CN106528969A - 金属弹片仿真方法和装置 - Google Patents

金属弹片仿真方法和装置 Download PDF

Info

Publication number
CN106528969A
CN106528969A CN201610928082.5A CN201610928082A CN106528969A CN 106528969 A CN106528969 A CN 106528969A CN 201610928082 A CN201610928082 A CN 201610928082A CN 106528969 A CN106528969 A CN 106528969A
Authority
CN
China
Prior art keywords
metal clips
displacement
module
fixed bottom
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610928082.5A
Other languages
English (en)
Other versions
CN106528969B (zh
Inventor
曹放
张朝扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nubia Technology Co Ltd
Original Assignee
Nubia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nubia Technology Co Ltd filed Critical Nubia Technology Co Ltd
Priority to CN201610928082.5A priority Critical patent/CN106528969B/zh
Publication of CN106528969A publication Critical patent/CN106528969A/zh
Application granted granted Critical
Publication of CN106528969B publication Critical patent/CN106528969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Set Structure (AREA)
  • Adornments (AREA)

Abstract

本发明公开一种金属弹片仿真方法和装置,其中,所述金属弹片仿真方法包括如下步骤:接收用户导入的模型数据,所述模型数据包括金属弹片的形状、金属弹片的材料、金属弹片的受压顶点和金属弹片的固定底面;对所述受压顶点设置装配关系为接触的刚性压块;对所述金属弹片进行用于有限元计算的网格划分;对所述固定底面设置约束关系为固定;对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移;在所述刚性压块进行第一位移和第二位移的仿真时,通过有限元计算获得所述金属弹片的状态变化过程。本发明具有提高模拟金属弹片的实际使用场景的效率。

Description

金属弹片仿真方法和装置
技术领域
本发明涉及仿真领域,特别涉及金属弹片仿真方法和装置。
背景技术
移动终端需要在一定空间内,装配尽肯能多的元器件。因此移动终端的结构紧凑、内部空间有限。通常天线馈点、金属件接地以及I/O传输连接等等采用金属弹片的连接方式。但是,一旦弹片失效,就会给整机功能带来影响。因此,用于移动终端的金属弹片必须要耐用和稳定。
但是,设计人员在验证和优化金属弹片的过程中,仿真的效果较差效率低,并不能高效模拟金属弹片的实际使用场景。
发明内容
本发明的主要目的是提供一种金属弹片仿真方法和装置,旨在提高模拟金属弹片的实际使用场景的效率。
为实现上述目的,本发明提出的一种金属弹片仿真方法,用于移动终端的金属弹片仿真,所述金属弹片仿真方法包括如下步骤:
接收用户导入的模型数据,所述模型数据包括金属弹片的形状、金属弹片的材料、金属弹片的受压顶点和金属弹片的固定底面;
对所述受压顶点设置装配关系为接触的刚性压块;
对所述金属弹片进行用于有限元计算的网格划分;
对所述固定底面设置约束关系为固定;
对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移;
在所述刚性压块进行第一位移和第二位移的仿真时,通过有限元计算获得所述金属弹片的状态变化过程。
优选的,还包括如下步骤:
在获得所述金属弹片的状态变化过程时,将所述状态变化过程中的应力结果、变形结果和反应力结果通过图案展示。
优选的,所述“对所述金属弹片进行用于有限元计算的网格划分”的步骤之后还包括步骤:
对所述金属弹片的受压顶点和弯曲处进行网格细化;
接受用户检查网格和修复网格。
优选的,所述“对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移”进一步包括:
对所述刚性压块设置朝向所述固定底面的第一位移,过程时间为1s;
对所述刚性压块设置恢复原位的第二位移,过程时间为1s。
优选的,所述第一位移的行程为0.6mm~0.7mm。
本发明提供的一种金属弹片仿真装置,用于移动终端的金属弹片仿真,所述金属弹片仿真装置包括:
接收模块,用于接收用户导入的模型数据,所述模型数据包括金属弹片的形状、金属弹片的材料、金属弹片的受压顶点和金属弹片的固定底面;
压块模块,用于对所述受压顶点设置装配关系为接触的刚性压块;
网格模块,用于对所述金属弹片进行用于有限元计算的网格划分;
约束模块,用于对所述固定底面设置约束关系为固定;
位移模块,用于对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移;
计算模块,用于在所述刚性压块进行第一位移和第二位移的仿真时,通过有限元计算获得所述金属弹片的状态变化过程。
优选的,金属弹片仿真装置还包括:
图形模块,用于在获得所述金属弹片的状态变化过程时,将所述状态变化过程中的应力结果、变形结果和反应力结果通过图案展示。
优选的,金属弹片仿真装置还包括:
网格细化模块,用于在所述网格模块对所述金属弹片进行用于有限元计算的网格划分的步骤之后,对所述金属弹片的受压顶点和弯曲处进行网格细化;
检查网格模块,用于接受用户检查网格和修复网格。
优选的,所述位移模块进一步包括:
第一位移单元,用于对所述刚性压块设置朝向所述固定底面的第一位移,过程时间为1s;
第二位移单元,用于对所述刚性压块设置恢复原位的第二位移,过程时间为1s。
优选的,所述第一位移的行程为0.6mm~0.7mm。
本发明所提供的金属弹片仿真方法和装置,通过对金属弹片的固定底面进行约束,并在其受压顶点施加刚性压力,并且调入金属弹片的材料属性,通过有限元方法计算金属弹片在受压和回弹的过程,从而获得金属弹片的相关性能,进而达到高效模拟金属弹片的工作状态的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明金属弹片仿真方法第一实施例的流程图;
图2为本发明金属弹片仿真方法第二实施例的流程图;
图3为本发明金属弹片仿真方法第三实施例的流程图;
图4为本发明金属弹片仿真方法第四实施例的流程图;
图5为本发明金属弹片仿真装置一实施例的流程图;
图6为图5所示的位移模块的模块示意图;
图7为金属弹片仿真一实施的金属弹片最大行程时的等效应力图;
图8为金属弹片仿真一实施的金属弹片回弹后的Z轴变形图;
图9为金属弹片仿真一实施的金属弹片回弹后的塑性变形图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参看图1,本发明金属弹片仿真方法第一实施例,用于移动终端的金属弹片仿真,所述金属弹片仿真方法包括如下步骤:
步骤S100,接收用户导入的模型数据,所述模型数据包括金属弹片的形状、金属弹片的材料、金属弹片的受压顶点和金属弹片的固定底面。用于制作金属弹片的材料经常会使用,可以储存自定义材料,方便用户直接调用该自定义材料属性。
步骤S200,对所述受压顶点设置装配关系为接触的刚性压块;其中,接触的装配关系,代表两者可以相互摩擦移动。
步骤S300,对所述金属弹片进行用于有限元计算的网格划分;网格的划分能够用于供有限元方法进行计算,通常网格划分为三角形或四边形。
步骤S400,对所述固定底面设置约束关系为固定;固定,则代表固定底面为无法移动的理想条件。
步骤S500,对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移;本实施例通过设置两个位移,则可以一次性获得金属弹片在最大行程和回弹后两种工况下的相关性能。第一位移和第二位移,可以通过设置刚性压块的三个位置来实现,如后文中通过ansys软件的例子所述。
步骤S600,在所述刚性压块进行第一位移和第二位移的仿真时,通过有限元计算获得所述金属弹片的状态变化过程。
本实施例,通过对金属弹片的固定底面进行约束,并在其受压顶点施加刚性压力,并且调入金属弹片的材料属性,通过有限元方法计算金属弹片在受压和回弹的过程,从而获得金属弹片的相关性能,进而达到高效模拟金属弹片的工作状态的效果。
请参看图2,本发明金属弹片仿真方法第二实施例,在第一实施例的基础上,还包括如下步骤:
在步骤S600获得所述金属弹片的状态变化过程时;
步骤S700,将所述状态变化过程中的应力结果、变形结果和反应力结果通过图案展示。具体请参看图7、图8和图9,依次为金属弹片最大行程时的等效应力图,金属弹片回弹后的Z轴(顶底方向)变形图,金属弹片回弹后的塑性变形图。通过这三种分析,基本可以确定金属弹片的性能是否合格。
请参看图3,本发明金属弹片仿真方法第三实施例,在第二实施例的基础上,在所述步骤S300“对所述金属弹片进行用于有限元计算的网格划分”的步骤之后还包括步骤:
步骤S310,对所述金属弹片的受压顶点和弯曲处进行网格细化。由于金属弹片的主要结构处为受压顶点(触点)和弯曲处最为关键,因此对这些地方的网格进行细化,能够获得更精确的仿真效果。
步骤S320,接受用户检查网格和修复网格。在网格细化后,再经过用户的检查,对自动划分的网格进行查看和必要的修正,从而达到更精确的效果。
本实施例,通过对网格进行细化,并且提供用户检查的步骤,从而能够达到进一步提高仿真的精确度的效果。
请参看图4,本发明金属弹片仿真方法第四实施例,在第三实施例的基础上,对步骤S500进行进一步限定。
所述步骤S500“对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移”进一步包括:
对所述刚性压块设置朝向所述固定底面的第一位移,过程时间为1s。
对所述刚性压块设置恢复原位的第二位移,过程时间为1s。
本实施例,通过进一步限定上述位移时间皆为1s,能够达到较好的测试效果。由于实际使用场景中,金属弹片受压的过程时间和恢复原状的过程时间都小于1s,而本实施例采用1s作为测试时间则具有测试条件更严苛的效果。
优选的,所述第一位移的行程为0.6mm~0.7mm。优选的采用0.65mm。
本实施例中,通过设置第一位移为0.6mm,能够获得严苛使用条件的测试数据,从而能够确保在正常使用时的安全余量,进而达到金属弹片的耐用性更好的效果。
本实施例,进一步以现有的一款现有的有限元分析软件为例,来说明本发明的方案。需要说明的是,本实施例中涉及大量人工操作,但这并非限定需要为人工操作,而是基于现有软件条件下的说明。
软件采用WORKBENCH。该模块属于应用ANSYS,具有成熟、操作方便、仿真准确性高的效果。
首先,需要用户准备金属弹片的模型数据,例如通过ProE建模而成,并保存为stp文件。
通过WORKBENCH软件,点击TOOLBOX中的STATIC STRUCTURAL仿真类型,从而启动仿真模块,并将金属弹片的stp文件放入该程序。
通过Engineering Data模块,编辑金属弹片材料属性。添加自定义材料,该自定义材料应当能清楚描述金属弹片的性能。例如添加密度、弹性模量、泊松比、抗拉强度等属性。
通过Geometry(DM)模块,建模获得刚性压块,并摆放至金属弹片的受压顶点。
通过Model模块,设置运动关系和划分网格,其中,修改金属弹片为柔性体,材料选择之前添加的自定义材料;修改刚性压块为刚性体。本仿真中刚体压块和金属弹片属于接触关系Contacts,设置其类型为Rough即可。进一步,通过mesh对金属弹片划分网格;并且通过mesh的子菜单face sizing对受压顶点和弯曲处进行网格细化;然后通过Generate mesh供用户检查和修正网格。
通过Static Structural模块,设置动作、添加约束和载荷。其中,通过AnalysisSettings设置步骤为一步,总时间为2s;通过Remote Displacement设置刚性压块的三个位置,分别为第一位置xyz(0,0,0);第二位置xyz(0,0,-065mm);第三位置xyz(0,0,0);通过fixed support设置金属弹片的固定底面为固定约束。
通过Stress-Equivalent(von-mises)获得应力结果,通过Deformation-Directional获得变形结果,通过Probe-Force Reaction获得反应力结果,依次展示结果如图7、图8和图9。
请参看图5,本发明金属弹片仿真装置一实施例,用于移动终端的金属弹片仿真,所述金属弹片仿真装置包括:
接收模块100,用于接收用户导入的模型数据,所述模型数据包括金属弹片的形状、金属弹片的材料、金属弹片的受压顶点和金属弹片的固定底面;用于制作金属弹片的材料经常会使用,可以储存自定义材料,方便用户直接调用该自定义材料属性。
压块模块200,用于对所述受压顶点设置装配关系为接触的刚性压块;其中,接触的装配关系,代表两者可以相互摩擦移动。
网格模块300,用于对所述金属弹片进行用于有限元计算的网格划分;网格的划分能够用于供有限元方法进行计算,通常网格划分为三角形或四边形。
约束模块400,用于对所述固定底面设置约束关系为固定;固定,则代表固定底面为无法移动的理想条件。
位移模块500,用于对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移;本实施例通过设置两个位移,则可以一次性获得金属弹片在最大行程和回弹后两种工况下的相关性能。第一位移和第二位移,可以通过设置刚性压块的三个位置来实现,如前文中通过ansys软件的例子所述。
计算模块600,用于在所述刚性压块进行第一位移和第二位移的仿真时,通过有限元计算获得所述金属弹片的状态变化过程。
本实施例,通过对金属弹片的固定底面进行约束,并在其受压顶点施加刚性压力,并且调入金属弹片的材料属性,通过有限元方法计算金属弹片在受压和回弹的过程,从而获得金属弹片的相关性能,进而达到高效模拟金属弹片的工作状态的效果。
优选的,金属弹片仿真装置还包括:
图形模块700,用于在获得所述金属弹片的状态变化过程时,将所述状态变化过程中的应力结果、变形结果和反应力结果通过图案展示。具体请参看图7、图8和图9,依次为金属弹片最大行程时的等效应力图,金属弹片回弹后的Z轴(顶底方向)变形图,金属弹片回弹后的塑性变形图。通过这三种分析,基本可以确定金属弹片的性能是否合格。
优选的,金属弹片仿真装置还包括:
网格细化模块800,用于在所述网格模块300对所述金属弹片进行用于有限元计算的网格划分的步骤之后,对所述金属弹片的受压顶点和弯曲处进行网格细化;由于金属弹片的主要结构处为受压顶点(触点)和弯曲处最为关键,因此对这些地方的网格进行细化,能够获得更精确的仿真效果。
检查网格模块900,用于接受用户检查网格和修复网格。在网格细化后,再经过用户的检查,对自动划分的网格进行查看和必要的修正,从而达到更精确的效果。
本实施例,通过对网格进行细化,并且提供用户检查的步骤,从而能够达到进一步提高仿真的精确度的效果。
优选的,所述位移模块500进一步包括:
第一位移单元510,用于对所述刚性压块设置朝向所述固定底面的第一位移,过程时间为1s;第二位移单元520,用于对所述刚性压块设置恢复原位的第二位移,过程时间为1s。
本实施例,通过进一步限定上述位移时间皆为1s,能够达到较好的测试效果。由于实际使用场景中,金属弹片受压的过程时间和恢复原状的过程时间都小于1s,而本实施例采用1s作为测试时间则具有测试条件更严苛的效果。
优选的,所述第一位移的行程为0.6mm~0.7mm。优选的采用0.65mm。
本实施例中,通过设置第一位移为0.6mm,能够获得严苛使用条件的测试数据,从而能够确保在正常使用时的安全余量,进而达到金属弹片的耐用性更好的效果。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是移动终端,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种金属弹片仿真方法,用于移动终端的金属弹片仿真,其特征在于,所述金属弹片仿真方法包括如下步骤:
接收用户导入的模型数据,所述模型数据包括金属弹片的形状、金属弹片的材料、金属弹片的受压顶点和金属弹片的固定底面;
对所述受压顶点设置装配关系为接触的刚性压块;
对所述金属弹片进行用于有限元计算的网格划分;
对所述固定底面设置约束关系为固定;
对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移;
在所述刚性压块进行第一位移和第二位移的仿真时,通过有限元计算获得所述金属弹片的状态变化过程。
2.如权利要求1所述的金属弹片仿真方法,其特征在于,还包括如下步骤:
在获得所述金属弹片的状态变化过程时,将所述状态变化过程中的应力结果、变形结果和反应力结果通过图案展示。
3.如权利要求1所述的金属弹片仿真方法,其特征在于,所述“对所述金属弹片进行用于有限元计算的网格划分”的步骤之后还包括步骤:
对所述金属弹片的受压顶点和弯曲处进行网格细化;
接受用户检查网格和修复网格。
4.如权利要求1至3任一项所述的金属弹片仿真方法,其特征在于,所述“对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移”进一步包括:
对所述刚性压块设置朝向所述固定底面的第一位移,过程时间为1s;
对所述刚性压块设置恢复原位的第二位移,过程时间为1s。
5.如权利要求4所述的金属弹片仿真方法,其特征在于,所述第一位移的行程为0.6mm~0.7mm。
6.一种金属弹片仿真装置,用于移动终端的金属弹片仿真,其特征在于,所述金属弹片仿真装置包括:
接收模块,用于接收用户导入的模型数据,所述模型数据包括金属弹片的形状、金属弹片的材料、金属弹片的受压顶点和金属弹片的固定底面;
压块模块,用于对所述受压顶点设置装配关系为接触的刚性压块;
网格模块,用于对所述金属弹片进行用于有限元计算的网格划分;
约束模块,用于对所述固定底面设置约束关系为固定;
位移模块,用于对所述刚性压块设置朝向所述固定底面的第一位移,以及设置恢复原位的第二位移;
计算模块,用于在所述刚性压块进行第一位移和第二位移的仿真时,通过有限元计算获得所述金属弹片的状态变化过程。
7.如权利要求6所述的金属弹片仿真装置,其特征在于,还包括:
图形模块,用于在获得所述金属弹片的状态变化过程时,将所述状态变化过程中的应力结果、变形结果和反应力结果通过图案展示。
8.如权利要求6所述的金属弹片仿真装置,其特征在于,还包括:
网格细化模块,用于在所述网格模块对所述金属弹片进行用于有限元计算的网格划分的步骤之后,对所述金属弹片的受压顶点和弯曲处进行网格细化;
检查网格模块,用于接受用户检查网格和修复网格。
9.如权利要求6至8任一项所述的金属弹片仿真装置,其特征在于,所述位移模块进一步包括:
第一位移单元,用于对所述刚性压块设置朝向所述固定底面的第一位移,过程时间为1s;
第二位移单元,用于对所述刚性压块设置恢复原位的第二位移,过程时间为1s。
10.如权利要求9所述的金属弹片仿真装置,其特征在于,所述第一位移的行程为0.6mm~0.7mm。
CN201610928082.5A 2016-10-31 2016-10-31 金属弹片仿真方法和装置 Active CN106528969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610928082.5A CN106528969B (zh) 2016-10-31 2016-10-31 金属弹片仿真方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610928082.5A CN106528969B (zh) 2016-10-31 2016-10-31 金属弹片仿真方法和装置

Publications (2)

Publication Number Publication Date
CN106528969A true CN106528969A (zh) 2017-03-22
CN106528969B CN106528969B (zh) 2021-06-15

Family

ID=58291656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610928082.5A Active CN106528969B (zh) 2016-10-31 2016-10-31 金属弹片仿真方法和装置

Country Status (1)

Country Link
CN (1) CN106528969B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083873A (zh) * 2019-03-29 2019-08-02 宁波信泰机械有限公司 一种基于cae的型材拉弯的回弹仿真方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148854A (zh) * 2007-10-20 2008-03-26 中铁宝桥股份有限公司 外楔形调整新型弹片式扣件
US20090248382A1 (en) * 2008-03-31 2009-10-01 Fujitsu Limited Design support system and design support method
CN201584512U (zh) * 2009-08-21 2010-09-15 信音电子(苏州)有限公司 弹片结构及包含该弹片结构的连接模块
CN102392863A (zh) * 2011-10-20 2012-03-28 上海理工大学 微型振荡器的减振弹簧片结构及设计方法
CN102929465A (zh) * 2012-11-12 2013-02-13 汕头超声显示器(二厂)有限公司 一种电容触控显示组件及其制造方法
US20130071683A1 (en) * 2011-09-21 2013-03-21 Apple Inc. Systems and methods for electroforming domes for use in dome switches
CN103578867A (zh) * 2013-11-14 2014-02-12 贵州振华群英电器有限公司 一种提高接触器振动性能的结构
CN104899400A (zh) * 2015-06-24 2015-09-09 北京石油化工学院 磁悬浮飞轮可重复抱式锁紧装置用弹片的设计方法
CN105697625A (zh) * 2016-02-23 2016-06-22 山东恒日悬架弹簧有限公司 端部非等构的少片抛物线型等应力钢板弹簧的设计方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148854A (zh) * 2007-10-20 2008-03-26 中铁宝桥股份有限公司 外楔形调整新型弹片式扣件
US20090248382A1 (en) * 2008-03-31 2009-10-01 Fujitsu Limited Design support system and design support method
CN201584512U (zh) * 2009-08-21 2010-09-15 信音电子(苏州)有限公司 弹片结构及包含该弹片结构的连接模块
US20130071683A1 (en) * 2011-09-21 2013-03-21 Apple Inc. Systems and methods for electroforming domes for use in dome switches
CN102392863A (zh) * 2011-10-20 2012-03-28 上海理工大学 微型振荡器的减振弹簧片结构及设计方法
CN102929465A (zh) * 2012-11-12 2013-02-13 汕头超声显示器(二厂)有限公司 一种电容触控显示组件及其制造方法
CN103578867A (zh) * 2013-11-14 2014-02-12 贵州振华群英电器有限公司 一种提高接触器振动性能的结构
CN104899400A (zh) * 2015-06-24 2015-09-09 北京石油化工学院 磁悬浮飞轮可重复抱式锁紧装置用弹片的设计方法
CN105697625A (zh) * 2016-02-23 2016-06-22 山东恒日悬架弹簧有限公司 端部非等构的少片抛物线型等应力钢板弹簧的设计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FATIMA LINA AYATOLLAHI等: "Design and Modeling of Micromachined Condenser MEMS Loudspeaker using Permanent Magnet Neodymium-Iron-Boron (Nd-Fe-B)", 《IEEE XPLORE》 *
张小良等: "有限元方法在波形弹片设计中的研究与应用", 《工程设计学报》 *
苏来军: "USB3.0连接器的高机械寿命性能研究及实现", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083873A (zh) * 2019-03-29 2019-08-02 宁波信泰机械有限公司 一种基于cae的型材拉弯的回弹仿真方法

Also Published As

Publication number Publication date
CN106528969B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
CN111338300B (zh) 生产线基于数字孪生的物理仿真方法及其系统
CN105740504B (zh) 一种乘用车气瓶安装强度的建模方法、计算方法及装置
CN106843137A (zh) 汽车制造冲压生产线虚拟调试方法
CN110516365A (zh) 一种测试螺栓连接刚度的方法
CN106897527A (zh) 一种车辆悬架台架耐久载荷分析方法及装置
CN109684663B (zh) 铁路货车车体焊缝疲劳寿命的评估方法及装置、系统
CN102810127A (zh) 航天器虚拟振动试验系统
CN115826438A (zh) 一种基于数字孪生的工业仿真方法及系统
CN103942091A (zh) Matlab自定义模型和psasp联合仿真的励磁系统仿真方法及系统
CN102799728B (zh) 板簧动力学仿真模型的制作方法
CN113868120A (zh) 工业软件调试方法、装置、计算机设备和存储介质
US7539900B1 (en) Embedded microprocessor for integrated circuit testing and debugging
CN106528969A (zh) 金属弹片仿真方法和装置
CN114818410A (zh) 一种对接实体焊缝疲劳强度的仿真方法
CN112395685B (zh) 一种适用于增材制造的拓扑优化自行车组件设计方法
CN109388833B (zh) 一种基于疲劳寿命的弹性元件结构优化设计方法
CN111832114B (zh) 一种提高汽车制动尖叫仿真与试验匹配度的方法
CN117235926A (zh) 减速机壳体合箱多螺栓仿真分析建模方法
CN102411656A (zh) 一种模拟接触的有限元建模方法
CN109614748A (zh) 结合测试与仿真技术提升机床动态特性的结构优化方法
CN109033726A (zh) 基于有限元法的底盘悬挂系统的强度及台架耐久分析方法
CN110287507A (zh) 一种应用于恒压变量液压柱塞泵疲劳寿命分析方法
CN110348141A (zh) 一种航空发动机外部管路系统快速振动分析的方法
CN115422649A (zh) 吊挂结构的腐蚀疲劳寿命预测方法及相关设备
CN107367657A (zh) 一种配网自动化系统集成测试方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant