CN106546948B - 基于幅相误差阵列的远近场宽带混合源中远场源测向方法 - Google Patents

基于幅相误差阵列的远近场宽带混合源中远场源测向方法 Download PDF

Info

Publication number
CN106546948B
CN106546948B CN201610947444.5A CN201610947444A CN106546948B CN 106546948 B CN106546948 B CN 106546948B CN 201610947444 A CN201610947444 A CN 201610947444A CN 106546948 B CN106546948 B CN 106546948B
Authority
CN
China
Prior art keywords
information source
array
frequency point
matrix
far
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610947444.5A
Other languages
English (en)
Other versions
CN106546948A (zh
Inventor
甄佳奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN201610947444.5A priority Critical patent/CN106546948B/zh
Publication of CN106546948A publication Critical patent/CN106546948A/zh
Application granted granted Critical
Publication of CN106546948B publication Critical patent/CN106546948B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/023Monitoring or calibrating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

基于幅相误差阵列的远近场宽带混合源中远场源测向方法,本发明涉及远近场宽带混合源中远场源测向方法。本发明的目的是为了解决现有存在阵列幅相误差时远近场宽带混合信源中远场信源的到达方向估计不准确的问题。基于幅相误差阵列的远近场宽带混合源中远场源测向方法具体过程为:步骤一、构建理想情况下的信源模型;步骤二、根据理想情况下的信源模型构建阵列幅相误差下的信源模型;步骤三、根据阵列幅相误差下的信源模型计算远场信源到达方向估计值。本发明用于信号处理领域。

Description

基于幅相误差阵列的远近场宽带混合源中远场源测向方法
技术领域
本发明涉及远近场宽带混合源中远场源测向方法。
背景技术
超分辨测向是阵列信号处理中的一个重要研究内容,在无线电监测、物联网和电子对抗等领域有着较广泛的应用。目前多数的测向方法都是以精确的掌握阵列流型为前提。而实际的测向系统当中,各阵列通道的增益和长短往往不一致,导致测向估计时经常伴随着阵列幅相误差,这直接导致了很多的超分辨测向方法性能的恶化,甚至失效,因此必须对该问题进行深入的研究。
阵列幅相误差的校正方法通常可以分为有源校正和自校正。有源校正可通过在空间设置方位已知的辅助信源对阵列扰动参数进行离线估计,而自校正方法通常根据某种优化函数对空间信源的方位与阵列扰动参数联合估计。较早的自校正算法只针对阵元的位置误差或阵列幅相误差,这两种误差其实可以用相同的数学模型表示(阵元的位置误差可以看成是阵元间的相位不一致),它们都是与方位不相关的误差。对于这类误差,A.Paulraj和T.Kallath提出了利用阵列输出协方差矩阵的特殊结构,得到幅相误差之间相互关系的线性方程组,从而可实现对均匀线阵幅相误差和信源源的到达方向估计。BenjaminFriedlander和Anthony J.Weiss利用阵列输出协方差矩阵特征分解后噪声子空间和信源子空间正交的特点,并结合多重信源分类算法,提出了一种迭代最小化代价函数对阵列幅相误差和到达方向同时估计的算法。Cao等人利用特征子空间方法对该问题进行了研究,它不需要辅助信源,而且避免了初始化过程。Liu等人利用四阶累积量技术对阵列进行了扩展,并实现了幅相误差校正和信源到达方向估计,然而它们都需要先对阵列幅相误差进行校正,并且仅仅适用于远场信源;近十几年来,人们对于远近场混合信源的测向问题进行了研究:例如Doclo采用特征滤波器实现了远近场信源的波束形成,可是精度较低。Arslan基于神经网络技术对该问题进行了研究,也取得了较好的效果,只是计算量较大。Liang利用虚拟阵列变换的方法实现了远近场信源的测向定位。He采用改进的多重信源分类算法实现了远近场信源的测向定位,且避免了多维搜索。然而上述方法只适用于窄带信源,对于存在阵列幅相误差时的宽带信源超分辨测向方法,尤其是存在阵列幅相误差时远近场宽带混合信源背景下的远场信源超分辨测向方法,未见到公开发表的文献,导致存在阵列幅相误差时远近场宽带混合信源中的远场信源到达方向估计不准确。
发明内容
本发明的目的是为了解决现有存在阵列幅相误差时远近场宽带混合信源中远场信源的到达方向估计不准确的问题,而提出存在阵列幅相误差时远近场宽带混合信源中远场信源的到达方向估计方法。
基于幅相误差阵列的远近场宽带混合源中远场源测向方法具体过程为:
步骤一、构建理想情况下的信源模型;
步骤二、根据理想情况下的信源模型构建阵列幅相误差下的信源模型;
步骤三、根据阵列幅相误差下的信源模型计算远场信源到达方向估计值。
本发明的有益效果为:
该发明提出了基于幅相误差阵列的远近场宽带混合源中远场源测向方法,当阵列幅相误差存在时,根据幅相误差矩阵的结构对信源的空间谱函数进行了化简并求出了远场信源到达方向。该方法不需要对阵列幅相误差进行校正以及谱函数搜索,相对于其它方法节省了计算时间,提高了效率,并且估计精度较高。
从图2可以看出,随着信噪比的增加,测向估计精度也在不断提高,最后达到收敛。由于EA方法无法对阵列误差进行校正,因此当信噪比较高时仍然存在一定的误差;AE方法需要先对阵列幅相误差进行校正再进行测向估计,而幅相误差的估计过程也有一定的不准确性,导致最后测向结果存在一定的偏差;而本方法省去了估计幅相误差的过程,因此估计精度相对较高;同时由于它通过直接对多项式方程求根来计算信源方向,也回避了EA方法和AE方法中谱峰搜索的过程,在很大程度上提高了计算效率。
图3可以看出,对于宽带信源,随着信噪比的增加,本发明方法的估计精度也在提高,当信噪比达到12dB时,本发明的方法估计误差为0,说明通过聚焦可以将宽带信源的信息变换到窄带频点上,估计性能与窄带信源相比无明显的差异,最后能够实现对远场宽带信源的准确测向。
附图说明
图1为本发明信源模型图;
图2为实施例的中心频点处的测向估计误差随信噪比的变化图;
图3为实施例的宽带信源的测向估计误差随信噪比的变化图。
具体实施方式
具体实施方式一:结合图1说明本实施方式,本实施方式的基于幅相误差阵列的远近场宽带混合源中远场源测向方法具体过程为:
步骤一、构建理想情况下的信源模型;
步骤二、根据理想情况下的信源模型构建阵列幅相误差下的信源模型;
步骤三、根据阵列幅相误差下的信源模型计算远场信源到达方向估计值。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述步骤一中构建理想情况下的信源模型;具体过程为:
如图1所示,假设N1个远场线性调频宽带信源和N2个近场线性调频宽带信源同时到达由2M+1个全向阵元组成的均匀直线阵列上,到达角度为θ,其中N=N1+N2,N为总的信源个数;N、N1、N2取值为正整数,M取值为正整数;θ取值为-90°~+90°;
假设远近场信源个数均为已知,信源之间互不相关且到达阵列的功率相等,将第0个阵元作为相位参考点,近场信源与相位参考点距离为阵元间距为d,它等于信号中心频率对应波长的一半,d取值为正数,假设线性调频宽带信源的频率范围为[fLow,fHigh],设在每个频点上进行了Z次信源采样,经过J个窄带滤波器对信源进行频率划分,则第i个滤波器输出表示为
X(fi)=A(fi,θ)S(fi)+E(fi) (1)
其中fLow<fi<fHigh,i=1,2,…,J,X(fi)为频点fi上的阵列接收向量,表达式为
X(fi)=[X(fi,1),…,X(fi,z),…,X(fi,Z)] (2)
其中
X(fi,z)=[X-M(fi,z),…,X-m(fi,z),…,X0(fi,z),…,Xm(fi,z),…,XM(fi,z)]T (3)
式中,X(fi,z)为X(fi)的第z次采样向量,Xm(fi,z)为频点fi上第m个阵元接收到的第z次采样数据,X0(fi,z)为频点fi上第0个阵元接收到的第z次采样数据,XM(fi,z)为频点fi上第M个阵元接收到的第z次采样数据;1≤z≤Z,Z、J取值为正数,式(1)中,A(fi,θ)为频点fi上(2M+1)×N维的信号阵列流型矩阵
其中
为理想情况下频点fi上远场信源的阵列流型矩阵,元素为信源在频点fi上的远场信号导向矢量;
为理想情况下频点fi上近场信源的阵列流型矩阵,元素为信源在频点fi上的近场信号导向矢量;
当信源处在远场时,信源距天线距离较远,可认为信源与各个阵元的连线之间是平行的,则有
其中
式中,表示第n1个远场信源到达第m个阵元相对于它到达相位参考点的延时,n1=1,2,…N1,m=-M,…,-m,…,0,…,m,…,M,m取值为整数;c为电磁波在真空中的传播速度,j为复数标志,T为对矩阵求转置。
当信源处在近场时,信源距天线距离较近,则有
观察图1中近场信源与天线阵列之间的几何关系,通过余弦定理可以得出
式中,表示第n2个近场信源到达第m个阵元相对于它到达相位参考点的延时,利用傅立叶级数展开有
式(1)中
式中,S(fi)为频点fi上的信号矢量矩阵,其中为频点fi上远场信源的矢量矩阵,为频点fi上第n1个远场信源的矢量矩阵;为频点fi上近场信源的矢量矩阵,为频点fi上第n2个近场信源的矢量矩阵;
式(1)中E(fi)为频点fi上的噪声矢量矩阵,均值为0,方差为σ2(fi),则理想情况下频点fi上的阵列协方差矩阵为
式中,I(2M+1)×(2M+1)为(2M+1)×(2M+1)维的单位矩阵,H为对矩阵求共轭转置;其中远场信源的协方差矩阵近场信源的协方差矩阵
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述步骤二中根据理想情况下的信源模型构建阵列幅相误差下的信源模型;具体过程为:
当存在阵列幅相误差时,W(fi)表示频点fi上的阵列幅相误差矩阵,表示为:
W(fi)=diag([W-M(fi),…,W-m(fi),…,1,…,Wm(fi),…,WM(fi)]T) (12)
其中
式中,diag表示对矢量取对角矩阵,ρm(fi)、分别为信源频率为fi时,第m个阵元相对于第0个阵元的幅度增益和相位偏差,与信源到达方向无关,因此存在阵列幅相误差时第n个信源在频点fi上的导向矢量表示为
式中,n=1,2,…,N;a(fin)为理想情况下信源sn(t)在频点fi上的信号导向矢量;
于是当存在阵列幅相误差时,频点fi上的阵列流型矩阵表示为
其中
为存在阵列幅相误差时频点fi上远场信源的阵列流型矩阵,为对应信源在频点fi上的远场信源导向矢量;
为对应近场信源的阵列流型矩阵,为对应信源在频点fi上的近场信源导向矢量;
则存在阵列幅相误差时频点fi上的阵元输出表示为
式中,i=1,2,…,J,为了简单起见,另定义频点fi上的阵列幅相扰动向量
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述步骤三中根据阵列幅相误差下的信源模型计算远场信源到达方向估计值;具体过程为:
首先求解宽带信源各频点下的协方差矩阵
式中,i=1,2,…,J;
其中存在阵列幅相误差时频点fi上的远场信源的协方差矩阵相应近场信源的协方差矩阵对R′(fi)进行特征分解,可得出R′(fi)的特征向量U′(fi)=[U′S(fi) U′E(fi)],其中U′S(fi)为频点fi上的信号特征向量,U′E(fi)为频点fi上的噪声特征向量,利用U′S(fi)将所有频点上的信号协方差矩阵聚焦到参考频率点f0上,即
其中T(fi)=U′S(f0)(U′S(fi))H为聚焦矩阵,U′S(f0)为频点f0上的信号特征向量,f0选择为宽带信源的中心频率,这样就充分利用了所有频点上的数据。
再将R″(f0)进行特征分解得出R″(f0)的特征向量U(f0)=[US(f0) UE(f0)],US(f0)为(2M+1)×N维的信号特征向量,UE(f0)为(2M+1)×(2M+1-N)维的噪声特征向量,结合多重信号分类算法,利用接收数据信号子空间与噪声子空间的正交性构造出如下远场信源的空间谱函数
上式的分母等价于
对Y进行化简可得
其中,W(f0)为频点f0上的阵列幅相误差矩阵,w(f0)为频点f0上的阵列幅相扰动向量;只要求出式(22)的极小值就可以得出远场信源的到达方向;由于w(f0)不为零矩阵,因此只有当D(f0,θ)为奇异矩阵的时候,wH(f0)D(f0,θ)w(f0)才等于0,此时的θ对应远场信源的真实到达方向,所以可以求解出如下多项式函数的N1个根求出N1个远场信源的到达方向
|D(f0,θ)|=0 (23)
其中||表示求解矩阵D(f0,θ)的行列式,故此可得出远场信源的到达方向
其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述fLow为0.09GHz,fHigh为0.11GHz。
其它步骤及参数与具体实施方式一至四之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:中心频率处远场信号的测向估计精度
均匀等距直线阵列由7个全向阵元组成,3个远场宽带线性调频信源和2个近场宽带线性调频信源分别从(5°,15°,25°)和(35°,45°)同时入射到该阵列上,信源频率为0.09~0.11GHz,信源被分为9个频点进行处理,假设其它各阵元相对于阵元0的增益和相位偏差分别在(0~2)和(-30°~30°)间随机选取,进行300次蒙特卡洛实验取平均值观察结果,同时将该方法与现有的其它方法进行对比,现有方法都是针对窄带信源的幅相误差校正,且阵元间距等于信源的半波长,因此取中心频率位置的信源进行仿真。由于未找到存在阵列幅相误差时远近场宽带混合信源中远场信源到达方向估计方法的相关文献,因此本方法与Liu提出的AE(Liu提出的AE方法对应的参考文献为:Aifei Liu,GuishengLiao,CaoZeng.AnEigenstructure Method for Estimating DOA and Sensor Gain-Phase Errors[J].IEEETransactions on Signal Processing,2011,59(12):5944-5956.)方法和He提出的EA(EA方法对应的参考文献为Jin He,M.N.S.Swamy,M.Omair Ahmad.Efficient Application ofMUSIC Algorithm Under the Coexistence of Far-Field and Near-Field Sources[J].IEEE Transactions on Signal Processing,2012,60(4):2066-2070.)方法作对比,其中AE方法是对存在阵列幅相误差下的远场信源测向,具有幅相误差校正功能;EA方法是对理想情况下的远近场混合信源进行测向,不具有幅相误差校正功能,取其中远场信源的测向结果进行对比。假设采样数为20次,信噪比从0dB变化到20dB,频率为0.1GHz处的远场信源测向估计误差定义为其中为对θn的估计值,图2为测向估计精度随信噪比的变化。
从图2可以看出,随着信噪比的增加,测向估计精度也在不断提高,最后达到收敛。由于EA方法无法对阵列误差进行校正,因此当信噪比较高时仍然存在一定的误差;AE方法需要先对阵列幅相误差进行校正再进行测向估计,而幅相误差的估计过程也有一定的不准确性,导致最后测向结果存在一定的偏差;而本方法省去了估计幅相误差的过程,因此估计精度相对较高;同时由于它通过直接对多项式方程求根来计算信源方向,也回避了EA方法和AE方法中谱峰搜索的过程,在很大程度上提高了计算效率。
实施例二:远场宽带信号的测向估计精度
该实例为本发明方法对频率为0.09~0.11GHz处的宽带信源测向估计精度的变化,其它条件同实例一,仿真结果如图3所示。
图3可以看出,对于宽带信号,随着信噪比的增加,本发明方法的估计精度也在提高,当信噪比达到12dB时,本发明的方法估计误差为0,说明通过聚焦可以将宽带信号的信息变换到窄带频点上,估计性能与窄带信号相比无明显的差异,最后能够实现对远场宽带信号的准确测向。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (4)

1.基于幅相误差阵列的远近场宽带混合源中远场源测向方法,其特征在于:基于幅相误差阵列的远近场宽带混合源中远场源测向方法具体过程为:
步骤一、构建理想情况下的信源模型;
步骤二、根据理想情况下的信源模型构建阵列幅相误差下的信源模型;
步骤三、根据阵列幅相误差下的信源模型计算远场信源到达方向估计值;
所述步骤一中构建理想情况下的信源模型;具体过程为:
假设N1个远场线性调频宽带信源和N2个近场线性调频宽带信源同时到达由2M+1个全向阵元组成的均匀直线阵列上,到达角度为θ,其中n1=1,2,…,N1,n2=N1+1,…,N,N=N1+N2,N为总的信源个数;
假设远近场信源个数均为已知,信源之间互不相关且到达阵列的功率相等,将第0个阵元作为相位参考点,近场信源与相位参考点距离为阵元间距为d,d等于信号中心频率对应波长的一半,假设线性调频宽带信源的频率范围为[fLow,fHigh],设在每个频点上进行了Z次信源采样,经过J个窄带滤波器对信源进行频率划分,则第i个滤波器输出表示为
X(fi)=A(fi,θ)S(fi)+E(fi) (1)
其中fLow<fi<fHigh,i=1,2,…,J,X(fi)为频点fi上的阵列接收向量,表达式为
X(fi)=[X(fi,1),…,X(fi,z),…,X(fi,Z)] (2)
其中
X(fi,z)=[X-M(fi,z),…,X-m(fi,z),…,X0(fi,z),…,Xm(fi,z),…,XM(fi,z)]T (3)
式中,X(fi,z)为X(fi)的第z次采样向量,Xm(fi,z)为频点fi上第m个阵元接收到的第z次采样数据,X0(fi,z)为频点fi上第0个阵元接收到的第z次采样数据,XM(fi,z)为频点fi上第M个阵元接收到的第z次采样数据;1≤z≤Z,式(1)中,A(fi,θ)为频点fi上(2M+1)×N维的信号阵列流型矩阵
其中
为理想情况下频点fi上远场信源的阵列流型矩阵,元素为信源在频点fi上的远场信号导向矢量;
为理想情况下频点fi上近场信源的阵列流型矩阵,元素为信源在频点fi上的近场信号导向矢量;
当信源处在远场时,信源与各个阵元的连线之间是平行的,则有
其中
式中,表示第n1个远场信源到达第m个阵元相对于它到达相位参考点的延时,n1=1,2,…N1,m=-M,…,-m,…,0,…,m,…,M,m取值为整数;c为电磁波在真空中的传播速度,j为复数标志,T为对矩阵求转置;
当信源处在近场时,则有
通过余弦定理可以得出
式中,表示第n2个近场信源到达第m个阵元相对于它到达相位参考点的延时,利用傅立叶级数展开有
式(1)中
式中,S(fi)为频点fi上的信号矢量矩阵,其中为频点fi上远场信源的矢量矩阵,为频点fi上第n1个远场信源的矢量矩阵,n1=1,2,…,N1为频点fi上近场信源的矢量矩阵,为频点fi上第n2个近场信源的矢量矩阵,n2=N1+1,…,N;
式(1)中E(fi)为频点fi上的噪声矢量矩阵,均值为0,方差为σ2(fi),则理想情况下频点fi上的阵列协方差矩阵为
式中,I(2M+1)×(2M+1)为(2M+1)×(2M+1)维的单位矩阵,H为对矩阵求共轭转置;
其中远场信源的协方差矩阵近场信源的协方差矩阵
2.根据权利要求1所述基于幅相误差阵列的远近场宽带混合源中远场源测向方法,其特征在于:所述步骤二中根据理想情况下的信源模型构建阵列幅相误差下的信源模型;具体过程为:
当存在阵列幅相误差时,W(fi)表示频点fi上的阵列幅相误差矩阵,表示为:
W(fi)=diag([W-M(fi),…,W-m(fi),…,1,…,Wm(fi),…,WM(fi)]T) (12)
其中
式中,diag表示对矢量取对角矩阵,ρm(fi)、分别为信源频率为fi时,第m个阵元相对于第0个阵元的幅度增益和相位偏差,与信源到达方向无关,因此存在阵列幅相误差时第n个信源在频点fi上的导向矢量表示为
式中,n=1,2,…,N;a(fin)为理想情况下信源sn(t)在频点fi上的信号导向矢量;
于是当存在阵列幅相误差时,频点fi上的阵列流型矩阵表示为
其中
为存在阵列幅相误差时频点fi上远场信源的阵列流型矩阵,为对应信源在频点fi上的远场信源导向矢量;
为对应近场信源的阵列流型矩阵,为对应信源在频点fi上的近场信源导向矢量;
则存在阵列幅相误差时频点fi上的阵元输出表示为
式中,i=1,2,…,J,另定义频点fi上的阵列幅相扰动向量
3.根据权利要求2所述基于幅相误差阵列的远近场宽带混合源中远场源测向方法,其特征在于:所述步骤三中根据阵列幅相误差下的信源模型计算远场信源到达方向估计值;具体过程为:
首先求解宽带信源各频点下的协方差矩阵
式中,i=1,2,…,J;
其中存在阵列幅相误差时频点fi上的远场信源的协方差矩阵相应近场信源的协方差矩阵对R′(fi)进行特征分解,可得出R′(fi)的特征向量U′(fi)=[U′S(fi) U′E(fi)],其中U′S(fi)为频点fi上的信号特征向量,U′E(fi)为频点fi上的噪声特征向量,利用U′S(fi)将所有频点上的信号协方差矩阵聚焦到参考频率点f0上,即
其中T(fi)=U′S(f0)(U′S(fi))H为聚焦矩阵,U′S(f0)为频点f0上的信号特征向量,f0选择为宽带信源的中心频率,
再将R″(f0)进行特征分解得出R″(f0)的特征向量U(f0)=[US(f0) UE(f0)],US(f0)为(2M+1)×N维的信号特征向量,UE(f0)为(2M+1)×(2M+1-N)维的噪声特征向量,结合多重信号分类算法,利用接收数据信号子空间与噪声子空间的正交性构造出如下远场信源的空间谱函数
上式的分母等价于
对Y进行化简可得
其中,W(f0)为频点f0上的阵列幅相误差矩阵,w(f0)为频点f0上的阵列幅相扰动向量;只要求出式(22)的极小值就可以得出远场信源的到达方向;由于w(f0)不为零矩阵,因此只有当D(f0,θ)为奇异矩阵的时候,wH(f0)D(f0,θ)w(f0)才等于0,此时的θ对应远场信源的真实到达方向,所以可以通过求解如下多项式函数的N1个根来求出N1个远场信源的到达方向
|D(f0,θ)|=0 (23)
其中||表示求解矩阵D(f0,θ)的行列式,故此可得出远场信源的到达方向
4.根据权利要求3所述基于幅相误差阵列的远近场宽带混合源中远场源测向方法,其特征在于:所述fLow为0.09GHz,fHigh为0.11GHz。
CN201610947444.5A 2016-10-26 2016-10-26 基于幅相误差阵列的远近场宽带混合源中远场源测向方法 Expired - Fee Related CN106546948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610947444.5A CN106546948B (zh) 2016-10-26 2016-10-26 基于幅相误差阵列的远近场宽带混合源中远场源测向方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610947444.5A CN106546948B (zh) 2016-10-26 2016-10-26 基于幅相误差阵列的远近场宽带混合源中远场源测向方法

Publications (2)

Publication Number Publication Date
CN106546948A CN106546948A (zh) 2017-03-29
CN106546948B true CN106546948B (zh) 2019-01-11

Family

ID=58393815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610947444.5A Expired - Fee Related CN106546948B (zh) 2016-10-26 2016-10-26 基于幅相误差阵列的远近场宽带混合源中远场源测向方法

Country Status (1)

Country Link
CN (1) CN106546948B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167763B (zh) * 2017-04-21 2020-06-23 天津大学 基于非圆特性的远近场混合信号波达方向估计方法
CN107422299A (zh) * 2017-05-03 2017-12-01 惠州学院 一种混合信号源定位方法和混合信号源定位系统
CN107966676B (zh) * 2017-08-04 2019-11-08 大连理工大学 复杂噪声环境下阵列天线角度和信源个数联合估计方法
CN108037520B (zh) * 2017-12-27 2021-01-22 中国人民解放军战略支援部队信息工程大学 阵列幅相误差条件下基于神经网络的直接定位偏差修正方法
CN108375752B (zh) * 2018-02-05 2022-06-24 中国人民解放军战略支援部队信息工程大学 基于全角度搜索的幅相误差单辐射源测向方法
CN109085531B (zh) * 2018-08-27 2023-04-07 西安电子科技大学 基于神经网络的近场源到达角估计方法
CN111505566B (zh) * 2020-05-08 2022-09-16 哈尔滨工程大学 一种特高频射频信号doa估计方法
CN112305496B (zh) * 2020-10-26 2022-06-17 哈尔滨工程大学 一种被动测向通道相位校正方法
CN112630784B (zh) * 2020-12-04 2023-07-07 浙江大学 基于凸优化和神经网络的平面阵列幅相误差校正方法
CN112904270B (zh) * 2021-01-15 2022-06-21 电子科技大学 一种阵列模型误差下基于拟合模型的波达方向估计方法
CN112881972B (zh) * 2021-01-15 2022-06-21 电子科技大学 一种阵列模型误差下基于神经网络的波达方向估计方法
CN113552530B (zh) * 2021-06-29 2022-07-15 哈尔滨工程大学 一种基于量子鼠群的近场和远场源混合测向方法
CN114487986B (zh) * 2022-04-18 2022-07-19 湖南艾科诺维科技有限公司 一种干涉仪测向阵列校准和验证方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353338A (zh) * 2015-09-28 2016-02-24 黑龙江大学 宽带信号超分辨测向中的阵列通道幅相不一致性误差校正方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353338A (zh) * 2015-09-28 2016-02-24 黑龙江大学 宽带信号超分辨测向中的阵列通道幅相不一致性误差校正方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Efficient Application of MUSIC Algorithm Under the Coexistence of Far-Field and Near-Field Sources";Jin He et al.;《IEEE TRANSACTIONS ON SIGNAL PROCESSING》;20120430;第60卷(第4期);第2066-2070页
"水声阵列探测算法及系统关键技术研究";蒋佳佳;《中国博士学位论文全文数据库(电子期刊)工程科技II辑》;20151130(第11期);第28-32、81页

Also Published As

Publication number Publication date
CN106546948A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN106546948B (zh) 基于幅相误差阵列的远近场宽带混合源中远场源测向方法
CN106501770B (zh) 基于幅相误差阵列的远近场宽带混合源中近场源定位方法
CN111190136B (zh) 一种基于特定频率组合信号的一维doa估计方法
Xia et al. Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays
Pan et al. Efficient joint DOA and TOA estimation for indoor positioning with 5G picocell base stations
He et al. Near-field localization of partially polarized sources with a cross-dipole array
CN109061554B (zh) 一种基于空间离散网格动态更新的目标到达角度估计方法
CN109633522B (zh) 基于改进的music算法的波达方向估计方法
CN106371055B (zh) 远近场宽带混合信号超分辨测向阵列幅相误差估计方法
KR101498646B1 (ko) 다중 재머 환경에서의 doa 추정 장치 및 방법
CN109738854A (zh) 一种天线阵列来波方向的到达角估计方法
US20020027526A1 (en) Method and device for using array antenna to estimate location of source in near field
CN113835063B (zh) 一种无人机阵列幅相误差与信号doa联合估计方法
CN109946643B (zh) 基于music求解的非圆信号波达方向角估计方法
CN113032721B (zh) 一种低计算复杂度的远场和近场混合信号源参数估计方法
CN108983145A (zh) 电磁矢量传感器阵列宽带相干源定位方法
CN112763972B (zh) 基于稀疏表示的双平行线阵二维doa估计方法及计算设备
CN111368256B (zh) 一种基于均匀圆阵的单快拍测向方法
CN113296050A (zh) 基于各向异性阵列的极化和角度参数联合估计方法
Abdullah et al. Comparative Study of Super-Performance DOA Algorithms based for RF Source Direction Finding and Tracking
Amin et al. Fast DOA estimation using coarray beamforming with model order estimation
Dheringe et al. Performance evaluation and analysis of direction of arrival estimation using MUSIC, TLS ESPRIT and Pro ESPRIT algorithms
CN115914994A (zh) 混合场波束偏移效应下智能超表面辅助的低开销定位方法
Chargé et al. A root-MUSIC-like direction finding method for cyclostationary signals
Mills et al. Fast iterative interpolated beamforming for interference DOA estimation in GNSS receivers using fully augmentable arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190111

Termination date: 20191026

CF01 Termination of patent right due to non-payment of annual fee