CN106529161B - 一种基于火电机组运行数据确定升降负荷速率的方法 - Google Patents

一种基于火电机组运行数据确定升降负荷速率的方法 Download PDF

Info

Publication number
CN106529161B
CN106529161B CN201610971496.6A CN201610971496A CN106529161B CN 106529161 B CN106529161 B CN 106529161B CN 201610971496 A CN201610971496 A CN 201610971496A CN 106529161 B CN106529161 B CN 106529161B
Authority
CN
China
Prior art keywords
load
time
standard deviation
lifting
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610971496.6A
Other languages
English (en)
Other versions
CN106529161A (zh
Inventor
赵刚
刘朝阳
赵明
郝勇生
李孟阳
苏志刚
杜景琦
王培红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Yunnan Electric Power Test and Research Institute Group Co Ltd
Original Assignee
Southeast University
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Yunnan Electric Power Test and Research Institute Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, Electric Power Research Institute of Yunnan Power Grid Co Ltd, Yunnan Electric Power Test and Research Institute Group Co Ltd filed Critical Southeast University
Priority to CN201610971496.6A priority Critical patent/CN106529161B/zh
Publication of CN106529161A publication Critical patent/CN106529161A/zh
Application granted granted Critical
Publication of CN106529161B publication Critical patent/CN106529161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种确定电站机组最大升降负荷速率的方法,包括以下步骤:步骤一,读取电站集散控制系统DCS历史数据库中以单位时间为间隔的连续负荷数据,作为计算最大负荷升降速率的总样本,并做一阶差分;步骤二,设定窗口长度N,采用滑动窗口的形式,计算窗口内负荷数据的标准差s:步骤三,统计所求的标准差,找出其分布规律,得到区分稳态过程与非稳态过程的标准差阈值;步骤四,确定负荷非稳态过程的起止时刻以及持续时间;步骤五,确定机组的最大负荷升降速率。本发明根据机组真实历史数据,进行对机组最高升降负荷速率的预测,其预测结果准确;具体实施过程只需要机组运行的历史数据,简便易行,对机组的安全运行没有任何影响。

Description

一种基于火电机组运行数据确定升降负荷速率的方法
技术领域
本发明涉及一种基于火电机组运行数据确定其最大升降负荷速率的方法,属于软测量领域。
背景技术
火电机组负荷升降速率受锅炉特性(锅炉蓄能、制粉系统)、汽轮机特性(调速系统)和控制系统等多种因素影响,这些因素对机组最大升降负荷速率的影响机理十分复杂。因此,通过机理建模方式确定最大升降负荷速率不仅难度较大,而且准确度不高。
目前火电机组主要通过热力试验的方法确定其最大升降负荷速率,但由于不同机组锅炉、汽机、控制系统特性的不同,各机组的最大升降负荷速率也不同。因此,单台机组的试验结果不能推广应用到其他机组,而对每台机组做试验,不仅工作量巨大,也会影响机组的正常运行。
随着信息科技的飞速发展,电站在线监测系统的监测能力及历史数据存储能力大幅提升,因而如何利用监测系统中存储的海量实际运行数据成为了研究的热点。
基于火电机组运行数据确定其最大升降负荷速率的方法,具有简便易行、工作周期短、成本低、不影响机组运行等特点。
发明内容
本发明提供了一种基于火电机组运行数据确定其最大升降负荷速率的方法。
本发明通过如下技术方案来实现:
步骤一,读取电站集散控制系统DCS历史数据库中以单位时间为间隔的连续负荷数据(算例中取时间间隔为1min),作为计算最大负荷升降速率的总样本,负荷数据所组成的数组记为A,并做一阶差分记为C。
C(i)=A(i+1)-A(i)
步骤二,设定窗口长度N,采用滑动窗口的形式,计算窗口内负荷数据的标准差s;
所述窗口长度N为选取的用于计算标准差s的一组连续负荷数据的个数;
窗口内负荷数据标准差s的计算公式为,
Figure BDA0001144601180000021
其中,N为窗口内负荷数据的个数;xi为窗口内N个负荷数据的数值;
Figure BDA0001144601180000022
为窗口内N个负荷数据的算术平均值。
窗口内负荷数据标准差s反应了窗口内样本变量的分散程度。s小,表明窗口内负荷数据的分布比较密集在平均数附近,否则,表明窗口内负荷数据的分布比较离散。
步骤三,统计所求的标准差,找出其分布规律,得到区分稳态过程与非稳态过程的标准差阈值;
3.1、选取一定数量(M个,算例中取809个为例)的以单位时间为间隔的连续负荷数据,设定窗口长度为N,采用滑动窗口的形式,计算窗口内负荷数据的标准差s,这样共可得到M-N+1个标准差。这M-N+1个标准差构成标准差向量S,其中,最大值记为Smax,最小值记为Smin
3.2、将标准差区间(Smin,Smax)等分为m个小区间(可取
Figure BDA0001144601180000031
m为正整数);
3.3、计算每个小区间的长度d;
Figure BDA0001144601180000032
3.4、计算每个小区间Li的取值范围;
Li∈(Smin+(i-1)·d,Smin+i·d) i=1,2,…m
3.5、利用MATLAB中的hist函数获得标准差分布在各个小区间的数目,并绘出各个小区间上标准差数目的直方图;
[n,xout]=hist(S,m);
bar(xout,n);
其中,n为各个小区间的标准差个数;xout为各个小区间的中心点数值。
3.6、确定区分稳态过程与非稳态过程标准差的阈值;
由于负荷绝大部分时间处于稳态过程,其对应的标准差数值也较小,因此标准差集中分布在前几个区间。利用标准差的分布情况来确定阈值,将第一个标准差个数小于
Figure BDA0001144601180000033
的区间的左边界设定为区分稳态过程和非稳态过程标准差的阈值。设第i个区间符合上述设定,则阈值θ可取为:
θ=Smin+(i-1)·d
步骤四,确定负荷非稳态过程的起止时刻以及持续时间;
将从集散控制系统DCS中读取的以单位时间为间隔的连续负荷数据编号为1,2,3,…,M,单位时间间隔记为t。根据第二步所述,设定窗口长度为N,滑动窗口求得标准差,并将所求得的标准差依次对应编号为1,2,3,…,M-N+1。
4.1、确定负荷非稳态过程开始时刻:
如果第1个标准差>θ,则第一个负荷所对应的时刻为非稳态过程的开始时刻;
如果第i个标准差≦θ,第i+1个标准差>θ,则对应的负荷非稳态过程开始时刻为i+9;其中i=1,2,3,…,M-N。
将所有的负荷非稳态过程的开始时刻所组成的数组记为K。
4.2、确定负荷非稳态过程结束时刻:
如果第i个标准差>θ,第i+1个标准差≦θ,则对应的负荷非稳态过程结束时刻为i+1;
如果第M-N+1个标准差>θ,则最后一个负荷所对应的时刻为非稳态过程的结束时刻;其中i=1,2,3,…,M-N。
将所有的负荷非稳态过程的结束时刻所组成的数组记为J。
即第i个非稳态过程,其对应的起止时刻记为K(i)、J(i),对应的非稳态过程持续时间所组成的数组为:
L(i)=J(i)-K(i) i=1,2,3,…
步骤五,确定机组的最大负荷升降速率
对于非稳态过程持续时间超过2t,即L(i)>2的非稳态过程,确定其中升降负荷过程的开始时刻及对应负荷。
5.1、确定升降负荷过程的开始时刻及对应负荷:
C(K(i))的绝对值大于1,K(i)所对应的时刻及负荷;
C(k)的绝对值小于1,C(k+1)的绝对值大于1,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i));
C(k)、C(k+1)的绝对值均大于1,但异号,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i))。
将上述三种情况对应时刻及负荷所组成的数组分别记为T1、F1
5.2、确定升降负荷过程的结束时刻及对应负荷:
C(k)的绝对值大于1,C(k+1)的绝对值小于1,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i));
C(k)、C(k+1)的绝对值均大于1,但异号,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i));
C(J(i)-1)的绝对值大于1,J(i)所对应的时刻及负荷。
将上述三种情况对应时刻及负荷所组成的数组分别记为T2、F2
5.3、根据5.1和5.2中所得的负荷升降起止时刻及对应负荷计算负荷升降速率,负荷升降速率计算公式如下:
Figure BDA0001144601180000051
5.4、利用MATLAB中kmeans函数对负荷区间进行划分。
由于机组的最大升降负荷速率与机组的初始负荷有直接关系,因此有必要对机组的初始负荷进行区间划分。利用MATLAB中kmeans函数对升降负荷过程中的起始负荷和升降速率进行聚类。
[IDX,C]=kmeans(data,k);
其中:data为负荷升降过程中的初始负荷和升降速率组成的二维数组;k为聚类的类数;
5.5、统计机组升降负荷速率,确定其最大升降负荷速率
如下表所示,对运行数据计算所得的升负荷进行统计,绘成如下表格:
Figure BDA0001144601180000061
其中:Vi为升负荷速率值,代表以Vi为中心的某段区间,并且各区间连续,数值按由大到小顺序排列;Xij为第i个负荷区间第j个速率区间的升负荷速率统计频数。
同样,对降负荷速率进行统计。统计的机组升降负荷速率存在最大值,但如果该值所处区间的频数较小,则该值可能具有较大的偶然性,不能很好的代表机组大部分条件下所能达到的极限值,因此需要对统计的最高速率进行修正:
Figure BDA0001144601180000062
其中:Vi为负荷区间i统计的最大负荷升降速率;N为设定的总频数,并且在第j区间首次累计达到总频数N。
本发明具有以下的优点:(1)根据机组真实历史数据,进行对机组最高升降负荷速率的预测,其预测结果准确;(2)具体实施过程只需要机组运行的历史数据,简便易行;(3)不需要试验等额外费用,成本低;(4)对机组的安全运行没有任何影响。
附图说明
图1为本发明的流程图;
图2为负荷数据及对应标准差示意图;
图3为标准差在各个小区间内个数分布图;
图4为负荷升降过程起始负荷及速率的聚类结果。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施案例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
一种基于火电机组运行数据确定升降负荷速率的方法,包括:
步骤一,读取电站集散控制系统DCS历史数据库中以单位时间为间隔的连续负荷数据,作为计算最大负荷升降速率的总样本,负荷数据所组成的数组记为A,并做一阶差分记为数组C。
C(i)=A(i+1)-A(i)
步骤二,设定窗口长度10,采用滑动窗口的形式,计算窗口内负荷数据的标准差s;
步骤三,统计所求的标准差,找出其分布规律,得到区分稳态过程与非稳态过程的标准差阈值;
3.1、选取809个以单位时间为间隔的连续负荷数据,设定窗口长度为10,采用滑动窗口的形式,计算窗口内负荷数据的标准差s,共得到800个标准差。这800个标准差构成标准差向量S,其中,最大值为12.6662记为Smax,最小值为0.1157记为Smin。(负荷数据及对应标准差见图2)
3.2、将标准差区间(0.1157,12.6662)分为80个小区间;
3.3、计算每个小区间的长度d,d=0.1569;
3.4、计算每个小区间Li的取值范围;
Li∈(0.1157+0.1569(i-1),0.1157+0.1569i) i=1,2,…80
3.5、利用MATLAB中的hist函数获得标准差分布在各个小区间的数目,并绘出各个小区间中标准差个数的直方图(见图3);
[n,xout]=hist(S,80);
bar(xout,n);
3.6、确定区分稳态过程与非稳态过程标准差的阈值。
将第一个标准差个数小于
Figure BDA0001144601180000081
的区间的左边界设定为区分稳态过程和非稳态过程标准差的阈值,由于第5个小区间内标准差的个数为3,小于5。因此区分稳态过程和非稳态过程的阈值θ=0.1157+4×0.1569,θ=0.743。
步骤四,判断负荷非稳态过程的起止时刻以及持续时间
将从集散控制系统DCS中读取的以单位时间为间隔的连续负荷数据编号为1,2,3,…,M,单位时间间隔记为t。根据第二步所述,设定窗口长度为10,滑动窗口求得标准差,并将所求得的标准差依次对应编号为1,2,3,…,M-9。
4.1、确定负荷非稳态过程开始时刻的方法:
根据前面所述方法,将所有的负荷稳态工况的开始时刻所组成的数组记为K。
4.2、确定负荷非稳态过程结束时刻的方法:
根据前面所述方法,将所有的负荷非稳态过程的结束时刻所组成的数组记为J。
对应每次负荷非稳态过程持续的时间所组成的数组为
L(i)=J(i)-K(i) i=1,2,3,…
步骤五,确定机组的最大负荷升降速率
对于非稳态过程持续时间超过2t,即L(i)>2的非稳态过程,确定其中升降负荷过程的开始时刻及对应负荷。
5.1、确定升降负荷过程的开始时刻及对应负荷:
C(K(i))的绝对值大于1,K(i)所对应的时刻及负荷;
C(k)的绝对值小于1,C(k+1)的绝对值大于1,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i));
C(k)、C(k+1)的绝对值均大于1,但异号,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i))。
将上述三种情况对应时刻及负荷所组成的数组分别记为T1、F1
5.2、确定升降负荷过程的结束时刻及对应负荷:
C(k)的绝对值大于1,C(k+1)的绝对值小于1,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i));
C(k)、C(k+1)的绝对值均大于1,但异号,k+1时刻对应的时刻及负荷,其中:k∈(K(i),J(i));
C(J(i)-1)的绝对值大于1,J(i)所对应的时刻及负荷。
将上述三种情况对应时刻及负荷所组成的数组分别记为T2、F2
5.3、根据5.1和5.2中所得的负荷升降起止时刻及对应负荷计算负荷升降速率,负荷升降速率计算公式如下:
Figure BDA0001144601180000101
5.4、利用kmeans聚类的方法划分负荷区间。
机组最大负荷升降速率与机组负荷有关,因此对机组的最大负荷升降速率进行区间划分。利用MATLAB中kmeans函数对负荷升降过程中的起始负荷和升降速率进行聚类。将起始负荷和升降负荷速率聚为3类。(聚类结果见图4)
[IDX,C]=kmeans(data,3);
5.5、统计机组升降负荷速率,确定其最大升降负荷速率。
对升负荷速率进行统计,绘成如下表格:
Figure BDA0001144601180000102
Figure BDA0001144601180000111
降负荷速率进行统计,绘成如下表格:
Figure BDA0001144601180000112
确定最大负荷升降速率结果:
取N=20,则:
Figure BDA0001144601180000113

Claims (3)

1.一种确定电站机组最大升降负荷速率的方法,其特征在于,包括以下步骤:
步骤一,读取电站集散控制系统DCS历史数据库中以单位时间为间隔的连续负荷数据,作为计算最大负荷升降速率的总样本,负荷数据所组成的数组记为A,并做一阶差分记为C:
C(k)=A(k+1)-A(k),其中k为时刻;
步骤二,设定窗口长度N,采用滑动窗口的形式,计算窗口内负荷数据的标准差s:
Figure FDA0002322422100000011
其中,N为窗口内负荷数据的个数;xi为窗口内N个负荷数据的数值;
Figure FDA0002322422100000012
为窗口内N个负荷数据的算术平均值;
步骤三,统计所求的标准差,找出其分布规律,得到区分稳态过程与非稳态过程的标准差阈值;
步骤四,确定负荷非稳态过程的起止时刻以及持续时间:将所有的负荷非稳态过程的开始时刻所组成的数组记为K,将所有的负荷非稳态过程的结束时刻所组成的数组记为J,即第s个非稳态过程,其对应的起止时刻记为K(s)、J(s),对应的非稳态过程持续时间所组成的数组为:
L(s)=J(s)-K(s) s=1,2,3,…
步骤五,确定机组的最大负荷升降速率,具体方法是:
5.1、确定升降负荷过程的开始时刻及对应负荷:
C(K(s))的绝对值大于1,K(s)所对应的时刻及负荷;
C(k)的绝对值小于1,C(k+1)的绝对值大于1,k+1时刻对应的时刻及负荷,其中:k∈(K(s),J(s));
C(k)、C(k+1)的绝对值均大于1,但异号,k+1时刻对应的时刻及负荷,其中:k∈(K(s),J(s));
将上述三种情况对应时刻及负荷所组成的数组分别记为T1、F1
5.2、确定升降负荷过程的结束时刻及对应负荷:
C(k)的绝对值大于1,C(k+1)的绝对值小于1,k+1时刻对应的时刻及负荷,其中:k∈(K(s),J(s));
C(k)、C(k+1)的绝对值均大于1,但异号,k+1时刻对应的时刻及负荷,其中:k∈(K(s),J(s));
C(J(s)-1)的绝对值大于1,J(s)所对应的时刻及负荷;
将上述三种情况对应时刻及负荷所组成的数组分别记为T2、F2
5.3、根据5.1和5.2中所得的负荷升降起止时刻及对应负荷计算负荷升降速率,负荷升降速率计算公式如下:
Figure FDA0002322422100000021
5.4、利用MATLAB中kmeans函数对负荷区间进行划分:
[IDX,C]=kmeans(data,k0);
其中:data为负荷升降过程中的初始负荷和升降速率组成的二维数组;k0为聚类的类数;
5.5、统计机组升降负荷速率,确定其最大升降负荷速率:
如下表所示,对运行数据计算所得的升负荷进行统计,绘成如下表格:
Figure FDA0002322422100000031
其中:Vi为升负荷速率值,代表以Vi为中心的某段区间,并且各区间连续,数值按由大到小顺序排列;Xij为第i个负荷区间第j个速率区间的升负荷速率统计频数;
对统计的最高速率进行修正:
Figure FDA0002322422100000032
其中:Vi为负荷区间i统计的最大负荷升降速率;N为设定的总频数,并且在第j区间首次累计达到总频数N。
2.根据权利要求1所述的方法,其特征在于:所述步骤一中的单位时间为1min。
3.根据权利要求1所述的方法,其特征在于:所述步骤三的具体方法是:
3.1、选取M个数量的以单位时间为间隔的连续负荷数据,设定窗口长度为N,采用滑动窗口的形式,计算窗口内负荷数据的标准差s,这样共可得到M-N+1个标准差,这M-N+1个标准差构成标准差向量S,其中,最大值记为Smax,最小值记为Smin
3.2、将标准差区间(Smin,Smax)等分为m个小区间,
Figure FDA0002322422100000041
m为正整数;
3.3、计算每个小区间的长度d;
Figure FDA0002322422100000042
3.4、计算每个小区间Li的取值范围;
Li∈(Smin+(i-1)·d,Smin+i·d) i=1,2,…m
3.5、利用MATLAB中的hist函数获得标准差分布在各个小区间的数目,并绘出各个小区间上标准差数目的直方图;
[n,xout]=hist(S,m);
bar(xout,n);
其中,n为各个小区间的标准差个数;xout为各个小区间的中心点数值;
3.6、确定区分稳态过程与非稳态过程标准差的阈值;
由于负荷绝大部分时间处于稳态过程,其对应的标准差数值也较小,因此标准差集中分布在前几个区间;利用标准差的分布情况来确定阈值,将第一个标准差个数小于
Figure FDA0002322422100000043
的区间的左边界设定为区分稳态过程和非稳态过程标准差的阈值;设第i个区间符合上述设定,则阈值θ可取为:
θ=Smin+(i-1)·d。
CN201610971496.6A 2016-10-28 2016-10-28 一种基于火电机组运行数据确定升降负荷速率的方法 Active CN106529161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610971496.6A CN106529161B (zh) 2016-10-28 2016-10-28 一种基于火电机组运行数据确定升降负荷速率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610971496.6A CN106529161B (zh) 2016-10-28 2016-10-28 一种基于火电机组运行数据确定升降负荷速率的方法

Publications (2)

Publication Number Publication Date
CN106529161A CN106529161A (zh) 2017-03-22
CN106529161B true CN106529161B (zh) 2020-08-11

Family

ID=58326744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610971496.6A Active CN106529161B (zh) 2016-10-28 2016-10-28 一种基于火电机组运行数据确定升降负荷速率的方法

Country Status (1)

Country Link
CN (1) CN106529161B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111191881B (zh) * 2019-12-13 2024-05-14 大唐东北电力试验研究院有限公司 一种基于大数据的火电机组工业设备状态监测方法
CN111076772B (zh) * 2019-12-13 2021-07-27 红云红河烟草(集团)有限责任公司 一种卷烟制丝过程数据的处理方法
CN111401652A (zh) * 2020-03-24 2020-07-10 汉谷云智(武汉)科技有限公司 一种基于co在线检测的锅炉优化方法及系统
CN112308396A (zh) * 2020-10-27 2021-02-02 国网辽宁省电力有限公司 一种火电机组性能分析分档控制方法
CN113568386B (zh) * 2021-07-30 2023-02-28 西安热工研究院有限公司 一种基于区间估计的火电机组全工况大数据分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310650A2 (en) * 2001-11-09 2003-05-14 Ford Global Technologies, Inc. A Method and System for Engine Control during Transient Operation
CN104732095A (zh) * 2015-03-30 2015-06-24 清华大学 对电力系统综合负荷模型进行简化和模型参数辨识的方法
CN105469325A (zh) * 2015-12-21 2016-04-06 云南电网有限责任公司电力科学研究院 一种确定火电机组负荷稳定状态的方法及系统
CN105811398A (zh) * 2016-03-16 2016-07-27 中国农业大学 基于监测数据的最大负荷同时率的确定方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488022B (zh) * 2009-02-23 2012-04-11 东南大学 火电机组锅炉汽轮机协调系统的先进控制方法
US20120197560A1 (en) * 2011-01-28 2012-08-02 Hampden Kuhns Signal identification methods and systems
CN103337879A (zh) * 2013-07-11 2013-10-02 上海电力学院 一种带死区的调节功率动态优化分配方法
CN103426032B (zh) * 2013-07-25 2017-03-01 广东电网公司电力科学研究院 一种热电联产机组的经济优化调度方法
CN104344423B (zh) * 2013-08-06 2017-03-15 国家电网公司 一种提高褐煤机组agc性能指标的方法及装置
CN103901875A (zh) * 2014-03-06 2014-07-02 国家电网公司 发电机组agc试验中负荷变化实际升降速率的方法
CN105205326B (zh) * 2015-09-24 2017-11-10 渤海大学 一种电厂实时负荷在线预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310650A2 (en) * 2001-11-09 2003-05-14 Ford Global Technologies, Inc. A Method and System for Engine Control during Transient Operation
CN104732095A (zh) * 2015-03-30 2015-06-24 清华大学 对电力系统综合负荷模型进行简化和模型参数辨识的方法
CN105469325A (zh) * 2015-12-21 2016-04-06 云南电网有限责任公司电力科学研究院 一种确定火电机组负荷稳定状态的方法及系统
CN105811398A (zh) * 2016-03-16 2016-07-27 中国农业大学 基于监测数据的最大负荷同时率的确定方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
The Short-term Load Forecasting Based on the Rate of Load Fluctuation;Rui Ma et al;《2011 Fourth International Conference on Intelligent Computation Technology and Automation》;20110415;全文 *
火电机组AGC速率的在线计算方法研究;刘芳等;《电力科学与工程》;20130718;第29卷(第5期);51-55,61 *
燃气轮机在AGC投入情况下负荷变化速率的优化;梁丽萍;《科技风》;20121231(第12期);108-109 *

Also Published As

Publication number Publication date
CN106529161A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106529161B (zh) 一种基于火电机组运行数据确定升降负荷速率的方法
KR101761686B1 (ko) 머신 러닝을 이용한 태양광 발전량 실시간 예측 시스템
Schlechtingen et al. Using data-mining approaches for wind turbine power curve monitoring: A comparative study
CN112036089A (zh) 一种基于dpc-mnd和多元状态估计的磨煤机故障预警方法
CN108460207A (zh) 一种基于运行数据模型的发电机组的故障预警方法
CN110362045B (zh) 一种考虑海洋气象因素的海上双馈风电机组故障判别方法
KR20170078252A (ko) 시계열의 데이터를 모니터링 하는 방법 및 그 장치
EP3770423A1 (en) Wind turbine control method and device, controller, and control system
KR102072836B1 (ko) 상관도를 고려한 데이터 분류 방법 및 이 방법을 수행하기 위한 프로그램이 저장된 컴퓨터 판독가능한 저장매체
CN104517041B (zh) 一种基于最大信息熵的化工数据流实时异常检测方法
CN113344288B (zh) 梯级水电站群水位预测方法、装置及计算机可读存储介质
CN113822418A (zh) 一种风电场功率预测方法、系统、设备和存储介质
CN111190349A (zh) 船舶机舱设备状态监测及故障诊断方法、系统及介质
Naimi et al. Fault detection and isolation of a pressurized water reactor based on neural network and k-nearest neighbor
CN111522808A (zh) 一种风电机组异常运行数据处理方法
CN112417764A (zh) 一种面向锅炉特种设备蒸汽量预测的k近邻回归预测方法
CN105469325B (zh) 一种确定火电机组负荷稳定状态的方法及系统
KR101997580B1 (ko) 상관도를 고려한 데이터 분류 방법 및 이 방법을 수행하기 위한 프로그램이 저장된 컴퓨터 판독가능한 저장매체
JPWO2020148904A1 (ja) 異常検知装置、異常検知システム及び学習装置、並びに、これらの方法及びプログラム
CN113505909A (zh) 一种面向短期风电功率趋势预测的误差补偿方法
Li et al. A novel fault early warning method for mechanical equipment based on improved MSET and CCPR
CN117216640A (zh) 一种电力时序数据异常检测方法
CN114912807A (zh) 一种风电机组技改后发电量提升效果评估方法和评估系统
Qiao et al. Study on K-means method based on Data-Mining
Yang et al. Anomaly detection of dust removal system through gradient boosting decision tree algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant