CN106532200B - Reflection type liquid crystal phase-shifting unit based on graphene electrode - Google Patents

Reflection type liquid crystal phase-shifting unit based on graphene electrode Download PDF

Info

Publication number
CN106532200B
CN106532200B CN201611164009.1A CN201611164009A CN106532200B CN 106532200 B CN106532200 B CN 106532200B CN 201611164009 A CN201611164009 A CN 201611164009A CN 106532200 B CN106532200 B CN 106532200B
Authority
CN
China
Prior art keywords
liquid crystal
dielectric substrate
metal
graphene electrode
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611164009.1A
Other languages
Chinese (zh)
Other versions
CN106532200A (en
Inventor
邓光晟
蔡成刚
杨军
尹治平
陆红波
夏天雨
荆帅诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201611164009.1A priority Critical patent/CN106532200B/en
Publication of CN106532200A publication Critical patent/CN106532200A/en
Application granted granted Critical
Publication of CN106532200B publication Critical patent/CN106532200B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Landscapes

  • Liquid Crystal (AREA)

Abstract

The invention discloses a reflection type liquid crystal phase shifting unit based on a graphene electrode, which comprises an upper dielectric substrate and a lower dielectric substrate, wherein a liquid crystal layer is injected into a gap between the upper dielectric substrate and the lower dielectric substrate, and the lower surface of the upper dielectric substrate is provided with a plurality of metal patches which are sequentially connected in series through connecting lines to form a metal microstrip structure; the upper surface of the lower dielectric substrate is fully covered with a graphene layer to form a graphene electrode, and the lower surface of the lower dielectric substrate is fully covered with a metal layer to form a metal grounding electrode. The invention adopts an electric control mode to obtain continuous phase shift characteristic in a wide frequency band, and has the characteristics of miniaturization, easy processing and the like.

Description

Reflection type liquid crystal phase-shifting unit based on graphene electrode
Technical Field
The invention belongs to the field of terahertz radar imaging, and particularly relates to a reflection type liquid crystal phase-shifting unit based on a graphene electrode.
Background
The planar reflector antenna has many advantages over conventional microstrip array antennas and parabolic reflector antennas. The planar reflection array antenna has the advantages of simple structure, low cost, low loss and high radiation efficiency. The principle of the reflectarray antenna is to use the phase shift function of the reflection unit to achieve the focusing of the beam. The key of the research of the reflective array antenna is to design the structure and the size of the reflecting unit so as to obtain excellent phase shifting performance. The conventional microstrip reflection unit can obtain a compensation phase by changing the size of the unit patch or loading a phase delay line. After the structure of the antenna is determined, the phase of the reflecting unit cannot be changed, and the wave beam scanning of the phased array antenna cannot be realized. If the phase shift variation of the units is controlled by electric control and the like, a phase shifter needs to be added to each unit. The most commonly used phased array reflective array antennas at present are PIN diodes, varactor diodes, and mems phase shifters. However, these phase shifters are limited by the parasitic effect of the high frequency band and the difficulty in processing, and can only work below the W band, and it is difficult to work in a higher frequency band.
Disclosure of Invention
The invention provides a graphene electrode-based reflective liquid crystal phase-shifting unit capable of working in a terahertz waveband.
The invention adopts the following technical scheme for solving the technical problems:
a reflection type liquid crystal phase shift unit based on a graphene electrode comprises an upper dielectric substrate and a lower dielectric substrate, wherein a liquid crystal layer is injected into a gap between the upper dielectric substrate and the lower dielectric substrate, and the reflection type liquid crystal phase shift unit is characterized in that: the lower surface of the upper-layer dielectric substrate is provided with a plurality of metal patches which are sequentially connected in series through connecting lines to form a metal micro-strip structure; the upper surface of the lower dielectric substrate is fully covered with a graphene layer to form a graphene electrode, and the lower surface of the lower dielectric substrate is fully covered with a metal layer to form a metal grounding electrode.
The reflection type liquid crystal phase shift unit based on the graphene electrode is characterized in that: the liquid crystal layer adopts nematic liquid crystal materials.
The reflection type liquid crystal phase shift unit based on the graphene electrode is characterized in that: the metal patches are three dipole patches.
The reflection type liquid crystal phase shift unit based on the graphene electrode is characterized in that: applying voltage on the metal patch and the graphene electrode through a connecting wire to form a bias electric field in the liquid crystal layer, wherein the bias electric field enables the arrangement direction of liquid crystal molecules to deflect, so that the dielectric constant of the liquid crystal is changed, and the phase of a reflected wave is changed; meanwhile, the chemical potential energy of the graphene can be changed by changing the bias voltage of the graphene electrode, so that the working frequency of the phase-shifting unit is changed.
The invention adopts the structure of three dipole metal patches, so that the liquid crystal phase-shifting unit can obtain the required phase-shifting performance, and meanwhile, the dipole patches have the characteristic of simple structure and are easy to process. A graphene layer is covered on the upper surface of the lower substrate to serve as an electrode, so that the working bandwidth of the unit is effectively expanded.
Compared with the prior art, the invention has the following advantages:
the phase shift unit of the invention utilizes the characteristic that the dielectric constant of the liquid crystal material can be electrically adjusted to realize the continuous phase shift characteristic of the unit by an electric control method; meanwhile, by changing the bias voltage of the graphene electrode, the chemical potential energy of the graphene can be changed, so that the working bandwidth of the phase-shifting unit is greatly increased; the invention has the characteristics of miniaturization, low processing difficulty, low cost and the like.
Drawings
FIG. 1 is a schematic structural diagram of the present invention.
FIG. 2 is a front view of the structure of a liquid crystal phase shift unit according to the present invention.
Fig. 3 is a schematic view of a metal patch structure on the lower surface of the upper dielectric substrate according to the present invention.
FIG. 4 is a phase shift curve of the liquid crystal phase shift unit when the chemical potential of graphene is 0.1 eV.
In FIG. 5, the phase shift curve of the liquid crystal phase shift unit is shown when the chemical potential energy of the graphene is 0.5 eV.
Reference numbers in the figures: 1 upper dielectric substrate, 2 lower floor's dielectric substrates, 3 liquid crystal layer, 4 graphite alkene layer, 5 metal paster, 6 connecting wires, 7 metal levels.
Detailed Description
As shown in fig. 1-3, a graphene electrode-based reflective liquid crystal phase shift unit includes an upper dielectric substrate 1 and a lower dielectric substrate 2, a liquid crystal layer 3 is injected into a gap between the upper dielectric substrate 1 and the lower dielectric substrate 2, and a plurality of metal patches 5 sequentially connected in series through a connecting line 6 are disposed on a lower surface of the upper dielectric substrate 1 to form a metal microstrip structure; the upper surface of the lower dielectric substrate 2 is fully covered with a graphene layer 4 to form a graphene electrode, and the lower surface of the lower dielectric substrate 2 is fully covered with a metal layer 7 to form a metal grounding electrode.
The liquid crystal layer 3 uses a nematic liquid crystal material. The metal patches 5 are three dipole patches.
Applying voltage on the metal patch 5 and the graphene electrode through a connecting wire 6 to form a bias electric field in the liquid crystal layer 3, wherein the bias electric field enables the arrangement direction of liquid crystal molecules to deflect, so that the dielectric constant of liquid crystal is changed, and the phase of a reflected wave is changed; meanwhile, the chemical potential energy of the graphene can be changed by changing the bias voltage of the graphene electrode, so that the working frequency of the phase-shifting unit is changed.
In the specific implementation process, the corresponding structural arrangement comprises:
the upper dielectric substrate 1 has a side length of L and a thickness of Hq1The lower dielectric substrate 2 has a side length of L and a thickness of Hq2The cube structure of (1).
Three dipole patches on the upper dielectric substrate 1 are symmetrically arranged about an x axis and have lengths Ly1、Ly2、Ly3Each width is Lx1、Lx2、Lx3Wherein L isx1=Lx2=Lx3(ii) a The distances from the three dipole patches to the edges of the unit are respectively D1、D2、D3And a connecting line with the width w and the length L is cross-etched with the three dipole patches in a cross shape. The thickness of the metal microstrip structure is t.
The upper surface of the lower dielectric substrate 2 is fully covered with a single graphene layer 4 as a graphene electrode, and the lower surface of the lower dielectric substrate 2 is fully covered with a metal layer 7 with the thickness of t as a grounding electrode.
Voltage is applied to the metal patch 5 and the graphene electrode through the connecting wire 6, a bias electric field is formed in the liquid crystal layer, and the bias electric field enables the arrangement direction of liquid crystal molecules to deflect, so that the dielectric constant of liquid crystal is changed, the phase of reflected waves is changed, and the phase shifting function is achieved. By changing the bias voltage of the graphene electrode, the chemical potential energy of the graphene can be changed, so that the working frequency of the phase-shifting unit is changed.
In one embodiment the liquid crystal layer has a thickness HlcAfter filling the liquid crystal material into the gap between the dielectric substrates, sealing with epoxy resin, and aligning the upper and lower surfaces of the liquid crystal layer with polyimide films.
In a specific application, the following are set:
unit size L405 μm, patch size: l isx1=Lx2=Lx3=36μm,Ly1=187μm,Ly2=200μm,Ly3=215μm,D1=49μm,D2D 3100 μm. The thickness of the liquid crystal layer is 45 micrometers, the thickness of the upper dielectric substrate is 200 micrometers, the thickness of the lower dielectric substrate is 20 micrometers, the thicknesses of the metal microstrip structure and the metal grounding electrode are both 2 micrometers, and the width of the connecting line is 5 micrometers. GT3-23001 is selected as liquid crystal material in the liquid crystal layer, and the metal grounding electrode, the metal patch and the connecting wire are all made of copper. The dielectric substrate is made of quartz material, the dielectric constant is 3.78, and the loss tangent is 0.002.
The phase shift curves of the liquid crystal phase shift unit obtained by software simulation are shown in fig. 4 and 5, and the reflection phase of the phase shift unit changes along with the change of the dielectric constant of the liquid crystal. It can be seen that the liquid crystal phase shift unit of the present invention has excellent phase shift performance. Meanwhile, the working frequency band of the phase-shifting unit is greatly widened by changing the chemical potential energy of the graphene electrode.

Claims (3)

1. A reflection type liquid crystal phase shift unit based on a graphene electrode comprises an upper dielectric substrate and a lower dielectric substrate, wherein a liquid crystal layer is injected into a gap between the upper dielectric substrate and the lower dielectric substrate, and the reflection type liquid crystal phase shift unit is characterized in that: the lower surface of the upper-layer dielectric substrate is provided with a plurality of metal patches which are sequentially connected in series through connecting lines to form a metal micro-strip structure; the upper surface of the lower dielectric substrate is fully covered with a graphene layer to form a graphene electrode, and the lower surface of the lower dielectric substrate is fully covered with a metal layer to form a metal grounding electrode;
the metal patches are three dipole patches;
the three dipole patches on the lower surface of the upper dielectric substrate are symmetrically arranged around an x axis, and the lengths of the three dipole patches are Ly1、Ly2、Ly3Each width is Lx1、Lx2、Lx3Wherein L isx1=Lx2=Lx3(ii) a The distances from the three dipole patches to the edges of the unit are respectively D1、D2、D3And a connecting line with the width w and the length L is crossed and etched with the three dipole patches in a cross shape.
2. The graphene electrode-based reflective liquid crystal phase shift unit according to claim 1, wherein: the liquid crystal layer adopts nematic liquid crystal materials.
3. The graphene electrode-based reflective liquid crystal phase shift unit according to claim 1, wherein: and applying voltage on the metal patch and the graphene electrode through a connecting wire to form a bias electric field in the liquid crystal layer.
CN201611164009.1A 2016-12-16 2016-12-16 Reflection type liquid crystal phase-shifting unit based on graphene electrode Active CN106532200B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611164009.1A CN106532200B (en) 2016-12-16 2016-12-16 Reflection type liquid crystal phase-shifting unit based on graphene electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611164009.1A CN106532200B (en) 2016-12-16 2016-12-16 Reflection type liquid crystal phase-shifting unit based on graphene electrode

Publications (2)

Publication Number Publication Date
CN106532200A CN106532200A (en) 2017-03-22
CN106532200B true CN106532200B (en) 2021-11-23

Family

ID=58340000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611164009.1A Active CN106532200B (en) 2016-12-16 2016-12-16 Reflection type liquid crystal phase-shifting unit based on graphene electrode

Country Status (1)

Country Link
CN (1) CN106532200B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011038B (en) * 2018-01-05 2020-05-05 京东方科技集团股份有限公司 Phased array antenna, display panel and display device
CN108598631B (en) * 2018-04-19 2020-10-23 合肥工业大学 Reflective double-layer liquid crystal phase-shifting unit based on patterned graphene electrode
CN108563050B (en) 2018-05-31 2020-10-30 成都天马微电子有限公司 Liquid crystal phase shifter and antenna
CN108828811B (en) 2018-07-02 2021-01-26 京东方科技集团股份有限公司 Microwave amplitude and phase controller and control method of microwave amplitude and/or phase
CN108615962B (en) * 2018-07-18 2020-06-30 成都天马微电子有限公司 Liquid crystal phase shifter and antenna
CN108808181B (en) * 2018-07-20 2020-05-29 成都天马微电子有限公司 Liquid crystal phase shifter and antenna
CN109066021B (en) * 2018-07-27 2020-10-23 合肥工业大学 Reflective liquid crystal phase-shifting unit
CN110824734A (en) 2018-08-10 2020-02-21 北京京东方传感技术有限公司 Liquid crystal phase shifter and liquid crystal antenna
CN109193162B (en) * 2018-09-20 2020-11-20 合肥工业大学 Terahertz reflection type phase-shifting unit and rapid regulation and control method of liquid crystal inside terahertz reflection type phase-shifting unit
CN109449580B (en) * 2018-10-26 2023-12-05 集美大学 Coplanar feed liquid crystal package
CN109494462B (en) * 2018-11-09 2020-06-09 哈尔滨工业大学 Terahertz two-dimensional electronic control beam scanning array antenna based on liquid crystal
EP3664215B1 (en) * 2018-12-07 2022-09-21 ALCAN Systems GmbH Radio frequency phase shifting device
CN110197939B (en) * 2019-06-03 2024-04-19 北京华镁钛科技有限公司 Metamaterial adjustable capacitor structure
CN110707397B (en) * 2019-10-17 2023-02-17 京东方科技集团股份有限公司 Liquid crystal phase shifter and antenna
CN110957585B (en) * 2019-12-24 2021-04-13 清华大学 Planar reflective array antenna based on liquid crystal material
CN113745788A (en) * 2021-09-06 2021-12-03 合肥工业大学 Dynamic inductance microstrip delay line and preparation method thereof
CN114122647A (en) * 2021-11-24 2022-03-01 合肥工业大学 Liquid crystal phase-shifting unit, reflective full-electrically-controlled phase shifter and antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9716220B2 (en) * 2013-08-21 2017-07-25 National University Of Singapore Graphene-based terahertz devices
CN106025452A (en) * 2016-06-08 2016-10-12 合肥工业大学 Phase shift unit and terahertz reflection-type liquid crystal phase shifter formed by phase shift unit
CN106154603B (en) * 2016-07-29 2019-12-06 合肥工业大学 Liquid crystal phase-shifting unit and phase-controlled antenna formed by same

Also Published As

Publication number Publication date
CN106532200A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106532200B (en) Reflection type liquid crystal phase-shifting unit based on graphene electrode
CN106154603B (en) Liquid crystal phase-shifting unit and phase-controlled antenna formed by same
CN108598631B (en) Reflective double-layer liquid crystal phase-shifting unit based on patterned graphene electrode
CN108539331B (en) Terahertz slotting phase-shifting unit based on liquid crystal and phased array antenna formed by same
US11837802B2 (en) Liquid crystal antenna unit and liquid crystal phased array antenna
EP3460913B1 (en) Method for adjusting electromagnetic wave, and metamaterial
CN2870195Y (en) Frequency selection device
CN113728512B (en) Phase shifter and antenna
CN112164875B (en) Microstrip antenna and communication equipment
CN105006656A (en) Electric control scanning waveguide leaky-wave antenna based on liquid crystal
US9515390B1 (en) Discrete phased electromagnetic reflector based on two-state elements
CN109066021B (en) Reflective liquid crystal phase-shifting unit
CN109149117A (en) A kind of composite left-and-right-hand leaky-wave antenna
CN208272080U (en) A kind of reflective dual-layered liquid crystal phase-shifting unit
Ma et al. Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal
Li et al. Design and numerical demonstration of a 2D millimeter-wave beam-scanning reflectarray based on liquid crystals and a static driving technique
CN202917635U (en) Circularly-polarized electronically-scanning phased leaky-wave antenna
CN109326878A (en) A kind of broadband end-on-fire antenna based on surface wave guide and high impedance surface
CN110120585A (en) The LCD electric-controlled scanning reflection array antenna of circular polarisation
US20230155266A1 (en) Phase shifter and antenna
Roig et al. Electrically tunable liquid crystal based composite right/left-handed leaky-wave antenna at 26.7 GHz
JP6478397B2 (en) Phased array antenna
Al Nahiyan et al. Dual band operation with dual radiation pattern for rectangular microstrip patch antenna loaded with metamaterial
Liu et al. Double-side radiating leaky-wave antenna based on composite right/left-handed coplanar-waveguide
Chang et al. Performance Evaluation of LC Materials for Display and Non-display Applications in Ku-Band 6x6 Antenna Array Structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant