作次级侧AC/DC整流器的有源开关。所供给的电力可以通过控制算法、通过改变开关频率来被调节。控制算法还可以调节可再生能量生成以提供最大功率点追踪(MPPT)。控制算法可以确定从可再生能量生成器供给的电力是否基本上等于最大功率点目标,并且增加升压转换器的有源开关的占空比以增加从可再生能量生成器供给的电力直到从可再生能量生成器供给的电力基本上等于最大功率点目标为止。
应当理解的是,根据本公开的教导的与可再生能量生成集成的双向电池充电器可以包括以各种附加或可替换的布置所部署的各种附加或可替换的组件。本发明内容仅仅意图作为对读者的介绍,并且不指示或暗示教导覆盖本发明的所有方面,或者是本发明的必要或必需方面。
附图说明
以下详细描述参照示例实施例的附图,其中:
图1是电池充电器和可再生能量生成器的典型隔离布置的示意图;
图2是与可再生能量生成集成的示例双向电池充电器的高层级框图;
图3是图2的与可再生能量生成集成的示例双向电池充电器的示意图,其示出示例电路的细节;以及
图4是可以由图2和3的与可再生能量生成集成的示例双向电池充电器的微处理器执行的示例控制算法的某些步骤的流程图。
具体实施方式
定义
如本文所使用的,术语“电动车辆”应当解释为是指从电气源得到其推进力中的一些或全部的任何类型的车辆,包括诸如仅电池电动车辆(BOEV)和插电式混合电动车辆(PHEV)之类的插电式电动车辆。
另外,如本文所使用的,术语“基本上”应当被认为(在不存在另一特定标准的明确规定的情况下)是指在数量的±5%内。
描述
图2是与可再生能量生成集成的示例双向电池充电器的高层级框图200。电网210可以在需要时提供AC电力(例如,如240V单相到480V三相),并且还在存在过剩的可再生电力或者电池电力可用时吸收(sink)AC电力。电网210耦合到初级侧AC/DC整流器220。初级侧AC/DC整流器220经由第一DC总线222耦合到升压转换器295和DC/AC逆变器230。升压转换器295可以包括有源开关(例如MOSFET)。可再生能量生成器297(例如太阳能阵列、风轮机、地热发电机等)向升压转换器295供给DC电力。DC/AC逆变器230可以包括被耦合到电容器和电感元件的网络的两个有源开关(例如MOSFET),所述网络进而耦合到变压器的初级绕组240。初级绕组240与变压器的次级绕组250交换电力(例如经由导电无线电力传输)。次级绕组250耦合到可以包括执行DC偏置电流阻断的电容器和四个有源开关(例如MOSFET)的桥式配置的次级侧AC/DC整流器260。次级侧AC/DC整流器260经由第二DC总线262耦合到例如电动车辆(未示出)的电池270。在一个实现中,第二DC总线262可以以200V至450V向电池270递送基本上11千瓦(kW)的电力。
电压和电流传感器280耦合到电池270和可再生能量生成器297以监视被供给到电池的电力(充电电力)和从电池往回朝向电网返回的电力(放电电力),以及从可再生能量生成器供给的电力。在模拟到数字(ADC)转换之后,将充电电力/放电电力和从可再生能量生成器供给的电力的度量供给到执行控制算法的微控制器290(例如浮点数字信号处理器(DSP))。微控制器290根据控制算法向升压转换器295的有源开关、DC/AC逆变器230的有源开关和次级侧AC/DC整流器260的有源开关提供控制信号(例如脉冲宽度调制(PWM)的信号)。
图3是与可再生能量生成集成的示例双向电池充电器的示意图300。为了简单,省略电压和电流传感器280、微控制器290和将微控制器290耦合到有源开关的任何控制信号路径。电网210耦合到电感元件L以及初级侧AD/DC整流器220的二极管和有源开关(集体为310)。二极管和有源开关310可以根据包括在空间矢量脉冲宽度调制(SVPWM)控制之下的快速绝缘栅双极性晶体管(IGBT)的全桥式PFC拓扑或者某种其它布置来被布置。初级侧AD/DC整流器220耦合到具有电压VDC的第一DC总线222。第一DC总线222还耦合到包括被耦合在串联布置的电感元件LS与二极管DS之间的有源开关SS的升压转换器295,其在可再生电力可用时从可再生能量生成器297接收电力。有源开关SS可以是N沟道功率MOSFET。有源开关SS的额定电压可以选择成大于第一DC总线222的电压VDC,并且额定电流取决于可再生能量生成器297的功率和电压(例如大于P/V,其中P是由可再生能量生成器供给的功率并且V是由可再生能量生成器供给的电压)。二极管DS的额定电压可以选择成大于第一DC总线222的电压VDC,并且额定电流取决于可再生能量生成器297的功率(例如大于P/VDC)。电感元件LS的额定电流可以取决于可再生能量生成器297的功率(例如大于P/V)。
第一DC总线222还耦合到DC/AC逆变器230,所述DC/AC逆变器230可以包括被耦合到电容器Cp1和Cp2以及电感元件Lm的网络的一对有源开关S3和S4。有源开关S3和S4可以是N沟道功率MOSFET。初级侧AC/DC整流器220和DC/AV逆变器230一起可以被视为AC/AC转换器320。DC/AC逆变器230耦合到例如支持向被耦合到次级侧AC/DC整流器260的变压器T的次级侧的导电无线电力传输的变压器T的初级侧。次级侧AC/DC整流器260可以包括执行DC偏置电流阻断的电容器Cs,以及以桥式配置布置的有源开关S5、S6、S7和S8。有源开关S5、S6、S7和S8可以是N沟道功率MOSFET。次级侧AC/DC整流器260的输出是被耦合到例如电动车辆的电池270(具有电阻Rb)的第二DC总线262上的电压Vb
图4是可以由图2和3的与可再生能量生成集成的示例双向电池充电器的微处理器执行的示例控制算法的某些步骤400的流程图。在步骤410处,控制算法确定可再生电力是否从可再生能量生成器297可得到。如果可再生电力可用,则执行继续进行到步骤420,其中控制算法确定电力是流动到第二DC总线262以便为电池270充电,还是流动以供给电网210。如果电力是为电池270充电,则执行继续进行到步骤430,其中控制算法发送控制信号(例如PWM信号)来以允许电力从可再生能量生成器297流动到第一DC总线222的初始占空比操作升压转换器295的有源开关SS,并且发送控制信号(例如PWM信号)来以50%占空比操作DC/AC逆变器230的有源开关S3和S4并且禁用次级侧AC/DC整流器260的有源开关S5、S6、S7和S8。可以调整有源开关S3和S4的开关频率以调整到电池(未示出)的电力流动。在步骤440处,控制算法确定从可再生能量生成器297供给的电力是否基本上等于最大功率点目标。如果是这样,则执行终止。如果不是,则执行继续进行到步骤450,其中控制算法增加被发送到升压转换器的有源开关SS的控制信号的占空比以增加从可再生能量生成器供给的电力直到从可再生能量生成器供给的电力基本上等于最大功率点目标为止。
返回到判定步骤420,如果电力是供给电网210,则执行继续进行到步骤460,其中控制算法发送控制信号(例如PWM信号)来以允许电力从可再生能量生成器297流动到第一DC总线222的初始占空比操作有源开关SS并且发送控制信号(例如PWM信号)以禁用DC/AC逆变器230的有源开关S3和S4并且以50%占空比操作次级侧AC/DC整流器260的有源开关S5、S6、S7和S8。可以调整开关频率以调整到电网(未示出)的电力流动。
返回到判定步骤410,如果可再生电力从可再生能量生成器297不可得到,则执行继续进行到步骤490,其中控制算法确定电力是流动到第二DC总线262以便为电池270充电,还是流动以供给电网210。如果电力是为电池270充电,则执行继续进行到步骤470,其中控制算法发送控制信号(例如PWM信号)以禁用有源开关SS以将可再生能量生成器270从第一DC总线222隔离,并且发送控制信号(例如PWM信号)来以50%占空比操作DC/AC逆变器230的有源开关S3和S4并且禁用次级侧AC/DC整流器260的有源开关S5、S6、S7和S8。可以调整有源开关S3和S4的开关频率以调整到电池(未示出)的电力流动。执行然后可以结束。如果电力是供给电网210,则执行继续进行到步骤480,其中控制算法发送控制信号(例如PWM信号)以禁用有源开关SS以隔离可再生能量生成器270至第一DC总线222,以及控制信号(例如PWM信号)以禁用DC/AC逆变器230的有源开关S3和S4并且以50%占空比操作次级侧AC/DC整流器260的有源开关S5、S6、S7和S8。可以调整有源开关S5、S6、S7和S8的开关频率以调整到电网(未示出)的电力流动。
总之,虽然以上描述讨论了与可再生能量生成集成的双向电池充电器的示例实施例,但是应当理解的是,可以做出修改和/或添加而不脱离于本公开的所意图的精神和范围。例如,虽然以上讨论了各种特定硬件组件,但是应当理解的是,一个或多个功能类似的组件可以代替许多这样的组件,以实现类似的效果。尤其是应当理解到,以上描述意指仅作为示例来理解。

Claims (20)

1.一种与可再生能量生成集成的双向电池充电器,包括
耦合到电网和第一直流DC总线的初级侧交流/直流AC/DC整流器;
耦合到第一DC总线和变压器的初级绕组的直流/交流DC/AC逆变器;
耦合到变压器的次级绕组和电池的次级侧AC/DC整流器;
耦合到可再生能量生成器和第一DC总线的升压转换器,所述升压转换器包括有源开关;以及
耦合到升压转换器的有源开关并且被配置成根据控制算法向那里提供控制信号的微控制器,所述控制算法:
当可再生电力可用时,发送控制信号来以允许电力从可再生能量生成器流动到第一DC总线的占空比操作升压转换器的有源开关,并且
当可再生电力不可用时,发送控制信号以禁用升压转换器的有源开关以将可再生能量生成器从第一DC总线隔离。
2.权利要求1所述的双向电池充电器,其中DC/AC逆变器包括有源开关并且控制算法还被配置成:
当为电池充电时,发送控制信号来以第二占空比操作DC/AC逆变器的有源开关,并且
当向电网供给电力时,发送控制信号以禁用DC/AC逆变器的有源开关。
3.权利要求2所述的双向电池充电器,其中次级侧AC/DC整流器包括执行DC偏置电流阻断的电容器和耦合到电容器的有源开关的桥式配置,并且控制算法还被配置成:
当为电池充电时,发送控制信号以禁用次级侧AC/DC整流器的有源开关,并且
当向电网供给电力时,发送控制信号来以第二占空比操作次级侧AC/DC整流器的有源开关。
4.权利要求3所述的双向电池充电器,其中控制信号是脉冲宽度调制PWM的控制信号,并且DC/AC逆变器的有源开关和次级侧AC/DC整流器的有源开关以确定电力流动的开关频率而被操作。
5.权利要求1所述的双向电池充电器,其中控制算法还被配置成:
当可再生电力可用时,确定从可再生能量生成器供给的电力是否基本上等于最大功率点目标,并且增加升压转换器的有源开关的占空比以增加从可再生能量生成器供给的电力直到从可再生能量生成器供给的电力基本上等于最大功率点目标为止。
6.权利要求1所述的双向电池充电器,其中升压转换器中的有源开关耦合在串联布置的电感元件与二极管之间。
7.权利要求1所述的双向电池充电器,其中升压转换器中的有源开关是金属氧化物半导体场效应晶体管MOSFET。
8.权利要求1所述的双向电池充电器,其中双向电池充电器是用于电动车辆的AC快速充电器,并且电池是电动车辆的电池。
9.权利要求1所述的双向电池充电器,其中可再生电力是太阳能电力,并且可再生能量生成器是太阳能阵列。
10.一种双向交流/交流AC/AC转换器,包括
耦合到直流DC总线的交流/直流AC/DC整流器;
耦合到第一DC总线和交流AC负载的直流/交流DC/AC逆变器,其中所述直流/交流DC/AC逆变器包括耦合到电容器和电感元件的网络的两个有源开关;
耦合到可再生能量生成器和第一DC总线的升压转换器,所述升压转换器包括有源开关;
耦合到DC/AC逆变器和升压转换器的有源开关并且被配置成根据控制算法向那里提供控制信号的微控制器,所述控制算法:
当可再生电力可用时,发送控制信号来以允许电力从可再生能量生成器流动到第一DC总线的占空比操作升压转换器的有源开关,并且
当可再生电力不可用时,发送控制信号以禁用升压转换器的有源开关以将可再生能量生成器从第一DC总线隔离。
11.权利要求10所述的双向AC/AC转换器,其中AC/DC整流器还耦合到电网,DC/AC逆变器包括有源开关并且控制算法还被配置成:
当电力如果流动到AC负载时,发送控制信号来以第二占空比操作DC/AC逆变器的有源开关,并且
当电力是供给电网时,发送控制信号以禁用DC/AC逆变器的有源开关。
12.权利要求11所述的双向AC/AC转换器,其中控制信号是脉冲宽度调制PWM的控制信号,并且DC/AC逆变器的有源开关以确定电力流动的开关频率而被操作。
13.权利要求10所述的双向AC/AC转换器,其中控制算法还被配置成:
当可再生电力可用时,确定从可再生能量生成器供给的电力是否基本上等于最大功率点目标,并且增加升压转换器的有源开关的占空比以增加从可再生能量生成器供给的电力直到从可再生能量生成器供给的电力基本上等于最大功率点目标。
14.权利要求10所述的双向AC/AC转换器,其中升压转换器中的有源开关耦合在串联布置的电感元件与二极管之间。
15.权利要求10所述的双向AC/AC转换器,其中升压转换器中的有源开关是金属氧化物半导体场效应晶体管MOSFET。
16.权利要求10所述的双向AC/AC转换器,其中AC负载是变压器的初级绕组,并且双向AC/AC转换器是还包括与变压器的次级绕组和耦合到电池的第二DC总线耦合的次级侧AC/DC整流器的双向电池充电器的部分。
17.权利要求16所述的双向AC/AC转换器,其中双向电池充电器是用于电动车辆的AC快速充电器,并且电池是电动车辆的电池。
18.一种与可再生能量生成集成的双向电池充电器,包括
耦合到电网和第一直流DC总线的初级侧交流/直流AC/DC整流器;
耦合到第一直流DC总线和变压器的初级绕组的包括金属氧化物半导体场效应晶体管MOSFET的直流/交流DC/AC转换器;
与变压器的次级绕组和耦合到电池的第二DC总线耦合的次级侧交流/直流AC/DC整流器,其包括MOSFET的桥式配置;
耦合到可再生能量生成器和第一DC总线的升压转换器,所述升压转换器包括MOSFET;以及
耦合到DC/AC逆变器、次级AC/DC整流器和升压转换器的MOSFET并且被配置成根据控制算法向那里提供控制信号的微控制器,所述控制算法操作DC/AC逆变器、次级侧AC/DC整流器和升压转换器的MOSFET以使来自可再生能量生成器的电力在不经过初级侧AC/DC整流器的情况下为电池充电,并且使来自可再生能量生成器的电力在不经过DC/AC逆变器和次级侧AC/DC整流器的情况下供给电网。
19.权利要求18所述的双向电池充电器,其中控制算法还被配置成:
当可再生电力可用时,确定从可再生能量生成器供给的电力是否基本上等于最大功率点目标,并且增加升压转换器的MOSFET的占空比以增加从可再生能量生成器供给的电力直到从可再生能量生成器供给的电力基本上等于最大功率点目标为止。
20.权利要求18所述的双向电池充电器,其中双向电池充电器是用于电动车辆的AC快速充电器,并且电池是电动车辆的电池。
CN201511010842.6A 2015-09-17 2015-12-30 与可再生能量生成集成的双向电池充电器 Expired - Fee Related CN106549434B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/857,222 US9787117B2 (en) 2015-09-17 2015-09-17 Bidirectional battery charger integrated with renewable energy generation
US14/857222 2015-09-17

Publications (2)

Publication Number Publication Date
CN106549434A CN106549434A (zh) 2017-03-29
CN106549434B true CN106549434B (zh) 2021-07-27

Family

ID=58283187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511010842.6A Expired - Fee Related CN106549434B (zh) 2015-09-17 2015-12-30 与可再生能量生成集成的双向电池充电器

Country Status (2)

Country Link
US (1) US9787117B2 (zh)
CN (1) CN106549434B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10926649B2 (en) * 2014-12-22 2021-02-23 Flex Power Control, Inc. Method to reduce losses in a high voltage DC link converter
WO2018003199A1 (ja) * 2016-06-30 2018-01-04 三菱電機株式会社 並列電源装置
US10439428B2 (en) * 2017-02-24 2019-10-08 Paul Harriman Kydd Minimum-cost EVPV for vehicle-solar-grid integration
CN106655457A (zh) * 2017-03-24 2017-05-10 刘博� 一种直流光储充一体化的充电站
US10447085B2 (en) * 2017-04-10 2019-10-15 Shenzhen Yichong Wireless Power Technology Co. Ltd Integrated circuit-based wireless charging system and method
US10381967B2 (en) * 2017-05-17 2019-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Simplified power conversion systems for vehicles
CN107425543A (zh) * 2017-06-30 2017-12-01 浙江瑞尚能源科技有限公司 一种太阳能发电系统中使用的dsp控制系统
US11801763B2 (en) 2017-12-19 2023-10-31 Ford Global Technologies, Llc Integrated DC vehicle charger
CN109995264A (zh) * 2017-12-29 2019-07-09 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 双向dc-ac变换器及其控制方法
FR3083929B1 (fr) * 2018-07-16 2020-06-19 Renault S.A.S Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu
CN111433075B (zh) * 2019-09-05 2023-05-09 香港应用科技研究院有限公司 智能电源中枢
US11932130B2 (en) 2021-11-29 2024-03-19 Command Consulting, Llc Mission-critical microgrid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208820A (zh) * 2013-04-23 2013-07-17 上海为恒新能源科技有限公司 一种智能电网用双向电能变换器
WO2014103105A1 (ja) * 2012-12-28 2014-07-03 パナソニック株式会社 Dc/dcコンバータ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388040A (en) 1993-09-30 1995-02-07 Hughes Aircraft Company Series resonant converter having an actively controlled third element
US7889524B2 (en) * 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
US8076907B2 (en) * 2008-08-06 2011-12-13 Xantrex Technology Inc. Method and apparatus for exporting power in a renewable energy system employing a battery charger
CN105006854A (zh) 2009-07-31 2015-10-28 热之王公司 双向电池电压转换器
US8811039B2 (en) 2010-07-16 2014-08-19 Virginia Tech Intellectual Properties, Inc. Pulse width modulated resonant power conversion
US9762115B2 (en) 2011-02-03 2017-09-12 Viswa N. Sharma Bidirectional multimode power converter
EP2795781B1 (en) 2011-12-21 2017-02-01 Eaton Industries Company Llc bidirectional resonant converter and method of controlling
US9493088B2 (en) 2011-12-31 2016-11-15 Shenzhen Byd Auto R&D Company Limited Electric automobile and integrated control system thereof
KR20130138954A (ko) 2012-06-12 2013-12-20 현대모비스 주식회사 스마트 그리드용 전기자동차의 양방향 전력 공급장치 및 이를 이용한 양방향 전력 공급방법
US9001539B2 (en) 2012-11-19 2015-04-07 Apple Inc. AC-DC resonant converter that provides high efficiency and high power density
US20150049515A1 (en) 2013-08-13 2015-02-19 Delphi Technologies, Inc. Resonant converter and method of operating the same
ITMO20130267A1 (it) 2013-09-26 2015-03-27 Meta System Spa Caricabatterie per veicoli elettrici

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103105A1 (ja) * 2012-12-28 2014-07-03 パナソニック株式会社 Dc/dcコンバータ
CN103208820A (zh) * 2013-04-23 2013-07-17 上海为恒新能源科技有限公司 一种智能电网用双向电能变换器

Also Published As

Publication number Publication date
CN106549434A (zh) 2017-03-29
US20170085106A1 (en) 2017-03-23
US9787117B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
CN106549434B (zh) 与可再生能量生成集成的双向电池充电器
KR102559693B1 (ko) 전기 차량용 전력 허브 및 동작 모드
Ryu et al. Effective test bed of 380-V DC distribution system using isolated power converters
Chen et al. Double-input PWM DC/DC converter for high-/low-voltage sources
Tang et al. A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles
Tan et al. Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system
Singh et al. An integrated converter with reduced components for electric vehicles utilizing solar and grid power sources
US8570005B2 (en) Direct current link circuit
EP3104508B1 (en) In-vehicle charger and surge-suppression method for in-vehicle charger
US10560024B2 (en) Bidirectional DC/DC converter for a charging system
EP3057218B1 (en) In-vehicle charger
US10044278B2 (en) Power conversion device
Xuewei et al. Current-fed soft-switching push–pull front-end converter-based bidirectional inverter for residential photovoltaic power system
US20110156643A1 (en) High-voltage battery charging system for use in electric vehicle
US11152791B2 (en) Solar energy based mobile electric vehicle fast charger system
Tan et al. A 6-kW, 2-kWh Lithium-Ion battery energy storage system using a bidirectional isolated DC-DC converter
Ryu et al. Test bed implementation of 380V DC distribution system using isolated bidirectional power converters
Pugliese et al. 270V/28V wide bandgap device-based DAB converter for more-electric-aircrafts: Feasibility and optimization
Lee et al. Study on 1.5 kW battery chargers for neighborhood electric vehicles
Shreelakshmi et al. High gain, high efficiency bi-directional DC-DC converter for battery charging applications in stand-alone Photo-Voltaic systems
Wang et al. Interleaved SEPIC PFC converter using coupled inductors in PEV battery charging applications
Khedekar et al. Bidirectional on-board EV battery charger with V2H application
Bhajana et al. Performance Evaluation of LLC Resonant Full Bridge DC-DC converter for auxiliary systems in traction
JP2012120364A (ja) 給電システム
Kim et al. Analysis and design of a three-port flyback inverter using an active power decoupling method to minimize input capacitance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Massachusetts, USA

Applicant after: CONDUCTIVE HOLDING LLC

Address before: Ohio, USA

Applicant before: CONDUCTIVE HOLDING LLC

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210727