CN106544629B - 一种大尺度自支撑铍薄膜的制备方法及装置 - Google Patents

一种大尺度自支撑铍薄膜的制备方法及装置 Download PDF

Info

Publication number
CN106544629B
CN106544629B CN201710037031.8A CN201710037031A CN106544629B CN 106544629 B CN106544629 B CN 106544629B CN 201710037031 A CN201710037031 A CN 201710037031A CN 106544629 B CN106544629 B CN 106544629B
Authority
CN
China
Prior art keywords
film
nacl
beryllium
substrate
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710037031.8A
Other languages
English (en)
Other versions
CN106544629A (zh
Inventor
李恺
吴卫东
罗炳池
罗江山
张吉强
谭秀兰
李文琦
金雷
何玉丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Fusion Research Center China Academy of Engineering Physics
Original Assignee
Laser Fusion Research Center China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Fusion Research Center China Academy of Engineering Physics filed Critical Laser Fusion Research Center China Academy of Engineering Physics
Priority to CN201710037031.8A priority Critical patent/CN106544629B/zh
Publication of CN106544629A publication Critical patent/CN106544629A/zh
Application granted granted Critical
Publication of CN106544629B publication Critical patent/CN106544629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种大尺度自支撑铍薄膜的制备方法及装置,依次包括以下步骤:在基片表面上沉积NaCl薄膜衬底;在NaCl薄膜衬底表面上沉积铍薄膜,形成“NaCl+Be”复合薄膜;将“NaCl+Be”复合薄膜进行自然时效;然后进行脱膜处理,即得;本发明提供的自支撑铍薄膜制备方法有很多明显的优点,以“基片+NaCl薄膜”作为衬底,可以避免直接采用可溶性衬底带来的缺点;采用自然时效及精细化脱膜工艺,以降低铍薄膜内应力和脱膜液体表面张力;通过以上方法克服了金属铍的极大脆性,可制备最大尺寸达数十毫米、厚度介于1μm‑10μm的自支撑铍薄膜,而且所得的自支撑铍薄膜质量优良。

Description

一种大尺度自支撑铍薄膜的制备方法及装置
技术领域
本发明涉及自支撑铍薄膜技术领域,更具体地说,本发明涉及一种采用以“载玻片+NaCl薄膜”作为可溶性衬底制备大尺度自支撑铍薄膜的方法及实现该方法的装置。
背景技术
铍(Be)是稀有金属之一,具有密度低、熔点高、强度及弹性模量高、比热容极大等特点。特别是由于其对热中子的吸收截面在所有金属中最小,而散射截面大,同时对X射线具有极高的透过率,使其在核工业、航空航天、冶金工业及高科技领域具有重要的应用价值。同时铍也有显著的缺点,如脆性极大、剧毒等,限制了相关研究的开展及应用。
自支撑铍薄膜是指无衬底支撑而独立存在的铍薄膜,常用于加速器靶、X射线滤片、X射线光刻、同步加速器辐射电极、天基X射线望远镜中,但由于铍的剧毒特性及制备难度较大等,目前对其研究较少,相关正式研究结果及样品尚未见文献报道。
对于自支撑铍薄膜的制备,公开文献一般采用在可溶性衬底上直接沉积薄膜,然后将该可溶性衬底去除而得到自支撑铍薄膜的方法。由于直接可溶性衬底具有表面粗糙、易变形等缺点,从而使得在其表面沉积的铍薄膜质量较差,在脱膜过程中铍薄膜破裂,导致无法满足使用要求,即现有报道的方法适用性不强。
发明内容
本发明的目的之一,就在于提供一种大尺度自支撑铍薄膜的制备方法,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种大尺度自支撑铍薄膜的制备方法,依次包括以下步骤:
(a)在基片表面上沉积NaCl薄膜衬底;
(b)在步骤(a)得到的NaCl薄膜衬底表面上沉积铍薄膜,形成“NaCl+Be”复合薄膜;
(c)将步骤(b)得到的“NaCl+Be”复合薄膜进行自然时效,以去除薄膜内应力;
(d)将步骤(c)时效后的“NaCl+Be”复合薄膜进行脱膜处理,即得到自支撑铍薄膜。
作为优选的技术方案,步骤(a)所述的NaCl薄膜衬底采用热蒸发法沉积;所述基片为载玻片。
作为优选的技术方案,步骤(a)得到的NaCl薄膜衬底厚度100nm-200nm,表面粗糙度Ra值为18nm-22nm。
作为优选的技术方案,步骤(b)所述的铍薄膜采用热蒸发法沉积,铍薄膜的厚度为1μm-10μm,铍薄膜的表面粗糙度Ra值小于100nm。
作为优选的技术方案,步骤(c)所述的自然时效在电子防潮箱中进行。
作为优选的技术方案,步骤(c)所述的自然时效条件为湿度25%-35%,时效时间30天-40天。
作为优选的技术方案,步骤(d)所述的脱膜处理在纯乙醇溶液中进行,并于其中滴入蒸馏水。在纯乙醇溶液中进行,并于其中滴入少许蒸馏水,其作用是在降低液体表面张力的同时去除NaCl薄膜衬底,避免铍薄膜破裂而得到自支撑铍薄膜。
本发明的目的之二,在于提供一种实现上述制备方法的装置,采用的技术方案为:包括沉积室,所述沉积室内上部设置有基片架,所述基片架底部设置有基片,所述基片下方设置有挡板,所述沉积室内下部还设置有坩埚、 Ta蒸发舟及电极,所述坩埚、Ta蒸发舟均固定在电极上,坩埚位于 Ta蒸发舟内,所述电极通过电源供电,所述坩埚底部还设置有热电偶,所述沉积室还连接真空系统。
作为优选的技术方案:所述坩埚(6)采用BN材料或BeO材料。坩埚材料可根据蒸发原料的不同而更换。
作为优选的技术方案:所述电极(8)为高纯Cu材料。
与现有技术相比,本发明的优点在于:本发明提供的自支撑铍薄膜制备方法有很多明显的优点,以“基片+NaCl薄膜”作为衬底,可以避免直接采用可溶性衬底带来的缺点;采用自然时效及精细化脱膜工艺,以降低铍薄膜内应力和脱膜液体表面张力;通过以上方法克服了金属铍的极大脆性,可制备最大尺寸达数十毫米、厚度介于1μm-10μm的自支撑铍薄膜,而且所得的自支撑铍薄膜质量优良。
附图说明
图1为本发明的原理与现有技术的原理对比图;
图2为本发明的装置的结构示意图。
图中:1.沉积室、2.基片架、3.基片、4.挡板、5.蒸气束流、6.坩埚7.Ta蒸发舟、8.电极、9.真空系统、10.交流电源、11.热电偶。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例:
一种大尺度自支撑铍薄膜的制备方法,依次包括以下步骤:
(a) 将3英寸载玻片作为基片,坩埚采用BN材料,蒸发原料采用分析纯级别的NaCl颗粒,热蒸发沉积制备NaCl薄膜衬底;
(b) 更换BeO材料坩埚并在坩埚中放入条状的金属铍切屑原料,将开孔尺寸为5mm-30mm的掩膜片置于NaCl薄膜表面,利用热蒸发法沉积制备铍薄膜,形成“NaCl+Be”复合薄膜;
(c)将“NaCl+Be”复合薄膜置于电子防潮箱中进行自然时效,以去除薄膜内应力;
(d)将“NaCl+Be”复合薄膜置于纯乙醇溶液中进行脱膜处理,并于其中滴入少许蒸馏水以降低液体表面张力并去除NaCl衬底,从而得到自支撑铍薄膜;
本实施例的方法相对于现有技术的改进原理,如图1所示;
采用的制备装置,如图2所示,包括沉积室1,所述沉积室1内上部设置有基片架2,所述基片架2底部设置有基片3,所述基片3下方设置有挡板4,所述沉积室1内下部还设置有坩埚6、 Ta蒸发舟7及电极8,所述坩埚6、 Ta蒸发舟7均固定在电极8上,坩埚6位于 Ta蒸发舟7内,所述电极8通过电源10供电,所述坩埚6底部还设置有热电偶11,所述沉积室1还连接真空系统9,真空系统9由机械泵及分子泵组成;
该装置首先是对沉积室1抽真空,使其背景压强达到约1×10-5Pa,然后打开交流电源10,电流通过蒸发舟7,蒸发舟7被电流的焦耳热加热直至坩埚6内的镀料能被蒸发出来,形成蒸气束流5,入射到基片3表面,凝结形成固态薄膜;
其具体操作步骤为:
第一步:沉积薄膜前工作,抽真空
打开沉积室1,清洗载玻片3后将其置于基片架2上,采用BN材料作为蒸发坩埚6,并于其中放置少量分析纯级别的NaCl颗粒,然后将该坩埚置于Ta蒸发舟7内,将挡板4置于蒸发源正上方位置,关闭沉积室1;开启真空系统9,直至真空度达1×10-5Pa;
第二步:沉积NaCl薄膜
打开交流电源10,缓慢升高加热电压至蒸发温度300℃,以去除NaCl颗粒在空气中吸收的水分,除气2小时后,升高加热电压至蒸发温度560℃,打开挡板4开始正式镀膜;560℃时NaCl薄膜生长速率约30nm/min,沉积5分钟后,NaCl薄膜厚度约150nm,粗糙度Ra值约20nm;NaCl薄膜衬底沉积完成后,关闭交流电源10,关闭真空系统9;
第三步:沉积铍薄膜
打开沉积室1,取出BN材料的坩埚6,更换为BeO材料的坩埚6,同时在BeO材料的坩埚6中放入条状的金属铍切屑作为蒸发原料,且将开孔尺寸为5mm-30mm的掩膜片置于NaCl薄膜表面,将挡板4置于蒸发源正上方位置,关闭沉积室1,开启真空系统9,直至真空度达1×10-5Pa;打开交流电源10,缓慢升高加热电压至蒸发温度1050℃,打开挡板4开始正式镀膜;1050℃时铍薄膜生长速率约2.35nm/min,待所需厚度铍薄膜制备完成后,关闭交流电源10,关闭真空系统9,打开沉积室1,取出“NaCl+Be”复合薄膜样品,该复合薄膜外形尺寸即为掩膜片的开孔尺寸;
第四步:对“NaCl+Be”复合薄膜进行自然时效
将“NaCl+Be”复合薄膜置于电子防潮箱内,湿度设定在30%,时效时间30天;
第五步:对“NaCl+Be”复合薄膜进行脱膜处理
从电子防潮箱中取出“NaCl+Be”复合薄膜进行脱膜处理,由于铍薄膜脆性极大,为将脱膜过程中液体的表面张力降至最低以避免铍薄膜的破裂,采用蒸馏水含量约5% 的“乙醇+蒸馏水”混合液(25℃时,水的表面张力为0.072N/m,乙醇的表面张力为0.022N/m)对铍薄膜进行脱膜处理,即将该复合薄膜置于纯乙醇溶液中,采用滴管在薄膜上方滴入少许蒸馏水,以尽量降低液体表面张力并溶解NaCl薄膜衬底,铍薄膜顺利从NaCl衬底脱膜而不破裂,得到自支撑铍薄膜,该自支撑铍薄膜的外形尺寸等于掩膜片的开孔尺寸,实验步骤结束;
由于金属铍的剧毒性,实验全步骤必须有严格的防护措施。制备步骤在专门的铍防护实验室内进行,同时铍薄膜制备装置置于防护罩内,操作人员穿戴连体防护服及呼吸器进行工作。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种大尺度自支撑铍薄膜的制备方法,其特征在于,依次包括以下步骤:
(a)在基片表面上沉积NaCl薄膜衬底;
(b)在步骤(a)得到的NaCl薄膜衬底表面上沉积铍薄膜,形成“NaCl+Be”复合薄膜;
(c)将步骤(b)得到的“NaCl+Be”复合薄膜进行自然时效;
(d)将步骤(c)时效后的“NaCl+Be”复合薄膜进行脱膜处理,即得到自支撑铍薄膜。
2.根据权利要求1所述的方法,其特征在于,步骤(a)所述的NaCl薄膜衬底采用热蒸发法沉积;所述基片为载玻片。
3.根据权利要求1所述的方法,其特征在于,步骤(a)得到的NaCl薄膜衬底厚度100nm-200nm,表面粗糙度Ra值为18nm-22nm。
4.根据权利要求1所述的方法,其特征在于,步骤(b)所述的铍薄膜采用热蒸发法沉积,铍薄膜的厚度为1μm-10μm,铍薄膜的表面粗糙度Ra值小于100nm。
5.根据权利要求1所述的方法,其特征在于,步骤(c)所述的自然时效在电子防潮箱中进行。
6.根据权利要求1所述的方法,其特征在于,步骤(c)所述的自然时效条件为湿度25%-35%,时效时间30天-40天。
7.根据权利要求1所述的方法,其特征在于,步骤(d)所述的脱膜处理在纯乙醇溶液中进行,并于其中滴入蒸馏水。
CN201710037031.8A 2017-01-19 2017-01-19 一种大尺度自支撑铍薄膜的制备方法及装置 Active CN106544629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710037031.8A CN106544629B (zh) 2017-01-19 2017-01-19 一种大尺度自支撑铍薄膜的制备方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710037031.8A CN106544629B (zh) 2017-01-19 2017-01-19 一种大尺度自支撑铍薄膜的制备方法及装置

Publications (2)

Publication Number Publication Date
CN106544629A CN106544629A (zh) 2017-03-29
CN106544629B true CN106544629B (zh) 2019-02-19

Family

ID=58398769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710037031.8A Active CN106544629B (zh) 2017-01-19 2017-01-19 一种大尺度自支撑铍薄膜的制备方法及装置

Country Status (1)

Country Link
CN (1) CN106544629B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142449B (zh) * 2017-05-04 2019-05-28 中国工程物理研究院激光聚变研究中心 一种高精度极小尺寸自支撑铍薄膜的制备方法
CN108381841A (zh) * 2018-03-06 2018-08-10 中国工程物理研究院激光聚变研究中心 一种大尺寸超薄薄膜脱膜-捞膜装置及脱膜-捞膜的方法
WO2020010522A1 (zh) * 2018-07-10 2020-01-16 深圳通感微电子有限公司 一种独立金属薄膜制备方法及金属薄膜
CN109023230B (zh) * 2018-08-16 2020-04-24 广州本康环保科技有限公司 一种质量厚度为700-1000μg/cm2自支撑锡薄膜及其制备方法
CN109750264B (zh) * 2019-01-28 2021-09-10 中国工程物理研究院材料研究所 一种多孔金银自支撑膜及其制备方法
CN116657110B (zh) * 2023-07-28 2023-10-10 科晶瑞思(苏州)科技有限公司 一种滤光片及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510159A (zh) * 2002-12-20 2004-07-07 中国科学院物理研究所 一种热蒸发制备大面积薄膜的方法与装置
CN103578934A (zh) * 2012-07-24 2014-02-12 中国科学院微电子研究所 一种硅基绝缘体上锗衬底结构及其制备方法
CN104294218A (zh) * 2014-10-23 2015-01-21 中国科学院上海光学精密机械研究所 金锡薄膜的制备装置和方法
CN206396319U (zh) * 2017-01-19 2017-08-11 中国工程物理研究院激光聚变研究中心 一种大尺度自支撑铍薄膜的制备装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510159A (zh) * 2002-12-20 2004-07-07 中国科学院物理研究所 一种热蒸发制备大面积薄膜的方法与装置
CN103578934A (zh) * 2012-07-24 2014-02-12 中国科学院微电子研究所 一种硅基绝缘体上锗衬底结构及其制备方法
CN104294218A (zh) * 2014-10-23 2015-01-21 中国科学院上海光学精密机械研究所 金锡薄膜的制备装置和方法
CN206396319U (zh) * 2017-01-19 2017-08-11 中国工程物理研究院激光聚变研究中心 一种大尺度自支撑铍薄膜的制备装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
热蒸发制备自支撑Al平面薄膜靶的参数测量;周斌等;《原子能科学技术》;19990731;第33卷(第4期);第294页第10行-第295页第5行

Also Published As

Publication number Publication date
CN106544629A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN106544629B (zh) 一种大尺度自支撑铍薄膜的制备方法及装置
Pashley The preparation of smooth single crystal surfaces of silver by an evaporation technique
Zhu et al. Effect of thickness on the structure and properties of ZnO thin films prepared by pulsed laser deposition
CN206396319U (zh) 一种大尺度自支撑铍薄膜的制备装置
CN108660441A (zh) 一种氮化硼薄膜的转移方法
Hérault et al. Kinetics and mechanisms of stress relaxation in sputtered silver thin films
JP2004333127A (ja) 水蒸気バリア性評価用セルおよび水蒸気バリア性評価方法
Zheng et al. Investigation of generation of defects due to metallization on CdZnTe detectors
Johansen Bright field electron microscopy of biological specimens. II preparation of ultra-thin carbon support films
CN100560785C (zh) 溅射靶材
CN1888130A (zh) 极紫外和软x射线金属滤光薄膜的制备方法
Huang et al. Fast fabrication of μm-thick perovskite films by using a one-step doctor-blade coating method for direct X-ray detectors
Akkari et al. High absorbing CuInS 2 thin films growing by oblique angle incidence deposition in presence of thermal gradient
Brutti et al. Thermodynamic and kinetic aspects of decomposition of MgB2 in vacuum: Implications for optimization of synthesis conditions
CN102051497A (zh) 金银镶嵌靶材及其薄膜的制备方法
Bahadur et al. On the extra reflections in electron diffraction patterns from thin evaporated films of some of the face-centred cubic metals
Böwering et al. In situ transformation and cleaning of tin-drop contamination on mirrors for extreme ultraviolet light
Heald et al. Glancing angle XAFS and X-ray reflectivity studies of transition-metal/aluminium interfaces
Ahmad et al. Optical transmittance and band gap of ferroelectric BaTi2O5 bulk glass
Taylor Preparation of high purity beryllium foils
Gupta et al. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement
Abramov et al. Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering
Stoner Jr et al. Production of evaporated tungsten foils on resistively heated substrates
Fu et al. Quality improvement of SrAl2O4: Eu2+ film on quartz glass through a two-step sputtering process
Kuroda et al. Formation of ZnTe compounds by using the electrochemical ion exchange reaction in molten chloride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant