CN106530575A - 一种输电线路分布式山火监测和预警装置及方法 - Google Patents

一种输电线路分布式山火监测和预警装置及方法 Download PDF

Info

Publication number
CN106530575A
CN106530575A CN201611180667.XA CN201611180667A CN106530575A CN 106530575 A CN106530575 A CN 106530575A CN 201611180667 A CN201611180667 A CN 201611180667A CN 106530575 A CN106530575 A CN 106530575A
Authority
CN
China
Prior art keywords
transmission line
distributed
electricity
early warning
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611180667.XA
Other languages
English (en)
Other versions
CN106530575B (zh
Inventor
黄�良
吕黔苏
庄红军
魏延勋
卢金科
王琨
高正浩
王颖
陈勇宇
张强永
李克明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guizhou Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guizhou Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guizhou Power Grid Co Ltd filed Critical Electric Power Research Institute of Guizhou Power Grid Co Ltd
Priority to CN201611180667.XA priority Critical patent/CN106530575B/zh
Publication of CN106530575A publication Critical patent/CN106530575A/zh
Application granted granted Critical
Publication of CN106530575B publication Critical patent/CN106530575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/005Fire alarms; Alarms responsive to explosion for forest fires, e.g. detecting fires spread over a large or outdoors area
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch

Abstract

本发明公开了一种输电线路分布式山火监测和预警方法,采用布里渊光时域反射仪监测得到输电线路架空线温度分布;计算与数据处理单元根据设定的温度阈值判断输电线路是否存在山火和山火的分布;通过航拍获取输电线路三维走廊信息;结合输电线线路分布式弧垂信息,建立输电线导线与障碍物间的绝缘电气距离分布;计算线路上的分布式大气击穿电压分布;通过线路电压等级设定击穿电压阈值进行山火预警分析和判断,实现输电线路的分布式山火监测和预警。本发明具有监测方法智能化程度高,且只需采用一台设备在变电站进行安装就能实现输电线路分布式山火在线监测和预警的特点,可以广泛应用于输电线路上进行输电线路分布式山火在线监测和预警。

Description

一种输电线路分布式山火监测和预警装置及方法
技术领域
本发明涉及一种监测和预警装置及方法,特别是涉及一种输电线路分布式山火监测和预警装置及方法,属于输电线路领域。
背景技术
我国森林火灾频繁发生,极有可能造成附近高压输电线路发生电气击穿、跳闸、重合闸失败继而使得线路停运等线路事故,严重威胁到山火附近高压输电线路的安全稳定运行。为有效避免这种事故的发生,需要采用有效的手段对输电线路山火进行在线监测及预警。由于输电线路比较长,山火的发生地有较大的随机特性,而实际输电线路运行情况下的山火监测多为点式监测设备,如图像识别、激光雷达等监测设备,这些设备尽管精度较高,但是不能进行全线路的在线监测,存在监测盲区,因此需要研究开发一套进行输电线路分布式山火监测和预警的系统,实现输电线路山火的分布式监测和预警。
发明内容
本发明要解决的技术问题是提供一种输电线路的分布式山火监测和预警方法,利用一种输电线路的分布式山火监测和预警方法解决传统的监测方法智能化程度不高,需采用多台设备在变电站进行安装才能实现输电线路分布式山火在线监测和预警,无法广泛应用于输电线路上进行输电线路分布式山火在线监测和预警的问题。
本发明提供的技术方案为一种输电线路分布式山火监测和预警装置,包括计算与数据处理单元、布里渊光时域反射仪和分布式光纤传感器,所述的分布式光纤传感器通过变电站内光纤配线屏内的光纤接口与布里渊光时域反射仪的光纤接口通过光纤跳线连接,布里渊光时域反射仪再和计算与数据处理单元通过USB接口相连。
所述的分布式光纤传感器为光纤复合架空地线OPGW内的一根传感光纤。
其输电线路分布式山火监测和预警方法,包括如下步骤:
步骤一、采用布里渊光时域反射仪监测得到输电线路架空线温度分布;
步骤二、计算与数据处理单元根据设定的温度阈值判断输电线路是否存在山火和山火的分布;
步骤三、通过航拍获取输电线路三维走廊信息;
步骤四、结合输电线线路分布式弧垂信息,建立输电线导线与障碍物间的绝缘电气距离分布;
步骤五、计算输电线路上的分布式大气击穿电压分布;
步骤六、通过线路电压等级设定击穿电压阈值进行山火预警分析和判断,实现输电线路的分布式山火监测和预警。
所述的三维走廊信息为以沿线被监测点作y轴坐标原点,采集监测点左右水平距各15m障碍物顶高程信息,其数学表达式为:
H=H(xi,y)y∈[-15,15]i=0,1,2,3...S/△x
式中,下标i为监测点编号,xi为被监测点空间坐标(m),S为输电线长度(m);△x为系统空间分辨率(m),H为被监测点xi处障碍物顶高程(m),y为障碍物在以监测点xi为y轴坐标原点的y轴坐标值(m)。
所述的绝缘电气距离分布表达式为:
其中,j为被监测档距编号,t为时间,lj为j号档距的档距大小(m),hj为j号档距内左杆塔的呼称高(m),hj+1为j号档距内右杆塔的呼称高(m),Fj为左杆塔所在海拔(m);Xij为输电线路上监测点xi在档距lj内的局部坐标(m);f(xi,t)为监测点xi处的弧垂值(m),y为障碍物在以监测点xi为y轴坐标原点的y轴坐标值(m),R(xi,t)为监测点xi处的电气绝缘距离(m),H为被监测点xi处障碍物顶高程(m)。
所述的大气击穿电压分布数学表达式为:
式中,t为时间,Ta为标准条件下的空气温度(℃),Ea为标准条件下的击穿场强(kV/m),T(xi,r,t)为输电线路监测点处导线与最近障碍物之间的温度分布(℃),r为监测点处导线与最近障碍物之间的距离(m),在监测获取输电线路分布式温度T(xi,t)后可通过推算获取,Vmax(xi,t)为被监测点xi处在t时刻的大气击穿电压(kV)。
所述的击穿电压阈值为标准条件下大气击穿电压的50%,其数学表达式为:
Vth(xi,t)=Va(xi,t)/2
式中,Vth(xi,t)为击穿电压阈值(kV),Va(xi,t)为标准条件下的大气击穿电压(kV)。
采用本发明的技术方案,第一步采用布里渊光时域反射仪监测得到输电线路架空线温度分布;第二步计算与数据处理单元根据设定的温度阈值判断输电线路是否存在山火和山火的分布;第三步通过航拍获取输电线路三维走廊信息;第四步结合输电线线路分布式弧垂信息,建立输电线导线与障碍物间的绝缘电气距离分布;第五步计算线路上的分布式大气击穿电压分布;第六步通过线路电压等级设定击穿电压阈值进行山火预警分析和判断,实现输电线路的分布式山火监测和预警,采用本发明的技术方案不仅具有监测方法智能化程度高,而且只需采用一台设备在变电站进行安装就能实现输电线路分布式山火在线监测和预警的特点,可以广泛应用于输电线路上进行输电线路分布式山火在线监测和预警。
本发明的分布式光纤传感器为光纤复合架空地线OPGW内的一根传感光纤,利用光纤复合架空地线中的一根光纤作为传感器,监测传感器的温度分布信息。
与现有技术相比,本发明输电线路分布式山火监测和预警方法,具有以下有益效果:采用布里渊光时域反射仪技术,通过监测输电线路架空线的温度分布,设定温度阈值进行输电线路山火的分布式监测,结合输电线路三维航拍数据、弧垂信息和温度数据实现输电线路山火的分布式监测预警。具有监测方法智能化程度高,且只需采用一台设备在变电站进行安装就能实现输电线路分布式山火在线监测和预警的特点,有着重要的经济和社会应用价值。
综上所述,利用一种输电线路的分布式山火监测和预警方法可以解决传统的监测方法智能化程度不高,需采用多台设备在变电站进行安装才能实现输电线路分布式山火在线监测和预警,无法广泛应用于输电线路上进行输电线路分布式山火在线监测和预警的问题。
附图说明
图1为本发明输电线路分布式山火监测和预警方法的流程示意图;
图2为本发明输电线路分布式山火监测和预警方法中涉及硬件的结构示意图。
具体实施方式
下面结合附图及具体的实施例对发明进行进一步介绍:
如图1~2所示,下面结合附图及实施例对本发明作进一步的详细描述,但该实施例不应理解为对本发明的限制。
参见图1至图2,一种输电线路分布式山火监测和预警装置,包括计算与数据处理单元、布里渊光时域反射仪和分布式光纤传感器,分布式光纤传感器通过变电站内光纤配线屏内的光纤接口与布里渊光时域反射仪的光纤接口通过光纤跳线连接,布里渊光时域反射仪再和计算与数据处理单元通过USB接口相连。
本发明输电线路分布式山火监测和预警装置包括:BOTDR、分布式光纤传感器以及计算与数据处理单元,布里渊光时域反射仪(BOTDR)是一种基于光纤布里渊散射光频移(Brillouin Scattering)检测的技术,能够检测输电线路的温度分布状态,分布式光纤传感器为光纤复合架空地线OPGW(Optical fiber composite Ground Wire)内的一根传感光纤,光纤复合架空地线的分布式光纤传感器通过变电站内的接口接入BOTDR,BOTDR与计算与数据处理单元相连。
进一步的BOTDR的原理为向分布式光纤传感器中发射超窄线宽激光信号,光信号在光纤中传播时,受光纤内弹性声波场低频声子的影响会产生布里渊后向散射光信号,当光纤温度和应变发生变化时,光纤内的声波场会发生变化,从而引起温度应变变化区域后向散射光信号相对于入射光信号发生频移变化,通过检测后向布里渊散射光的返回时间和频移大小就可以计算温度和应变变化的大小。
进一步的分布式光纤传感器也就是光纤复合架空地线内的单模光纤,利用光纤复合架空地线中的一根单模光纤作为传感器,监测传感器的温度分布信息。
进一步的计算与数据处理单元通过USB接口分别与BOTDR连接,接收BOTDR发送的分布式光纤传感器各空间位置上的温度信息,并完成存储、管理、计算和显示信息,通过相应算法实现输电线路山火分布情况,实现输电线路分布式山火在线监测和预警。
在按照本发明的技术方案做好各个硬件设备的连接和测试以后,在确保各个设备均具备良好的运行状态后,即可按照下述方法进行试验。
试验时,输电线路沿线发生山火时,受到山火火场的热辐射和热气流作用,架空线的温度迅速升高,因此可通过监测输电线路的温度分布,并设定温度阈值实现输电线路山火分布监测的定性分析和判断。输电线的分布式监测温度表示如下:
T(x,t)i=T(xi,t)i=0,1,2,3...S/△x (1)
式中,下标i为监测点编号;S为输电线长度(m);△x为系统空间分辨率(m),T(x,t)i表示为t时刻输电线上第i号监测点的温度(℃),T(xi,t)表示t时刻被监测点xi处的温度值(℃)。
设定温度阈值T0(xi,t)进行分布式山火的判断:
式中T(xi,t)表示t时刻被监测点xi处的温度值(℃),T0(xi,t)表示t时刻被监测点xi处的发生山火的温度阈值(℃)。
为实现输电线路分布式山火的跳闸预警,首先需要获取输电线线路走廊的具体情况。通过携带有航拍设备的无人机对输电线路走廊进行航拍,获取线路走廊的三维数据信息;三维走廊信息可采用如下形式描述,以沿线被监测点为y轴坐标原点,采集监测点左右水平距各15m障碍物顶高程信息:
H=H(xi,y)y∈[-15,15]i=0,1,2,3...S/△x (3)
式中:下标i为监测点编号,xi为被监测点空间坐标(m),S为输电线长度(m);△x为系统空间分辨率(m),H为被监测点xi处障碍物顶高程(m),y为障碍物在以监测点xi为y轴坐标原点的y轴坐标值(m)。
为获取输电导线与障碍物之间的绝缘电气距离,首先需要获取输电线路各档距的实时弧垂信息:
式中,j为被监测档距编号,t为时间,lj为j号档距的档距大小(m),Xij为输电线路上监测点xi在档距lj内的局部坐标,γj、βj和σ02j分别为架空线的比载(Mpa/m)、高差角(rad)和水平应力(Mpa),f(xi,t)为监测点xi处的弧垂值(m),其中,架空线水平应力需要结合输电线路初始架线参数采用架空线状态方程计算获取:
式中,j为档距编号,σ01j和σ02j分别为初始架线时的水平应力和温度变化后的水平应力;T0j和Tj(℃)分别为初始架线时的缆线温度和本发明监测的温度;Ej为缆线的杨氏模量(Mpa),αj为缆线的热膨胀系数(/℃),Tj和T0j(℃)分别为监测的温度和架空线初始架设时的温度。
当获得了架空线弧垂分布后,结合输电线路航拍数据、输电线路塔高信息等,获取输电线路架空导线与障碍物之间的绝缘电气距离:
式中:j为被监测档距编号,t为时间,lj为j号档距的档距大小(m),hj为j号档距内左杆塔的呼称高(m),hj+1为j号档距内右杆塔的呼称高(m),Fj为左杆塔所在海拔(m);Xij为输电线路上监测点xi在档距lj内的局部坐标(m);f(xi,t)为监测点xi处的弧垂值(m),y为障碍物在以监测点xi为y轴坐标原点的y轴坐标值(m),R(xi,t)为监测点xi处的电气绝缘距离(m),H为被监测点xi处障碍物顶高程(m)。
为进行输电线路分布式山火跳闸预警,需要计算输电线路山火区域的大气击穿电压Vmax(xi,t):
式中,t为时间,Ta为标准条件下的空气温度(℃),Ea为标准条件下的击穿场强(kV/m),T(xi,r,t)为输电线路监测点处导线与最近障碍物之间的温度分布(℃),r为监测点处导线与最近障碍物之间的距离(m),在监测获取输电线路分布式温度T(xi,t)后可通过推算获取。
获取输电线路的大气击穿电压分布后,通过设定大气击穿电压阈值进行分布式山火跳闸预警,设定大气击穿电压阈值Vth(xi,t)为标准条件下的大气击穿电压的50%:
Vth(xi,t)=Va(xi,t)/2 (8)
式中,标准条件下的击穿电压为
则分布式山火跳闸预警可采用如下形式表述:
最后就通过系统自动得到了输电线路分布式山火监测和预警的实际状况,从而由系统根据计算参数进行判断,以确定是否报警。
本发明输电线路分布式山火监测和预警方法,具有以下有益效果:采用布里渊光时域反射仪技术,通过监测输电线路架空线的温度分布,设定温度阈值进行输电线路山火的分布式监测,结合输电线路三维航拍数据、弧垂信息和温度数据实现输电线路山火的分布式监测预警。具有监测方法智能化程度高,且只需采用一台设备在变电站进行安装就能实现输电线路分布式山火在线监测和预警的特点,有着重要的经济和社会应用价值。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

1.一种输电线路分布式山火监测和预警装置,包括计算与数据处理单元、布里渊光时域反射仪和分布式光纤传感器,其特征在于:所述的分布式光纤传感器通过变电站内光纤配线屏内的光纤接口与布里渊光时域反射仪的光纤接口通过光纤跳线连接,布里渊光时域反射仪再和计算与数据处理单元通过USB接口相连。
2.根据权利要求1所述的一种输电线路分布式山火监测和预警装置,其特征在于:所述的分布式光纤传感器为光纤复合架空地线OPGW内的一根传感光纤。
3.一种输电线路分布式山火监测和预警方法,其特征在于:包括如下步骤:
步骤一、采用布里渊光时域反射仪监测得到输电线路架空线温度分布;
步骤二、计算与数据处理单元根据设定的温度阈值判断输电线路是否存在山火和山火的分布;
步骤三、通过航拍获取输电线路三维走廊信息;
步骤四、结合输电线线路分布式弧垂信息,建立输电线导线与障碍物间的绝缘电气距离分布;
步骤五、计算输电线路上的分布式大气击穿电压分布;
步骤六、通过线路电压等级设定击穿电压阈值进行山火预警分析和判断,实现输电线路的分布式山火监测和预警。
4.根据权利要求3所述的输电线路分布式山火监测和预警方法,其特征在于:所述的三维走廊信息为以沿线被监测点作y轴坐标原点,采集监测点左右水平距各15m障碍物顶高程信息,其数学表达式为:
H=H(xi,y)y∈[-15,15]i=0,1,2,3...S/△x
式中,下标i为监测点编号,xi为被监测点空间坐标(m),S为输电线长度(m);△x为系统空间分辨率(m),H为被监测点xi处障碍物顶高程(m),y为障碍物在以监测点xi为y轴坐标原点的y轴坐标值(m)。
5.根据权利要求3所述的输电线路分布式山火监测和预警方法,其特征在于:所述的绝缘电气距离分布表达式为:
R ( x i , t ) = min ( ( ( h j + 1 - h j l j X i j + h j + F j ) - f ( x i , t ) - H ) 2 + y 2 ) y ∈ [ - 15 , 15 ]
其中,j为被监测档距编号,t为时间,lj为j号档距的档距大小(m),hj为j号档距内左杆塔的呼称高(m),hj+1为j号档距内右杆塔的呼称高(m),Fj为左杆塔所在海拔(m);Xij为输电线路上监测点xi在档距lj内的局部坐标(m);f(xi,t)为监测点xi处的弧垂值(m),y为障碍物在以监测点xi为y轴坐标原点的y轴坐标值(m),R(xi,t)为监测点xi处的电气绝缘距离(m),H为被监测点xi处障碍物顶高程(m)。
6.根据权利要求3所述的输电线路分布式山火监测和预警方法,其特征在于:所述的大气击穿电压分布数学表达式为:
V m a x ( x i , t ) = ∫ 0 R ( x i , t ) E a T a + 273.15 T ( x i , r , t ) + 273.15 d r
式中,t为时间,Ta为标准条件下的空气温度(℃),Ea为标准条件下的击穿场强(kV/m),T(xi,r,t)为输电线路监测点处导线与最近障碍物之间的温度分布(℃),r为监测点处导线与最近障碍物之间的距离(m),在监测获取输电线路分布式温度T(xi,t)后可通过推算获取,Vmax(xi,t)为被监测点xi处在t时刻的大气击穿电压(kV)。
7.根据权利要求3所述的输电线路分布式山火监测和预警方法,其特征在于:所述的击穿电压阈值为标准条件下大气击穿电压的50%,其数学表达式为:
Vth(xi,t)=Va(xi,t)/2
式中,Vth(xi,t)为击穿电压阈值(kV),Va(xi,t)为标准条件下的大气击穿电压(kV)。
CN201611180667.XA 2016-12-19 2016-12-19 一种输电线路分布式山火监测和预警装置及方法 Active CN106530575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611180667.XA CN106530575B (zh) 2016-12-19 2016-12-19 一种输电线路分布式山火监测和预警装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611180667.XA CN106530575B (zh) 2016-12-19 2016-12-19 一种输电线路分布式山火监测和预警装置及方法

Publications (2)

Publication Number Publication Date
CN106530575A true CN106530575A (zh) 2017-03-22
CN106530575B CN106530575B (zh) 2019-03-12

Family

ID=58339623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611180667.XA Active CN106530575B (zh) 2016-12-19 2016-12-19 一种输电线路分布式山火监测和预警装置及方法

Country Status (1)

Country Link
CN (1) CN106530575B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740271A (zh) * 2019-01-09 2019-05-10 贵州电网有限责任公司 一种架空导线钢绞线对接嵌铝压接后工作温度评价方法
CN110379114A (zh) * 2019-07-03 2019-10-25 长沙理工大学 一种基于光纤分布式传感的无人机山火智能预警系统
CN110716019A (zh) * 2019-11-11 2020-01-21 浙江众信仪器仪表检测有限公司 一种环境空气质量移动监测系统及监测方法
CN111445671A (zh) * 2020-04-02 2020-07-24 国网湖北省电力公司咸宁供电公司 基于光纤应变解析的输电线路地质灾害监测系统与方法
CN115047253A (zh) * 2022-06-16 2022-09-13 成都理工大学 基于输电线路空间介电常数变化的山火故障早期监测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915775A (zh) * 2015-06-05 2015-09-16 国家电网公司 一种输电线路山火灾害的风险评估与应急决策方法
CN204788720U (zh) * 2015-07-20 2015-11-18 国网电力科学研究院武汉南瑞有限责任公司 基于光纤测温技术的输电线路山火监测装置
CN105160592A (zh) * 2015-08-16 2015-12-16 国网浙江省电力公司湖州供电公司 针对山火条件下架空输电线路跳闸概率的估计方法及山火防控方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915775A (zh) * 2015-06-05 2015-09-16 国家电网公司 一种输电线路山火灾害的风险评估与应急决策方法
CN204788720U (zh) * 2015-07-20 2015-11-18 国网电力科学研究院武汉南瑞有限责任公司 基于光纤测温技术的输电线路山火监测装置
CN105160592A (zh) * 2015-08-16 2015-12-16 国网浙江省电力公司湖州供电公司 针对山火条件下架空输电线路跳闸概率的估计方法及山火防控方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A. SUKHNANDAN ETC.: "Fire Induced Flashovers of Transmission Lines: Theoretical Models", 《IEEE AFRICON 2002》 *
刘明军等: "输电线路山火故障风险评估模型及评估方法研究", 《电力系统保护与控制》 *
史尊伟: "基于BOTDR技术的架空输电线路监测系统研制与试验研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
吴田等: "山火对输电线路设备及外绝缘影响分析", 《电力科学与技术学报》 *
张一尘: "《高电压技术》", 31 August 2015 *
张云等: "山火条件下高压输电线路放电特性的试验研究", 《2012年广东省水力发电工程学会优秀论文集》 *
杨康: "输电线路山火跳闸机理的模拟实验和数值模拟研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
陆佳政等: "输电线路山火监测预警系统的研究及应用", 《电力系统保护与控制》 *
雷国伟等: "架空输电线路走廊防山火综合监测系统实现与应用", 《电气技术》 *
黄道春等: "山火引发输电线路间隙放电机理与击穿特性综述", 《高电压技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740271A (zh) * 2019-01-09 2019-05-10 贵州电网有限责任公司 一种架空导线钢绞线对接嵌铝压接后工作温度评价方法
CN109740271B (zh) * 2019-01-09 2020-02-04 贵州电网有限责任公司 一种架空导线钢绞线对接嵌铝压接后工作温度评价方法
CN110379114A (zh) * 2019-07-03 2019-10-25 长沙理工大学 一种基于光纤分布式传感的无人机山火智能预警系统
CN110716019A (zh) * 2019-11-11 2020-01-21 浙江众信仪器仪表检测有限公司 一种环境空气质量移动监测系统及监测方法
CN111445671A (zh) * 2020-04-02 2020-07-24 国网湖北省电力公司咸宁供电公司 基于光纤应变解析的输电线路地质灾害监测系统与方法
CN115047253A (zh) * 2022-06-16 2022-09-13 成都理工大学 基于输电线路空间介电常数变化的山火故障早期监测方法

Also Published As

Publication number Publication date
CN106530575B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN106530575A (zh) 一种输电线路分布式山火监测和预警装置及方法
CN203310540U (zh) 一种融合光纤复合相线的温度与应变在线监测装置
CN102042885B (zh) 一种输电线路塔线体系状态监测装置
CN206379209U (zh) 电力电缆、电力电缆监测装置及系统
CN104596583B (zh) 一种用于监测输电线路运行状态的oppc在线监控系统
CN107702818B (zh) 海底电缆温度监测系统
US20130066600A1 (en) Method and apparatus for real-time line rating of a transmission line
CN103592054B (zh) 电缆群线芯温度确定方法、装置及该装置的安装方法
CN206192541U (zh) 基于光纤分布式测温的高压开关柜多点监测系统
CN107741203A (zh) 一种海底电缆应变监测系统
CN115240357B (zh) 基于分布式光纤的公共建筑火场温度实时监测及预测系统
CN107422215A (zh) 一种基于分布式光纤测温技术的电缆载流量监测方法及系统
CN109904932A (zh) 一种牵引供电系统27.5kV高压电缆在线状态监测方法及监测装置
CN104121945A (zh) 一种光纤复合架空地线的分布式弧垂在线监测系统及方法
CN106327071A (zh) 电力通信风险分析方法和系统
CN110264660A (zh) 一种精确定位智能光纤光栅火灾探测系统
CN202511922U (zh) 一种Oppc光缆应力和载流量测量计算系统
CN207379627U (zh) 电缆智能测温报警装置
CN106646670B (zh) 一种输电线路分布式微气象监测方法
CN111613004A (zh) 一种基于感温光纤的隧道分布式温度监测火灾预警系统
CN106091945A (zh) 光纤复合架空地线的分布式弧垂在线监测系统及方法
Jones et al. Condition monitoring system for TransGrid 330 kV power cable
Li et al. Application practice of 500 kV OPGW transmission line environmental monitoring technology
CN104614644A (zh) 高压架空输电线路覆冰的诊断方法
CN209692431U (zh) 一种牵引供电系统27.5kV高压电缆在线状态监测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant