CN106533241B - 一种移相全桥电路igbt的pwm信号控制方法 - Google Patents
一种移相全桥电路igbt的pwm信号控制方法 Download PDFInfo
- Publication number
- CN106533241B CN106533241B CN201710002341.6A CN201710002341A CN106533241B CN 106533241 B CN106533241 B CN 106533241B CN 201710002341 A CN201710002341 A CN 201710002341A CN 106533241 B CN106533241 B CN 106533241B
- Authority
- CN
- China
- Prior art keywords
- cycle
- pwm
- igbt
- pwm signal
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
本发明提供了一种移相全桥电路IGBT的PWM信号控制方法,该方法基于移相全桥的技术特点,通过改变移相角的方向,将原来单一的移相角方向改变为双向,从而达到两路IGBT交替散热的目的,简单有效的解决了H桥高频变换时两路IGBT温升不一致的问题。
Description
技术领域
本发明属于电力电子行业中的高频变换技术领域,特别的涉及一种移相全桥电路IGBT的PWM信号控制方法。
背景技术
为了应对全球范围的“能源危机”和“气候变暖”问题,新能源行业成为可持续发展的重中之重,新能源汽车行业作为其中一个重要的环节,也得到了极大重视。同时,作为电动汽车的配套保障设施,直流充电桩也得到了迅猛发展。
在对汽车充电的过程中,直流充电桩先将电网电压转换为直流,再通过DC-DC变换电路将电能传送到汽车电池中。为实现电网与汽车之间的电气隔离,通常在DC-DC过程中,先将直流信号转换为高频交流信号,经过高频变压器隔离,然后经过不可控整流输出。在直流变交流的过程中,通过改变移相全桥的移相角达到调节电压或电流的目的。
实际应用中,充电桩不会一直处于满功率输出状态,在移相角较小的时候,如图2所示,强制关断IGBT改为二极管续流,在逆变输出电流较大的时候关断IGBT,增大了损耗,而在另外一路IGBT由于关断时逆变输出电流已经为零,最终导致两路IGBT发热严重不均衡,使两路IGBT寿命不均衡,缩短了产品的整体寿命,这样是不合理而且也不科学的。
发明内容
本发明为解决移相全桥电路H桥中的两路IGBT在高频变换时温升不一致的问题,基于移相全桥的技术特点,提供了一种移相全桥电路IGBT的PWM信号控制方法。
一种移相全桥电路IGBT的PWM信号控制方法,每间隔2(N+1)个周期对PWM信号进行一次循环调整,每次循环按照如下方式进行:
a)在移相全桥电路的PWM移相角α稳定,并等待N个PWM周期后,在后级PWM信号由高电平转换为低电平时,改变后级PWM周期为T(1-α/π),并在下一个周期恢复后级PWM周期为T;
b)等待N个PWM周期后,在前级PWM信号由高电平转换为低电平时,改变前级PWM周期为T(1-α/π),并在下一个周期恢复前级PWM周期为T;
其中,N≥1。
进一步的,所述N以在PWM信号进行周期循环时,两路IGBT的温度不超过温度A为准确定;所述温度A为在当前冷却条件下,PWM信号不进行周期循环时IGBT能够达到的最高温度。
本发明的有益效果是:本发明仅通过每间隔一定周期改变移相角的方向,将原来单一的单向移相角方向改变为双向,即可解决移相全桥中IGBT温度不均衡问题,提高产品的使用寿命,具有极大的实际意义和推广价值。
附图说明
图1为移相全桥的拓扑结构;
图2为移相全桥IGBT在PWM周期切换前后的前后级PWM触发信号、输出电压和电流波形示意图。
具体实施方式
本发明为解决移相全桥电路H桥中的两路IGBT在高频变换时温升不一致的问题,基于移相全桥的技术特点,提供了一种移相全桥电路IGBT的PWM信号控制方法,通过改变移相角的方向,将原来单一的移相角方向改变为双向,从而达到两路IGBT交替散热的目的。
下面结合附图对本发明做进一步详细的说明。
图1为移相全桥的拓扑结构,其中开关管a、b为前级PWM信号驱动,开关管c、d为后级PWM信号,a、b的驱动信号互补,c、d驱动信号互补。
在移相角α稳定之前,系统处于缓启动的过程。如图2所示,在H桥的输出移相角α稳定之后,此时由于没有开始切换,后级PWM滞后前级PWM角度α,根据电压波形可以知道H桥输出电压的输出时间为αT/(2π),其中T为PWM开关周期。在输出电压由非0电平到0电平之前,电流达到最大值,PWM给IGBT关断信号之后,后级IGBT在电流最大处强制关断,此时IGBT损耗较大,产生较多的热量,而由于前级IGBT在进行关断时,H桥输出电流已经下降为0,关断损耗基本为0,发热较小。最终导致两路IGBT发热严重不均衡,后级的IGBT温度将明显高于前级,使两路IGBT寿命不均衡,缩短了产品的整体寿命。
为克服在没有满功率输出情况下,H桥两路IGBT损耗不均衡的问题,本发明根据移相全桥技术的特点,将移相脉冲的单向移动改为双向移动,即在IGBT温度不均衡时,保证移相角不变,切换移相脉冲的移相方向,从而实现两路IGBT交替在大电流下强制关断。具体方法为每间隔2(N+1)个周期对PWM波进行一次循环调整,每次循环包括以下步骤:
a)在移相全桥电路的移相角α稳定,并等待N个PWM周期后,在后级PWM信号由高电平转换为低电平时,改变后级PWM周期为T(1-α/π),并在下一个周期恢复后级PWM周期为T;此时后级的PWM超前于前级,切换了PWM的移动方向;
b)等待N个PWM周期后,在前级PWM信号由高电平转换为低电平时,改变前级PWM周期为T(1-α/π),并在下一个周期恢复前级PWM周期为T;
其中,N≥1。
这样就达到了两路IGBT交替散热的目的。
此外,设定PWM波切换周期时,需以在当前的冷却条件下,IGBT能够达到的最高温度为参考设置切换间隔N。可在没有进行交替切换的条件下,对两相IGBT达到热平衡时所达到的最高温度A进行记录;然后通过多次试验,以IGBT温度升到最高温度A之前为准确定切换周期,尽可能使两路IGBT循环散热时的温度较低。
Claims (2)
1.一种移相全桥电路IGBT的PWM信号控制方法,其特征为,每间隔2(N+1)个周期对PWM信号进行一次循环调整,每次循环按照如下方式进行:
a)在移相全桥电路PWM信号的移相角α稳定,并等待N个PWM周期后,在后级PWM信号由高电平转换为低电平时,改变后级PWM周期为T(1-α/π),并在下一个周期恢复后级PWM周期为T;
b)等待N个PWM周期后,在前级PWM信号由高电平转换为低电平时,改变前级PWM周期为T(1-α/π),并在下一个周期恢复前级PWM周期为T;
其中,N≥1。
2.根据权利要求1所述的一种移相全桥电路IGBT的PWM信号控制方法,其特征为,所述N以在PWM信号进行周期循环时,两路IGBT的温度不超过温度A为准确定;所述温度A为在当前冷却条件下,PWM信号不进行周期循环时IGBT能够达到的最高温度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710002341.6A CN106533241B (zh) | 2017-01-03 | 2017-01-03 | 一种移相全桥电路igbt的pwm信号控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710002341.6A CN106533241B (zh) | 2017-01-03 | 2017-01-03 | 一种移相全桥电路igbt的pwm信号控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106533241A CN106533241A (zh) | 2017-03-22 |
CN106533241B true CN106533241B (zh) | 2018-08-17 |
Family
ID=58336671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710002341.6A Active CN106533241B (zh) | 2017-01-03 | 2017-01-03 | 一种移相全桥电路igbt的pwm信号控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106533241B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109885111B (zh) * | 2019-04-24 | 2021-03-19 | 宁波三星智能电气有限公司 | 一种散热控制方法、装置及充电桩 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101936555A (zh) * | 2010-09-18 | 2011-01-05 | 美的集团有限公司 | 大功率电磁炉移相全桥硬开关的检测装置及其检测方法 |
TW201427246A (zh) * | 2012-12-26 | 2014-07-01 | Yen-Shin Lai | 相移全橋轉換裝置及控制方法 |
CN104600998A (zh) * | 2015-02-10 | 2015-05-06 | 四川英杰电气股份有限公司 | 一种开关电源开关器件均匀发热的控制方法 |
-
2017
- 2017-01-03 CN CN201710002341.6A patent/CN106533241B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101936555A (zh) * | 2010-09-18 | 2011-01-05 | 美的集团有限公司 | 大功率电磁炉移相全桥硬开关的检测装置及其检测方法 |
TW201427246A (zh) * | 2012-12-26 | 2014-07-01 | Yen-Shin Lai | 相移全橋轉換裝置及控制方法 |
CN104600998A (zh) * | 2015-02-10 | 2015-05-06 | 四川英杰电气股份有限公司 | 一种开关电源开关器件均匀发热的控制方法 |
Non-Patent Citations (1)
Title |
---|
Novel Phase-Shift Control Technique for Full-Bridge Converter to Reduce Thermal Imbalance Under Light-Load Condition;Yen-Shin Lai 等;《IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS》;20150430;第51卷(第2期);第1651-1659页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106533241A (zh) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101604923B (zh) | 用于单相并网逆变器的脉冲宽度调制pwm控制方法 | |
CN101710797B (zh) | Z源型并网逆变器的电流预测无差拍控制方法及其控制装置 | |
CN102983588B (zh) | 一种基于并网控制算法的光伏并网逆变系统 | |
WO2016082255A1 (zh) | 一种双辅助谐振极型三相软开关逆变电路及其调制方法 | |
CN104600998A (zh) | 一种开关电源开关器件均匀发热的控制方法 | |
Wu et al. | Bidirectional buck–boost current-fed isolated DC–DC converter and its modulation | |
CN103580520B (zh) | 一种逆变器的调制装置及方法 | |
CN111049392B (zh) | 基于坐标变换的双有源桥拓展移相最小回流功率控制方法 | |
CN104113215A (zh) | 直流对直流转换器及其控制方法 | |
CN106533241B (zh) | 一种移相全桥电路igbt的pwm信号控制方法 | |
CN103618336A (zh) | 整流式高频链并网逆变器的输出数字调制电路及控制系统 | |
CN105634255A (zh) | 一种基于18脉冲的svpwm三相电子调压器 | |
CN203398799U (zh) | 一种采用混合型功率器件的光伏逆变器 | |
CN108809137B (zh) | 一种结构简单的辅助谐振极逆变电路 | |
CN103701329A (zh) | 一种移相全桥软开关的太阳能光伏变换器 | |
Kim et al. | Photovoltaic parallel resonant dc-link soft switching inverter using hysteresis current control | |
CN202183738U (zh) | 自生成级联电源的级联型多电平逆变电路 | |
CN109412182B (zh) | 一种模块化无电解电容的光伏能量系统及其调制方法 | |
CN103166234B (zh) | 一种单相并网逆变器的无功输出控制方法 | |
CN101783601A (zh) | 一种基于混合开关的双可控整流桥的多相电流型pwm整流器 | |
CN105207514B (zh) | 一种用于多相变频器的多相平顶波的生成方法 | |
CN104283232B (zh) | 一种用于轻型直流输电系统单元直流侧电压平衡控制方法 | |
Dehghan et al. | Full space vectors modulation for nine-switch converters including CF & DF modes | |
CN109194174B (zh) | 一种单相全桥逆变器并联运行方法 | |
Wang et al. | Design and research of an inverter for a small wind power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Mu Kun Inventor after: Chen Hongchuang Inventor after: Yin Xiaozheng Inventor after: Mu Xiaobin Inventor after: Qi Hongzhu Inventor before: Yin Xiaozheng Inventor before: Mu Kun Inventor before: Chen Hongchuang Inventor before: Mu Xiaobin Inventor before: Qi Hongzhu |
|
GR01 | Patent grant | ||
GR01 | Patent grant |