CN106526606B - 基于仿生复眼的双路机敏量子点激光空间轨迹探测系统 - Google Patents

基于仿生复眼的双路机敏量子点激光空间轨迹探测系统 Download PDF

Info

Publication number
CN106526606B
CN106526606B CN201610893806.7A CN201610893806A CN106526606B CN 106526606 B CN106526606 B CN 106526606B CN 201610893806 A CN201610893806 A CN 201610893806A CN 106526606 B CN106526606 B CN 106526606B
Authority
CN
China
Prior art keywords
compound eye
eye
axis
ommatidium
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610893806.7A
Other languages
English (en)
Other versions
CN106526606A (zh
Inventor
万雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201610893806.7A priority Critical patent/CN106526606B/zh
Publication of CN106526606A publication Critical patent/CN106526606A/zh
Application granted granted Critical
Publication of CN106526606B publication Critical patent/CN106526606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于双路机敏量子点复眼结构的飞行目标检测系统,该系统由主控制器、连杆、左眼三轴旋转器、右眼三轴旋转器及左右两只复眼组成。左右复眼结构完全一致,主要由复眼电路系统及多个结构相同的小眼单元组成。本发明的有益效果是,在复眼内部同时构建与各小眼通道相匹配的主动量子点激光发射源及回波探测单元,通过对波长及强度的选择,使复眼能适应不同的环境;同时,通过双复眼三轴连续扫描探测的方式,解决空间目标精细跟踪精度问题,本发明的系统与方法较之传统的探测系统更适合飞行目标的三维轨迹探测。

Description

基于仿生复眼的双路机敏量子点激光空间轨迹探测系统
技术领域
本发明涉及一种飞行目标空间轨迹检测系统,尤其涉及一种基于复眼仿生光学的双路机敏量子点激光动目标三维轨迹检测系统。
背景技术
人工复眼(ACE)是一种模拟自然界昆虫复眼结构的光学系统,其将目前广泛使用的单孔径光学系统用多孔径光学系统所代替,从而达到使整个系统小型化、轻量化、以及视场增大的目的。近年来国外研究人员已成功制作了各种不同结构及用途的人工复眼系统。如美国伯克利加州大学Luke P.Lee等采用高分子微透镜、高分子锥管及自排列波导实现了半球型ACE;俄亥俄州立大学L.Li等采用光学微棱镜阵列制成了半球ACE,通过精确计算各小眼微棱镜剖面形状,实现了广视野景物在平面探测器上的成像。
基于ACE系统的优点,其可广泛应用于各种不同的领域。再加之复眼系统大视场的特点,其光电检测的潜在能力在国内外航空等领域都得到了广泛的重视。目前的人工复眼大都属于被动复眼,即被动地接收外部各波段的电磁波信息,然后进行分析处理,易受环境因素的制约,影响探测的信噪比、灵敏度,进而使探测的效果恶化。
在传统的飞行目标探测中,常采用雷达等探测手段,对于目标三维飞行轨迹的探测及描述较为困难,由于主动型人工复眼可在复眼内部构建与各小眼通道相匹配的主动发射源及回波探测单元,通过对波长及强度的选择,使复眼能适应不同的环境,较之传统的雷达系统更适合飞行目标的三维轨迹探测。基于单个复眼的探测系统,由于其各小眼光轴之间夹角恒定,导致在远距离探测时各小眼光轴空间距离较大,难以满足探测需求。
针对该问题,本发明模拟自然界昆虫复眼结构,提出一种基于双路机敏量子点主动复眼的飞行目标检测系统及方法,实现高效、高精度的动目标三维轨迹探测。
发明内容
本发明的目的在于提供一种双路机敏量子点主动复眼系统的飞行目标检测系统,可满足不同环境下空间动目标三维轨迹的探测。
本发明的技术方案是这样来实现的,本发明是在基于双路机敏量子点复眼结构的飞行目标检测系统上实现的,该系统采用左右两个复眼,每个复眼结构相同。该系统由主控制器、连杆、左眼三轴旋转器、右眼三轴旋转器及左右两只复眼组成。其中:
左右两只复眼分别安装在左眼三轴旋转器及右眼三轴旋转器上,连杆用于联接左眼三轴旋转器及右眼三轴旋转器;
主控制器用于对左右两只复眼的复眼控制器发送指令,从而控制左右两只复眼进行激光发射、回波接收;对左眼三轴旋转器、右眼三轴旋转器发送指令,控制两者工作,从而带动两只复眼绕三轴精确旋转;
左右复眼结构完全一致,主要由复眼电路系统及多个结构相同的小眼单元组成。其中每个小眼单元均由量子点激光单元和PIN光电二极管组成;
量子点激光单元由小眼激光发射窗口、外电极、上层P-DBR、上阻断层、有源区、量子点、下阻断层、下层N-DBR、N+型衬底、内电极组成,可实现量子点连续激光发射;
PIN光电二极管由P型半导体层、本征半导体层、N型半导体层、二极管上电极及二极管下电极组成,可实现回波信号接收;
复眼电路系统由复眼控制器、恒流驱动源、矩阵驱动模组及矩阵信号处理模组组成;复眼控制器用于控制恒流驱动源、矩阵驱动模组,并接收矩阵信号处理模组的输出信号;恒流驱动源为各量子点激光单元提供驱动注入电流;矩阵驱动模组由若干数量的驱动电路单元组成;驱动电路单元含有二极管联接引脚,通过二极管引线与各PIN光电二极管的二极管上电极及二极管下电极联连,为各PIN光电二极管提供反向偏置电压;驱动电路单元还含有信号输出引脚,通过信号引线与矩阵信号处理模组联连,将PIN光电二极管的传感电压信号交给矩阵信号处理模组分析处理;
复眼外形为半球形,半球形底部圆形平面为复眼底面,复眼中轴为通过复眼底面圆心的垂直于复眼底面的直线,与半球面相交于一点,即复眼中轴为直线o1o1'(左复眼)和o2o2'(右复眼)。通过复眼中轴作一系列垂直于复眼底面的剖面,即为复眼子午面,小眼单元均位于复眼子午面内,各小眼单元呈等间角排列,即各小眼光轴之间的小眼光轴夹角均为β;各相邻复眼子午面夹角均为α,每个复眼共包含
N=(180°/β-1)×(180°/α)-[(180°/α)-1]
个小眼单元,则这N个小眼单元可根据小眼光轴的空间方位角不同进行编号排序。
左复眼以o1为原点建立左复眼直角坐标系x1y1z1,左眼三轴旋转器带动左复眼以o1为旋转中心绕x1轴、y1轴、z1轴转动;类似地,右复眼以o2为原点建立右复眼直角坐标系x2y2z2,右眼三轴旋转器带动右复眼以o2为旋转中心绕x2轴、y2轴、z2轴转动;
o1o2的距离为L,探测坐标系原点为o1o2的中点o,探测坐标系为xyz。x、x1、x2三轴相互平行;y、y1、y2三轴相互平行;z、z1、z2三轴相互平行;动目标三维轨迹在探测坐标系下描述;
基于双路机敏量子点复眼系统的飞行目标检测方法按以下步骤实现:
(1)激光发射
主控制器给左右两只复眼的复眼控制器发出控制指令,开始工作。复眼控制器收到控制指令后,开启恒流驱动源,使其产生恒定电流输出。该恒定电流由各小眼单元的外电极注入,然后分别经过上层P-DBR、上阻断层、有源区、量子点、下阻断层、下层N-DBR、N+型衬底,然后经内电极流出。上层P-DBR与下层N-DBR提供沿小眼光轴方向的受激辐射的高反射,形成激光谐振腔。上阻断层与下阻断层提供电光限制,降低阈值电流。当恒流驱动源提供的注入电流大于阈值电流时,有源区中的量子点的受激辐射在激光谐振腔中经过多次反射将产生光放大,最终满足激光出射的条件,沿小眼光轴方向发射出波长为λ的连续激光,并经小眼激光发射窗口发射出去。注入电流均匀地流入N个量子点小眼激光单元,由于这N个量子点小眼激光单元具有相同的几何结构与物质分布,因此其发出的激光具有相同的波长特性,每个复眼最终得到N束分别沿各小眼光轴方向,由小眼激光发射窗口发出的波长为λ的连续激光。
(2)粗跟踪
左右两个复眼共2N束波长为λ的连续激光沿各小眼光轴方向发射,当探测的空间区域没有目标时,这些激光束没有回波产生;反之,当探测的空间区域存在动目标时,左复眼某个小眼单元发射的连续激光遇到动目标时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元的小眼激光发射窗口后的PIN光电二极管接收,从而产生传感电压信号交给矩阵信号处理模组分析处理;矩阵信号处理模组接收到该电压信号后,判定产生该信号小眼单元的序号,并将其小眼光轴对应的空间方位角A10、B10、C10通过左复眼的复眼控制器送给主控制器;类似地,右复眼某个小眼单元发射的连续激光遇到动目标时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元的小眼激光发射窗口后的PIN光电二极管接收,从而产生传感电压信号交给矩阵信号处理模组分析处理;矩阵信号处理模组接收到该电压信号后,判定产生该信号小眼单元的序号,并将其小眼光轴对应的空间方位角A20、B20、C20通过右复眼的复眼控制器送给主控制器;
(3)初始定位
动目标在左复眼直角坐标系x1y1z1下的初始位置矢量为在右复眼直角坐标系x2y2z2下的初始位置矢量为在探测坐标系xyz下的初始位置矢量为根据空间几何约束关系
可得到初始位置矢量根据下列矢量关系
可得初始位置矢量
(4)精细跟踪
由于各小眼光轴之间的小眼光轴夹角(即为β),以及各相邻复眼子午面夹角α相对较大,在远距离探测时,只有当动目标飞行了较长距离后才会被复眼中相邻近的小眼探测到,因此无法精细跟踪。本发明基于双路机敏量子点复眼系统的飞行目标检测系统采用左眼三轴旋转器、右眼三轴旋转器在主控制器控制下的精细转动,模拟了自然界昆虫双复眼转动观察的机制,可解决动目标的精细跟踪问题。
在完成了第三步初始定位之后,主控制器发出控制指令给左眼三轴旋转器、右眼三轴旋转器进行旋转扫描模式,主控制器内部的计时器同时开始计时,即实时记录时间参数t。即左复眼每个小眼光轴所对应的空间方位角按下式变化
类似地,右复眼每个小眼光轴所对应的空间方位角按下式变化
以上式子中,t代表时间,k为扫描速率。
(5)空间轨迹描述
在精细跟踪模式下,按时间间隔△t进行空间轨迹探测采样,即有t=M△t,式中,M为正整数。
左右两个复眼沿各扫描的小眼光轴方向发射共2N束波长为λ的连续激光,并按时间间隔△t进行回波采样;在任一采样时刻t=M△t,左复眼某个小眼单元发射的连续激光遇到动目标时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元的小眼激光发射窗口后的PIN光电二极管接收,从而产生传感电压信号交给矩阵信号处理模组分析处理;矩阵信号处理模组接收到该电压信号后,判定产生该信号小眼单元的序号,按下式计算其小眼光轴对应的空间方位角
并将A1(t)、B1(t)、C1(t)通过左复眼的复眼控制器送给主控制器;
类似地,该时刻,右复眼某个小眼单元发射的连续激光遇到动目标时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元的小眼激光发射窗口后的PIN光电二极管接收,从而产生传感电压信号交给矩阵信号处理模组分析处理;矩阵信号处理模组接收到该电压信号后,判定产生该信号小眼单元的序号,按下式计算其小眼光轴对应的空间方位角
并将A2(t)、B2(t)、C2(t)通过左复眼的复眼控制器送给主控制器;
动目标在t=M△t时刻下,左复眼直角坐标系x1y1z1下的位置矢量为在右复眼直角坐标系x2y2z2下的位置矢量为在探测坐标系xyz下的位置矢量为根据空间几何约束关系
可得到位置矢量根据下列矢量关系
可得位置矢量最终通过不同时刻的位置矢量可描述动目标的空间三维轨迹,并通过对时间t求一阶导数及二阶导数可得速度矢量和加速度矢量
本发明的有益效果是,在复眼内部同时构建与各小眼通道相匹配的主动量子点激光发射源及回波探测单元,通过对波长及强度的选择,使复眼能适应不同的环境;同时,通过双复眼三轴连续扫描探测的方式,解决空间目标精细跟踪精度问题,本发明的系统与方法较之传统的探测系统更适合飞行目标的三维轨迹探测。
附图说明
图1-3为本发明的原理图,图中:1——复眼控制器;2——恒流驱动源;3——复眼底面;4——小眼光轴;5——外电极;6——小眼激光发射窗口;7——上层P-DBR(注:空穴掺杂型分布式布喇格反射器);8——上阻断层;9——有源区;10——量子点;11——复眼中轴;12——下阻断层;13——下层N-DBR(注:电子掺杂型分布式布喇格反射器);14——N+型衬底(注:高浓度电子掺杂半导体);15——内电极;16——小眼光轴夹角;17——小眼单元;18——复眼子午面;19——子午面夹角;20——N型半导体层(注:电子掺杂型);21——本征半导体层;22——P型半导体层(注:空穴掺杂型);23——PIN光电二极管(注:即由P型、本征、N型半导体三层构成的光电二极管);24——二极管下电极;25——二极管上电极;26——矩阵驱动模组;27——驱动电路单元;28——矩阵信号处理模组;29——二极管引线;30——二极管联接引脚;31——信号输出引脚;32——信号引线;33——复眼电路系统;34——探测坐标系原点;35——主控制器;36——左眼三轴旋转器;37——右眼三轴旋转器;38——动目标;39——连杆。
具体实施方式
本发明提出的基于双路机敏量子点复眼结构的飞行目标检测系统采用左右两个复眼,每个复眼结构相同,如图1(子午面视图)及图2(俯视图)所示;检测系统如图3所示。
该系统由主控制器35、连杆39、左眼三轴旋转器36、右眼三轴旋转器37及左右两只复眼组成。其中:
左右两只复眼分别安装在左眼三轴旋转器36及右眼三轴旋转器37上,连杆39用于联接左眼三轴旋转器36及右眼三轴旋转器37;
主控制器35用于对左右两只复眼的复眼控制器1发送指令,从而控制左右两只复眼进行激光发射、回波接收;对左眼三轴旋转器36、右眼三轴旋转器37发送指令,控制两者工作,从而带动两只复眼绕三轴精确旋转;
左右复眼结构完全一致,主要由复眼电路系统33及多个结构相同的小眼单元17组成。其中每个小眼单元17均由量子点激光单元和PIN光电二极管23组成;
量子点激光单元由小眼激光发射窗口6、外电极5、上层P-DBR7、上阻断层8、有源区9、量子点10、下阻断层12、下层N-DBR13、N+型衬底14、内电极15组成,可实现量子点连续激光发射,在本实施例中所有的衬底材料均为砷化镓(GaAs);
PIN光电二极管23由P型半导体层22、本征半导体层21、N型半导体层20、二极管上电极25及二极管下电极24组成,可实现回波信号接收;
复眼电路系统33由复眼控制器1、恒流驱动源2、矩阵驱动模组26及矩阵信号处理模组28组成;复眼控制器1用于控制恒流驱动源2、矩阵驱动模组26,并接收矩阵信号处理模组28的输出信号;恒流驱动源2为各量子点激光单元提供驱动注入电流;矩阵驱动模组26由若干数量的驱动电路单元27组成;驱动电路单元27含有二极管联接引脚30,通过二极管引线29与各PIN光电二极管23的二极管上电极25及二极管下电极24联连,为各PIN光电二极管23提供反向偏置电压;驱动电路单元27还含有信号输出引脚31,通过信号引线32与矩阵信号处理模组28联连,将PIN光电二极管23的传感电压信号交给矩阵信号处理模组28分析处理;
复眼外形为半球形,半球形底部圆形平面为复眼底面3,复眼中轴11为通过复眼底面3圆心(注:左右两只复眼底面圆心分别为o1和o2)的垂直于复眼底面3的直线,与半球面相交于一点(注:左复眼该点为o1',右复眼该点为o2'),即复眼中轴11为直线o1o1'(注:左复眼)和o2o2'(注:右复眼)。通过复眼中轴11作一系列垂直于复眼底面3的剖面,即为复眼子午面18,小眼单元17均位于复眼子午面18内,各小眼单元17呈等间角排列,即各小眼光轴4之间的小眼光轴夹角16均为β,在本实施例中β为10°,见图1的子午面视图;各相邻复眼子午面18夹角均为α,在本实施例中α为18°,每个复眼共包含
N=(180°/β-1)×(180°/α)-[(180°/α)-1]
个小眼单元17(在本实施例中N=161),则这N个小眼单元17可根据小眼光轴4的空间方位角不同进行编号排序,见图2的俯视图。
左复眼以o1为原点建立左复眼直角坐标系x1y1z1,左眼三轴旋转器36带动左复眼以o1为旋转中心绕x1轴、y1轴、z1轴转动;类似地,右复眼以o2为原点建立右复眼直角坐标系x2y2z2,右眼三轴旋转器37带动右复眼以o2为旋转中心绕x2轴、y2轴、z2轴转动;
o1o2的距离为L,探测坐标系原点34为o1o2的中点o,探测坐标系为xyz。x、x1、x2三轴相互平行;y、y1、y2三轴相互平行;z、z1、z2三轴相互平行;动目标38三维轨迹在探测坐标系下描述;
基于双路机敏量子点复眼结构的飞行目标检测方法按以下步骤实现:
(1)激光发射
主控制器35给左右两只复眼的复眼控制器1发出控制指令,开始工作。复眼控制器1收到控制指令后,开启恒流驱动源2,使其产生恒定电流输出。该恒定电流由各小眼单元17的外电极5注入,然后分别经过上层P-DBR7、上阻断层8、有源区9、量子点10、下阻断层12、下层N-DBR13、N+型衬底14,然后经内电极15流出。上层P-DBR7与下层N-DBR13提供沿小眼光轴4方向的受激辐射的高反射,形成激光谐振腔。上阻断层8与下阻断层12提供电光限制,降低阈值电流。当恒流驱动源2提供的注入电流大于阈值电流时,有源区9中的量子点10的受激辐射在激光谐振腔中经过多次反射将产生光放大,最终满足激光出射的条件,沿小眼光轴4方向发射出波长为λ的连续激光,并经小眼激光发射窗口6发射出去。注入电流均匀地流入N个量子点小眼激光单元17,由于这N个量子点小眼激光单元17具有相同的几何结构与物质分布,因此其发出的激光具有相同的波长特性,每个复眼最终得到N束分别沿各小眼光轴4方向,由小眼激光发射窗口6发出的波长为λ的连续激光。
(2)粗跟踪
左右两个复眼共2N束波长为λ的连续激光沿各小眼光轴4方向发射,当探测的空间区域没有目标时,这些激光束没有回波产生;反之,当探测的空间区域存在动目标38时,左复眼某个小眼单元17发射的连续激光遇到动目标38时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元17的小眼激光发射窗口6后的PIN光电二极管23接收,从而产生传感电压信号交给矩阵信号处理模组28分析处理;矩阵信号处理模组28接收到该电压信号后,判定产生该信号小眼单元17的序号,并将其小眼光轴4对应的空间方位角A10、B10、C10通过左复眼的复眼控制器1送给主控制器35;类似地,右复眼某个小眼单元17发射的连续激光遇到动目标38时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元17的小眼激光发射窗口6后的PIN光电二极管23接收,从而产生传感电压信号交给矩阵信号处理模组28分析处理;矩阵信号处理模组28接收到该电压信号后,判定产生该信号小眼单元17的序号,并将其小眼光轴4对应的空间方位角A20、B20、C20通过右复眼的复眼控制器1送给主控制器35;
(3)初始定位
动目标38在左复眼直角坐标系x1y1z1下的初始位置矢量为在右复眼直角坐标系x2y2z2下的初始位置矢量为在探测坐标系xyz下的初始位置矢量为根据空间几何约束关系
可得到初始位置矢量根据下列矢量关系
可得初始位置矢量 为x方向单位矢量;。
(4)精细跟踪
由于各小眼光轴4之间的小眼光轴夹角16(即为β),以及各相邻复眼子午面18夹角α相对较大,在远距离探测时,只有当动目标38飞行了较长距离后才会被复眼中相邻近的小眼探测到,因此无法精细跟踪。本发明基于双路机敏量子点复眼系统的飞行目标检测系统采用左眼三轴旋转器36、右眼三轴旋转器37在主控制器35控制下的精细转动,模拟了自然界昆虫双复眼转动观察的机制,可解决动目标38的精细跟踪问题。
在完成了第三步初始定位之后,主控制器35发出控制指令给左眼三轴旋转器36、右眼三轴旋转器37进行旋转扫描模式,主控制器35内部的计时器同时开始计时,即实时记录时间参数t。即左复眼每个小眼光轴4所对应的空间方位角按下式变化
类似地,右复眼每个小眼光轴4所对应的空间方位角按下式变化
以上式子中,t代表时间,k为扫描速率,在本实施例中,k=π/10弧度/秒。
(5)空间轨迹描述
在精细跟踪模式下,按时间间隔△t进行空间轨迹探测采样,即有t=M△t,式中,M为正整数,本实施例中△t=0.1秒。
左右两个复眼沿各扫描的小眼光轴4方向发射共2N束波长为λ的连续激光,并按时间间隔△t进行回波采样;在任一采样时刻t=M△t,左复眼某个小眼单元17发射的连续激光遇到动目标38时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元17的小眼激光发射窗口6后的PIN光电二极管23接收,从而产生传感电压信号交给矩阵信号处理模组28分析处理;矩阵信号处理模组28接收到该电压信号后,判定产生该信号小眼单元17的序号,按下式计算其小眼光轴4对应的空间方位角
并将A1(t)、B1(t)、C1(t)通过左复眼的复眼控制器1送给主控制器35;
类似地,该时刻,右复眼某个小眼单元17发射的连续激光遇到动目标38时将产生反射回波,其回波信号沿原路返回,穿过该小眼单元17的小眼激光发射窗口6后的PIN光电二极管23接收,从而产生传感电压信号交给矩阵信号处理模组28分析处理;矩阵信号处理模组28接收到该电压信号后,判定产生该信号小眼单元17的序号,按下式计算其小眼光轴4对应的空间方位角
并将A2(t)、B2(t)、C2(t)通过左复眼的复眼控制器1送给主控制器35;
动目标38在t=M△t时刻下,左复眼直角坐标系x1y1z1下的位置矢量为在右复眼直角坐标系x2y2z2下的位置矢量为在探测坐标系xyz下的位置矢量为根据空间几何约束关系
可得到位置矢量根据下列矢量关系
可得位置矢量最终通过不同时刻的位置矢量可描述动目标38的空间三维轨迹,并通过对时间t求一阶导数及二阶导数可得速度矢量和加速度矢量

Claims (1)

1.一种基于双路机敏量子点复眼结构的飞行目标检测系统,包括主控制器(35)、连杆(39)、左眼三轴旋转器(36)、右眼三轴旋转器(37)及左右两只复眼,其特征在于:
所述的左右两只复眼结构完全相同,分别安装在左眼三轴旋转器(36)及右眼三轴旋转器(37)上,连杆(39)用于联接左眼三轴旋转器(36)及右眼三轴旋转器(37);左右两只复眼均由复眼电路系统(33)及多个结构相同的小眼单元(17)组成,其中每个小眼单元(17)均由量子点激光单元和PIN光电二极管(23)组成;量子点激光单元由小眼激光发射窗口(6)、外电极(5)、上层P-DBR(7)、上阻断层(8)、有源区(9)、量子点(10)、下阻断层(12)、下层N-DBR(13)、N+型衬底(14)、内电极(15)组成,可实现量子点连续激光发射;PIN光电二极管(23)由P型半导体层(22)、本征半导体层(21)、N型半导体层(20)、二极管上电极(25)及二极管下电极(24)组成,可实现回波信号接收;复眼电路系统(33)由复眼控制器(1)、恒流驱动源(2)、矩阵驱动模组(26)及矩阵信号处理模组(28)组成;复眼控制器(1)用于控制恒流驱动源(2)、矩阵驱动模组(26),并接收矩阵信号处理模组(28)的输出信号;恒流驱动源(2)为各量子点激光单元提供驱动注入电流;矩阵驱动模组(26)由若干数量的驱动电路单元(27)组成;驱动电路单元(27)含有二极管联接引脚(30),通过二极管引线(29)与各PIN光电二极管(23)的二极管上电极(25)及二极管下电极(24)联连,为各PIN光电二极管(23)提供反向偏置电压;驱动电路单元(27)还含有信号输出引脚(31),通过信号引线(32)与矩阵信号处理模组(28)联连,将PIN光电二极管(23)的传感电压信号交给矩阵信号处理模组(28)分析处理;
所述的主控制器(35)用于对左右两只复眼的复眼控制器(1)发送指令,从而控制左右两只复眼进行激光发射、回波接收;对左眼三轴旋转器(36)、右眼三轴旋转器(37)发送指令,控制两者工作,从而带动两只复眼绕三轴精确旋转;
所述的左右两只复眼外形为半球形,半球形底部圆形平面为复眼底面(3),复眼中轴(11)为通过复眼底面(3)圆心的垂直于复眼底面(3)的直线与半球面相交于一点,左右两只复眼底面圆心分别为o1和o2;左复眼点为o1',右复眼点为o2',即复眼中轴(11)为直线o1o1'和o2o2';通过复眼中轴(11)作一系列垂直于复眼底面(3)的剖面,即为复眼子午面(18),小眼单元(17)均位于复眼子午面(18)内,各小眼单元(17)呈等间角排列,即各小眼光轴(4)之间的小眼光轴夹角(16)均为β;各相邻复眼子午面(18)夹角均为α,每个复眼共包含
N=(180°/β-1)×(180°/α)-[(180°/α)-1]
个小眼单元(17),则这N个小眼单元(17)可根据小眼光轴(4)的空间方位角不同进行编号排序;
左复眼以o1为原点建立左复眼直角坐标系x1y1z1,左眼三轴旋转器(36)带动左复眼以o1为旋转中心绕x1轴、y1轴、z1轴转动;类似地,右复眼以o2为原点建立右复眼直角坐标系x2y2z2,右眼三轴旋转器(37)带动右复眼以o2为旋转中心绕x2轴、y2轴、z2轴转动;
o1o2的距离为L,探测坐标系原点(34)为o1o2的中点o,探测坐标系为xyz;x、x1、x2三轴相互平行;y、y1、y2三轴相互平行;z、z1、z2三轴相互平行;动目标(38)三维轨迹在探测坐标系下描述。
CN201610893806.7A 2016-10-13 2016-10-13 基于仿生复眼的双路机敏量子点激光空间轨迹探测系统 Active CN106526606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610893806.7A CN106526606B (zh) 2016-10-13 2016-10-13 基于仿生复眼的双路机敏量子点激光空间轨迹探测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610893806.7A CN106526606B (zh) 2016-10-13 2016-10-13 基于仿生复眼的双路机敏量子点激光空间轨迹探测系统

Publications (2)

Publication Number Publication Date
CN106526606A CN106526606A (zh) 2017-03-22
CN106526606B true CN106526606B (zh) 2019-01-01

Family

ID=58331929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610893806.7A Active CN106526606B (zh) 2016-10-13 2016-10-13 基于仿生复眼的双路机敏量子点激光空间轨迹探测系统

Country Status (1)

Country Link
CN (1) CN106526606B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063759B (zh) * 2021-03-15 2023-05-05 国科大杭州高等研究院 基于半球空间类复眼结构的体细胞激光诱导荧光探测方法
CN113063762B (zh) * 2021-03-15 2023-05-05 国科大杭州高等研究院 半球空间类复眼体细胞激光诱导荧光探测仪
CN113671510B (zh) * 2021-07-16 2023-04-28 中国空气动力研究与发展中心高速空气动力研究所 一种基于氧气吸收的飞行器轨迹红外探测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317718A (zh) * 2000-04-10 2001-10-17 廖洪恩 立体全像技术
CN101975554A (zh) * 2010-09-29 2011-02-16 北京工业大学 一种非破坏性面发射半导体激光器电流限制孔径测定方法
CN102801107A (zh) * 2012-08-08 2012-11-28 中国科学院长春光学精密机械与物理研究所 一种垂直腔面发射激光器及其制作方法
CN103676036A (zh) * 2013-12-17 2014-03-26 北京理工大学 基于多微面光纤面板的多视场仿生复眼微光成像系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060236721A1 (en) * 2005-04-20 2006-10-26 United States Of America As Represented By The Dept Of The Army Method of manufacture for a compound eye
US10281551B2 (en) * 2015-03-30 2019-05-07 Luminit Llc Compound eye laser tracking device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317718A (zh) * 2000-04-10 2001-10-17 廖洪恩 立体全像技术
CN101975554A (zh) * 2010-09-29 2011-02-16 北京工业大学 一种非破坏性面发射半导体激光器电流限制孔径测定方法
CN102801107A (zh) * 2012-08-08 2012-11-28 中国科学院长春光学精密机械与物理研究所 一种垂直腔面发射激光器及其制作方法
CN103676036A (zh) * 2013-12-17 2014-03-26 北京理工大学 基于多微面光纤面板的多视场仿生复眼微光成像系统

Also Published As

Publication number Publication date
CN106526606A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
US20220334229A1 (en) Multi-beam laser scanner
CN106443699B (zh) 一种多组合式激光雷达装置及相应的扫描方法
CN106526606B (zh) 基于仿生复眼的双路机敏量子点激光空间轨迹探测系统
CN109917408A (zh) 激光雷达的回波处理方法、测距方法及激光雷达
CN107703517B (zh) 机载多光束光学相控阵激光三维成像雷达系统
CN103558604B (zh) 飞行时间原理的调制型漫反射表面反射成像方法与系统
CN103487803B (zh) 迭代压缩模式下机载扫描雷达成像方法
CN108291968A (zh) 具有目标视场的三维lidar系统
CN107966989A (zh) 一种机器人自主导航系统
CN110133618A (zh) 激光雷达及探测方法
CN111308443B (zh) 一种激光雷达
CN110095782A (zh) 多线激光测距雷达
CN106501802A (zh) 高分辨率多维协同昆虫迁飞雷达测量仪
CN108375762A (zh) 激光雷达及其工作方法
CN108445498A (zh) 一种激光周向非扫描目标探测装置
CN206132984U (zh) 一种微型激光雷达系统
CN109856645A (zh) 基于混沌调制vcsel阵列的无人驾驶激光雷达装置
CN109856644A (zh) 用于无人驾驶汽车的高探测效率vcsel阵列混沌激光雷达装置
CN109581323A (zh) 一种微机电激光雷达系统
CN110161280A (zh) 混合探测多普勒激光雷达风速测量系统及其测量方法
CN111239760A (zh) 基于融合传感器的多视场目标环境信息采集装置和方法
CN106546994B (zh) 基于双路机敏量子点复眼系统的飞行目标检测方法
CN115935719A (zh) 一种空中目标光子计数激光雷达探测仿真的方法和系统
CN115657045A (zh) 基于方位信息多被动探测平台水下航行器数据的融合方法
CN105785318A (zh) 基于飞行时间分布式光脉冲探测的室内定位系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant