CN106535576B - 一种纳米流体的散热装置 - Google Patents

一种纳米流体的散热装置 Download PDF

Info

Publication number
CN106535576B
CN106535576B CN201611099739.8A CN201611099739A CN106535576B CN 106535576 B CN106535576 B CN 106535576B CN 201611099739 A CN201611099739 A CN 201611099739A CN 106535576 B CN106535576 B CN 106535576B
Authority
CN
China
Prior art keywords
nano
wall
fluid
porous media
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611099739.8A
Other languages
English (en)
Other versions
CN106535576A (zh
Inventor
朱庆勇
庄依杰
余怀忠
郭松灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201611099739.8A priority Critical patent/CN106535576B/zh
Publication of CN106535576A publication Critical patent/CN106535576A/zh
Application granted granted Critical
Publication of CN106535576B publication Critical patent/CN106535576B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures

Abstract

本发明提供一种纳米流体的散热装置,该装置当多孔介质内的纳米流体遇到多孔介质的填充密度较高的一端的外部热源发生相变成气体,扩散到隔板空腔内,当扩散到多孔介质的填充密度较低的一端冷凝成液体。在热源端,由于气体和液体的表面张力,热液体汽化后,附近区域的冷液体迅速被驱动至热源端,继续进行吸热‑升温‑相变过程。多孔介质区域内的液体,由填充密度较低的一端的气体液化得到补充,至此形成一个散热循环过程。

Description

一种纳米流体的散热装置
技术领域
本发明涉及散热设备领域,更具体地,涉及一种纳米流体的散热装置。
背景技术
电子器件的发展,冷却技术需求也随之增大。针对特定的发热元器件没有足够位置在其上方以传统自然对流形式进行散热的前提下,在发热源的下方进行散热冷却的技术就显得尤为重要。比如,可在核电站等特定的发热零部件的下方连通河流等冷源进行冷却,但目前尚缺上热下冷工况下较为成熟的冷却装置及技术。
发明内容
本发明提供一种较高散热效果的纳米流体的散热装置。
为了达到上述技术效果,本发明的技术方案如下:
一种纳米流体的散热装置,包括外壁、内部隔板;所述外壁将整个装置密封成一个外壁空腔,内部隔板以整个装置的中轴线为轴对称地设置在外壁空腔内,内部隔板没有与外壁接触,从外壁到内部隔板之间的空间内填充有一定厚度的多孔介质,内部隔板与多孔介质形成一个中空的隔板空腔;所述多孔介质上有纳米流体;所述多孔介质的填充密度从外壁空腔的上端到下端逐渐减小;该装置中多孔介质的填充密度较高的一端与外部需要散热设备的热源部分接触。
进一步地,所述多孔介质由金属颗粒制备而成,填充密度较高的外壁空腔的一端中金属颗粒经过一定的表面处理使其接触角变小,从而具有亲水性,填充密度较低的外壁空腔一端的金属颗粒本身是疏水性的,其中,从外壁空腔的上端到下端,具有亲水性的金属颗粒的混合比例逐渐降低。
进一步地,所述金属颗粒经过一定的表面处理使其接触角变小,从而具有亲水性的过程是:
利用亲水处理剂通过滚涂、浸渍、喷涂方式使金属颗粒表面附着一层纳米透明涂层,该涂层使疏水表面赋予极性,使水更易润湿,具有小的接触角。
优选的,所述纳米流体由基液与纳米尺度的金属粉体混合制备而成的悬浮液。
优选的,所述基液包括水、醇。
优选的,所述纳米尺度的金属粉体包括氧化铝、氧化铜。
优选的,所述内部隔板在隔板空腔一侧是疏水性的。
与现有技术相比,本发明技术方案的有益效果是:
本发明中,当多孔介质内的纳米流体遇到多孔介质的填充密度较高的一端的外部热源发生相变成气体,扩散到隔板空腔内,当扩散到孔介质的填充密度较低的一端冷凝成液体。在热源端,由于气体和液体的表面张力,热液体汽化后,附近区域的冷液体迅速被驱动至热源端,继续进行吸热-升温-相变过程。多孔介质区域内的液体,由填充密度较低的一端的气体液化得到补充,至此形成一个散热循环过程。由于多孔介质区的疏亲水材料分布的渐变性,克服了温度对表面张力的影响,形成多孔介质的填充密度较高的一端表面张力大,多孔介质的填充密度较低的一端表面张力小的情况,把液体驱动至亲水的热端而不滞留在冷端。本发明适用于上热下冷情况,此工况下自然对流较弱,本发明具有环保、高效散热的优势。
附图说明
图1为本发明装置结构图;
图2为本发明装置工作过程示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1所示,一种纳米流体的散热装置,包括外壁1、内部隔板2;所述外壁1将整个装置密封成一个外壁空腔,内部隔板2以整个装置的中轴线为轴对称地设置在外壁空腔内,内部隔板2没有与外壁1接触,从外壁1到内部隔板2之间的空间内填充有一定厚度的多孔介质3,内部隔板2与多孔介质3形成一个中空的隔板空腔;所述多孔介质3上有纳米流体;所述多孔介质3的填充密度从外壁空腔的上端到下端逐渐减小;该装置中多孔介质3的填充密度较高的一端与外部需要散热设备的热源部分接触。
本实施例中,多孔介质3由金属颗粒制备而成,填充密度较高的外壁空腔的一端中金属颗粒经过一定的表面处理使其接触角变小,从而具有亲水性,填充密度较低的外壁空腔一端的金属颗粒本身是疏水性的,其中,从外壁空腔的上端到下端,具有亲水性的金属颗粒的混合比例逐渐降低。
金属颗粒经过一定的表面处理使其接触角变小,从而具有亲水性的过程是:
利用亲水处理剂通过滚涂、浸渍、喷涂方式使金属颗粒表面附着一层纳米透明涂层,该涂层使疏水表面赋予极性,使水更易润湿,具有小的接触角。
本实施例中,纳米流体由基液与纳米尺度的金属粉体混合制备而成的悬浮液;基液包括水、醇;纳米尺度的金属粉体包括氧化铝、氧化铜;内部隔板2在隔板空腔一侧是疏水性的。
如图2所示,本发明装置的工作过程如下:
当多孔介质3上的纳米流体遇到多孔介质3的填充密度较高的一端的外部热源发生相变成气体,扩散到隔板空腔内,当扩散到多孔介质的填充密度较低的一端冷凝成液体。在装置的热源端,由于气体和液体的表面张力,热液体汽化后,附近区域的冷液体迅速被驱动至热源端,继续进行吸热-升温-相变过程;多孔介质3区域内的液体,由填充密度较低的一端的气体液化得到补充,至此形成一个散热循环过程。由于多孔介质3区的疏亲水材料分布的渐变性,克服了温度对表面张力的影响,形成多孔介质的填充密度较高的一端表面张力大,多孔介质的填充密度较低的一端表面张力小的情况,把液体驱动至亲水的热端而不滞留在冷端。本发明适用于上热下冷情况,此工况下自然对流较弱,本发明具有环保、高效散热的优势。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (6)

1.一种纳米流体的散热装置,其特征在于,包括外壁(1)、内部隔板(2);所述外壁(1)将整个装置密封成一个外壁空腔,内部隔板(2)以整个装置的中轴线为轴对称地设置在外壁空腔内,内部隔板(2)没有与外壁(1)接触,从外壁(1)到内部隔板(2)之间的空间内填充有一定厚度的多孔介质(3),内部隔板(2)与多孔介质(3)形成一个中空的隔板空腔;所述多孔介质(3)上有纳米流体;所述多孔介质(3)的填充密度从外壁空腔的上端到下端逐渐减小;该装置中多孔介质(3)的填充密度较高的一端与外部需要散热设备的热源部分接触;
所述多孔介质(3)由金属颗粒制备而成,填充密度较高的外壁空腔的一端中金属颗粒经过一定的表面处理使其接触角变小,从而具有亲水性,填充密度较低的外壁空腔一端的金属颗粒本身是疏水性的,其中,从外壁空腔的上端到下端,具有亲水性的金属颗粒的混合比例逐渐降低。
2.根据权利要求1所述的纳米流体的散热装置,其特征在于,所述金属颗粒经过一定的表面处理使其接触角变小,从而具有亲水性的过程是:
利用亲水处理剂通过滚涂、浸渍、喷涂方式使金属颗粒表面附着一层纳米透明涂层,该涂层使疏水表面赋予极性,使水更易润湿,具有小的接触角。
3.根据权利要求2所述的纳米流体的散热装置,其特征在于,所述纳米流体由基液与纳米尺度的金属粉体混合制备而成的悬浮液。
4.根据权利要求3所述的纳米流体的散热装置,其特征在于,所述基液包括水、醇。
5.根据权利要求4所述的纳米流体的散热装置,其特征在于,所述纳米尺度的金属粉体包括氧化铝、氧化铜。
6.根据权利要求5所述的纳米流体的散热装置,其特征在于,所述内部隔板(2)在隔板空腔一侧是疏水性的。
CN201611099739.8A 2016-11-28 2016-11-28 一种纳米流体的散热装置 Active CN106535576B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611099739.8A CN106535576B (zh) 2016-11-28 2016-11-28 一种纳米流体的散热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611099739.8A CN106535576B (zh) 2016-11-28 2016-11-28 一种纳米流体的散热装置

Publications (2)

Publication Number Publication Date
CN106535576A CN106535576A (zh) 2017-03-22
CN106535576B true CN106535576B (zh) 2019-02-19

Family

ID=58354841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611099739.8A Active CN106535576B (zh) 2016-11-28 2016-11-28 一种纳米流体的散热装置

Country Status (1)

Country Link
CN (1) CN106535576B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867318B (zh) * 2019-04-25 2021-12-21 华为技术有限公司 一种散热结构及电子设备
CN112210772B (zh) * 2019-07-11 2021-12-10 中国科学院过程工程研究所 一种蜂窝铝的表面改性方法及其产品和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437254A (zh) * 2002-02-09 2003-08-20 陈祖培 热量分散器
CN101639331A (zh) * 2008-07-31 2010-02-03 富准精密工业(深圳)有限公司 平板式热管的制造方法
CN105091645A (zh) * 2015-09-01 2015-11-25 胡祥卿 一种微重力分子传热热导体及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483099B (zh) * 2012-06-08 2015-05-01 Foxconn Tech Co Ltd 相變化散熱裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437254A (zh) * 2002-02-09 2003-08-20 陈祖培 热量分散器
CN101639331A (zh) * 2008-07-31 2010-02-03 富准精密工业(深圳)有限公司 平板式热管的制造方法
CN105091645A (zh) * 2015-09-01 2015-11-25 胡祥卿 一种微重力分子传热热导体及用途

Also Published As

Publication number Publication date
CN106535576A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
El-Genk Immersion cooling nucleate boiling of high power computer chips
Ciloglu et al. A comprehensive review on pool boiling of nanofluids
Kamatchi et al. Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review
Ghanbarpour et al. Thermal performance of screen mesh heat pipe with Al2O3 nanofluid
Ho et al. Saturated pool boiling from carbon nanotube coated surfaces at different orientations
Saeidi et al. Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces
El-Genk Nucleate boiling enhancements on porous graphite and microporous and macro–finned copper surfaces
Zarei Saleh Abad et al. Visualization of pool boiling heat transfer of magnetic nanofluid
Ciloglu An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface
Sun et al. Enhanced pool boiling on microstructured surfaces with spatially-controlled mixed wettability
Hu et al. Thermal performance enhancement of grooved heat pipes with inner surface treatment
Chen et al. Heat transfer characteristics of a new type of copper wire-bonded flat heat pipe using nanofluids
CN106535576B (zh) 一种纳米流体的散热装置
Lay et al. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers
Shi et al. Performance test of an ultra-thin flat heat pipe with a 0.2 mm thick vapor chamber
CN110387211B (zh) 一种热界面材料及其制备方法与应用
Li et al. Effect of nano-structure coating on thermal performance of thermosyphon boiling in micro-channels
CN106793536B (zh) 一种基于微流控技术的柔性电子制作方法
CN107816907A (zh) 一种微纳复合结构表面热沉及其强化换热的方法
Fan et al. Nucleate pool boiling heat transfer enhancement in saturated Novec 7100 using titanium dioxide nanotube arrays
Dareh et al. An experimental investigation of pool boiling characteristics of alumina-water nanofluid over micro-/nanostructured surfaces
Fu et al. Experimental study of the effects of nanofluids on wicking ability and thermal performance of a vertical open microgrooves heat sink
CN103177643B (zh) 一种用于研究磁流体微观结构与磁场关系的实验装置
CN105990274B (zh) 一种导热膜及其制作方法
Kong et al. A study on enhancement of boiling heat transfer by mixed-wettability surface

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant