CN106525737A - 多气体并行痕量检测火灾预警装置及方法 - Google Patents

多气体并行痕量检测火灾预警装置及方法 Download PDF

Info

Publication number
CN106525737A
CN106525737A CN201610908348.XA CN201610908348A CN106525737A CN 106525737 A CN106525737 A CN 106525737A CN 201610908348 A CN201610908348 A CN 201610908348A CN 106525737 A CN106525737 A CN 106525737A
Authority
CN
China
Prior art keywords
light
module
detection
gas
electron process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610908348.XA
Other languages
English (en)
Other versions
CN106525737B (zh
Inventor
李晓琼
韩杰
冷坤
周永康
樊云龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201610908348.XA priority Critical patent/CN106525737B/zh
Publication of CN106525737A publication Critical patent/CN106525737A/zh
Application granted granted Critical
Publication of CN106525737B publication Critical patent/CN106525737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于气体分析检测技术领域,特别涉及火情预警。多气体并行痕量检测火灾预警装置,其技术方案是:气室、电源模块以及电子处理模块均安装在隔热舱内。激发光模块安装在气室的进气口附近,光传感模块安装在气室的出气口附近,环境气体由电子处理模块驱动进气泵引入气室,一部分对应气体吸收波段的激发光能量被气室中的气体吸收,反映到光传感模块红外传感器响应电压上,电子处理模块计算得到对应气体的浓度;本发明以痕量气体检测达到火情早期预警,可以对大规模电子设备机房中起到火灾预警作用;与现有技术相比,本发明提供了基于辅助光与校准光的长时校准手段,以多光源与探测器组合对检测误差进行校正,通过相敏检波进一步降低检测误差。

Description

多气体并行痕量检测火灾预警装置及方法
技术领域
本发明属于气体分析检测技术领域,特别涉及火情预警。
背景技术
随着人们对信息服务需要越来越丰富,电子设备密集的场所越来越多。从固定的服务器机房到云服务中心再到移动的电子设备车船载体等,都聚集了大量的电子设备。此类密集设备间发生火灾将产生巨大的财产损失,因此需要大量可靠的火灾检测装置。火灾发生过程大致可以分为痕量气体释放、温度急剧上升并产生火苗、产生烟雾、火情蔓延等几个过程,越早发现火情的可能性越有利于防止火灾发生。目前火灾检测方法仅涵盖痕量气体释放后续的过程,在方法上采用烟雾检测与温度检测方式:烟雾检测方式决定了此类设备报警时火情已经发生,只能达到报警作用无法达到提前预警的效果;温度检测方式虽然一定程度上能起到预防作用,但是单点式温度检测方式布线困难,成像式温度检测方式价格昂贵。
发明内容
本发明的目的是:提供一种具有长时自动校准、具有温度稳定性和多痕量气体检测能力的火情预警装置及方法。
本发明的一个技术方案是:多气体并行痕量检测火灾预警装置,它包括:气室、隔热舱、电源模块、进气泵、控温组件、激发光模块、光传感模块以及电子处理模块;
气室内通道为S型,在通道各转角处设置镀膜反射镜;在气室内通道的起始端和末尾端分别设有进气口、出气口;进气口处安装有滤膜;出气口处设有恒压单向膜;
控温组件安装在气室外壁,在电子处理模块的控制下,对气室进行温控;
进气泵与气室连接,其在电子处理模块的控制下吸入检测气体并送至气室内;
激发光模块安装在气室的进气口附近,由2N+1个LED组成,包括:N个检测光、N个辅助光以及一个校准光,每个检测光对应一种痕量气体的吸收峰值波段,辅助光分别选在不同痕量气体吸收峰的临近波段,并与N个检测光一一对应;检测光与辅助光的半波带宽在200nm-500nm内;校准光为宽波段光源;激发光模块由电子处理模块驱动;
光传感模块安装在气室的出气口附近,由N个安装窄带滤色片的红外传感器组成,用于探测N个独立的不同红外波段的光;
电子处理模块与光传感模块连接,电子处理模块根据红外传感器接收到的不同激发光得到对应的电压响应,通过校准波段光与辅助波段光的电压响应得到红外传感器的时间漂移,通过检测波段光的响应电压变化计算出对应吸收波段下的痕量气体浓度;当痕量气体浓度超出设定阈值时,电子处理模块启动报警;
电源模块通过电子处理模块向进气泵、控温组件、激发光模块、光传感模块提供电力;
气室、电源模块以及电子处理模块均安装在隔热舱内。
本发明的另一个技术方案是:多气体并行痕量检测火灾预警方法,它基于如上所述的多气体并行痕量检测火灾预警装置,包括以下步骤:
步骤一:控温组件在电子处理模块的控制下,对气室进行温控;电子处理模块驱动进气泵将环境气体引入气室;
步骤二:电子处理模块驱动中的校准光;
步骤三:光传感模块中的一个红外传感器输出校准波段光下的响应电压,由电子处理模块以数字相敏检波方法解调出校准光响应电压;
步骤四:电子处理模块驱动激发光模块中的一个辅助光;
步骤五:光传感模块中相对应的红外传感器采集辅助波段光下的响应电压,由电子处理模块以数字相敏检波方法解调出辅助光响应电压;
步骤六:电子处理模块驱动激发光模块中与步骤四中的辅助光相对应的检测光;
步骤七:光传感模块中相对应的红外传感器采集检测波段光下的响应电压,由电子处理模块以数字相敏检波解调出检测光响应电压;
步骤八:电子处理模块通过光传感模块中红外传感器采集的校准光响应电压、辅助光响应电压、检检测光响应电压去除漂移带来的影响,得出该红外传感器对应波段的痕量气体的吸收衰减量,计算得出对应痕量气体的浓度;浓度计算以朗博比尔定律为依据,并考虑光源的聚光效率与气室表面光反射效率、探测器长时偏移与噪声特性;
步骤九:重复步骤二到步骤八,依次对其余辅助光、检测光进行驱动,得出N种痕量气体含含量;
步骤十:电子处理模块得到的N种痕量气体含含量浓度后,通过模糊识别的方法对火情的可能性进行推算,得出火情预判概率,概率超过设定的阈值时启动警报。
有益效果:现有研究已经表明CO、HCL、HCN的气体含量与火灾发生有直接联系,火灾前上述气体含量有所上升,然而其变化量仍然处于痕量级别,本发明通过在火灾前对环境中的上述气体进行检测,从而进行火警预判,具有高灵敏度低时间漂移可有效判断是否可能存在火情,可以对大规模电子设备机房起到火灾预警作用;与现有技术相比,本发明提供了基于辅助光与校准光的长时校准手段,以多光源与探测器组合对检测误差进行校正,通过相敏检波进一步降低检测误差。
附图说明
图1为本发明的结构示意图;
图2为本发明中气室结构图;
图3为本发明的三维结构示意图;
图4为本发明实施例中激发光源波段分布示意图。
具体实施方式
实施例1、2,参见附图,多气体并行痕量检测火灾预警装置,它包括:气室1、隔热舱8、电源模块5、进气泵6、控温组件9、激发光模块2、光传感模块3以及电子处理模块4;
气室1内的通气道为S型,在通气道各转角处设置有用于反射光源的镀膜反射镜7;气室1内表面镀金,以保证有足够的反射率;在气室1内通气道的起始端和末尾端分别设有进气口10、出气口11;进气口10处安装有用于滤除气体杂质的滤膜;出气口11处设有用于稳定气室1内压力恒定的恒压单向膜;
控温组件9安装在气室1外壁,用于对气室1进行温控,其使用铂热电阻测温,并在电子处理模块4的控制下,利用半导体加热制冷部件完成温控;
进气泵6与气室1的进气口10连通,其在电子处理模块4的控制下吸入检测气体并送至气室1内;
激发光模块2安装在气室1的进气口10附近,由2N+1个LED组成,包括:N个检测光、N个辅助光以及一个校准光,每个检测光对应一种痕量气体的吸收峰值波段,辅助光分别选在不同痕量气体吸收峰的临近波段;参见附图4,本例中,N=4,LED以3乘3阵列形成存在,检测光分别为图中的T1、T3、T5、T7,辅助光分别为T2、T4、T6、T8,校准光为T9;检测光T1与辅助光T2为一气体检测组,检测光T3与辅助光T4为另一气体检测组,依次类推;检测光与辅助光的半波带宽在200nm-500nm内;校准光为宽波段光源;激发光模块2由电子处理模块4驱动;
光传感模块3安装在气室1的出气口11附近,由N个安装窄带滤色片的红外传感器组成,可探测N个独立的不同红外波段的光;本例中,与所述激发光模块2相对应,红外传感器的数量为4个,分别与某一痕量气体检测组相对应,可探测4个独立的不同红外波段的光;
电子处理模块4与光传感模块3连接,电子处理模块4根据红外传感器接收到的不同激发光得到对应的电压响应,通过校准波段光与辅助波段光的电压响应得到红外传感器的时间漂移,通过检测波段光的响应电压变化计算出对应吸收波段下的气体浓度;当气体浓度超出设定阈值时,电子处理模块4启动报警;
电源模块5通过电子处理模块4向进气泵6、控温组件9、激发光模块2、光传感模块3提供电力;
气室1、电源模块5以及电子处理模块4均安装在隔热舱8内。
优选的,进气泵6选用微型无刷隔膜气泵,稳定性高、使用寿命长。
优选的,电子处理模块4采用方波形式驱动激发光模块2中的LED。
实施例2,多气体并行痕量检测火灾预警方法,它基于如权利要求1所述的多气体并行痕量检测火灾预警装置,包括以下步骤:
步骤一:控温组件9在电子处理模块4的控制下,对气室1进行温控;电子处理模块4驱动进气泵6将环境气体引入气室1;
步骤二:电子处理模块4以方波模式驱动激发光模块2中的校准光T9;
步骤三:光传感模块3中的一个红外传感器输出校准波段光下的响应电压,由电子处理模块4以数字相敏检波方法解调出校准光响应电压VB
步骤四:电子处理模块4以方波模式驱动激发光模块2中的辅助光T2;
步骤五:光传感模块3中相对应的红外传感器采集辅助波段光下的响应电压,由电子处理模块4以数字相敏检波方法解调出辅助光响应电压VREF
步骤六:电子处理模块4以方波模式驱动激发光模块2中与步骤四中辅助光相对应的检测光T1;
步骤七:光传感模块3中相对应的红外传感器采集检测波段光下的响应电压,由电子处理模块4以数字相敏检波解调出检测光响应电压VDEC
步骤八:电子处理模块4通过光传感模块3中红外传感器采集的校准光响应电压VB、辅助光响应电压VREF、检检测光响应电压VDEC去除漂移带来的影响,得出该红外传感器对应波段的痕量气体的吸收衰减量,计算得出对应痕量气体的浓度;浓度计算以朗博比尔定律为依据,并考虑光源的聚光效率与气室表面光反射效率、探测器长时偏移与噪声特性;
步骤九:电子处理模块4依次对激发光模块2其余辅助光、检测光进行驱动,重复步骤二到步骤八,得出多种痕量气体含量;
步骤十:电子处理模块4计算得到多种痕量气体含含量浓度后通过模糊识别的方法对火情的可能性进行推算,得出火情预判概率,概率超过设定的阈值时启动警报。

Claims (6)

1.多气体并行痕量检测火灾预警装置,其特征在于,它包括:气室(1)、隔热舱(8)、电源模块(5)、进气泵(6)、控温组件(9)、激发光模块(2)、光传感模块(3)以及电子处理模块(4);
所述气室(1)内通道为S型,在通道各转角处设置镀膜反射镜(7);在所述气室(1)内通道的起始端和末尾端分别设有进气口(10)、出气口(11);所述进气口(10)处安装有滤膜;所述出气口(11)处设有恒压单向膜;
所述控温组件(9)安装在所述气室(1)外壁,在所述电子处理模块(4)的控制下,对所述气室(1)进行温控;
所述进气泵(6)与所述气室(1)连接,其在所述电子处理模块(4)的控制下吸入检测气体并送至所述气室(1)内;
所述激发光模块(2)安装在所述气室(1)的进气口(10)附近,由2N+1个LED组成,包括:N个检测光、N个辅助光以及一个校准光,每个所述检测光对应一种痕量气体的吸收峰值波段,所述辅助光分别选在不同痕量气体吸收峰的临近波段,并与N个所述检测光一一对应;所述检测光与所述辅助光的半波带宽在200nm-500nm内;所述校准光为宽波段光源;所述激发光模块(2)由所述电子处理模块(4)驱动;
所述光传感模块(3)安装在所述气室(1)的出气口(11)附近,由N个安装窄带滤色片的红外传感器组成,用于探测N个独立的不同红外波段的光;
所述电子处理模块(4)与所述光传感模块(3)连接,所述电子处理模块(4)根据所述红外传感器接收到的不同激发光得到对应的电压响应,通过校准波段光与辅助波段光的电压响应得到红外传感器的时间漂移,通过检测波段光的响应电压变化计算出对应吸收波段下的痕量气体浓度;当痕量气体浓度超出设定阈值时,所述电子处理模块(4)启动报警;
所述电源模块(5)通过所述电子处理模块(4)向所述进气泵(6)、所述控温组件(9)、所述激发光模块(2)、所述光传感模块(3)提供电力;
所述气室(1)、电源模块(5)以及电子处理模块(4)均安装在所述隔热舱(8)内。
2.如权利要求1所述的多气体并行痕量检测火灾预警装置,其特征在于,所述进气泵(6)选用微型无刷隔膜气泵。
3.如权利要求1或2所述的多气体并行痕量检测火灾预警装置,其特征在于,所述电子处理模块(4)采用方波形式激发所述激发光模块(2)中的LED。
4.如权利要求1或2所述的多气体并行痕量检测火灾预警装置,其特征在于,所述气室(1)内表面镀金。
5.如权利要求1或2所述的多气体并行痕量检测火灾预警装置,其特征在于,所述控温组件(9)使用铂热电阻测温,并利用半导体加热制冷部件完成温控。
6.多气体并行痕量检测火灾预警方法,它基于如权利要求1所述的多气体并行痕量检测火灾预警装置,其特征在于,它包括以下步骤:
步骤一:所述控温组件(9)在所述电子处理模块(4)的控制下,对所述气室(1)进行温控;所述电子处理模块(4)驱动所述进气泵(6)将环境气体引入所述气室(1);
步骤二:所述电子处理模块(4)驱动所述中的校准光;
步骤三:所述光传感模块(3)中的一个红外传感器输出校准波段光下的响应电压,由所述电子处理模块(4)以数字相敏检波方法解调出校准光响应电压VB
步骤四:所述电子处理模块(4)驱动所述激发光模块(2)中的一个辅助光;
步骤五:所述光传感模块(3)中相对应的红外传感器采集辅助波段光下的响应电压,由所述电子处理模块(4)以数字相敏检波方法解调出辅助光响应电压VREF
步骤六:所述电子处理模块(4)驱动激发光模块(2)中与步骤四中所述的辅助光相对应的检测光;
步骤七:所述光传感模块(3)中相对应的红外传感器采集检测波段光下的响应电压,由所述电子处理模块(4)以数字相敏检波解调出检测光响应电压VDEC
步骤八:所述电子处理模块(4)通过所述光传感模块(3)中红外传感器采集的校准光响应电压VB、辅助光响应电压VREF、检检测光响应电压VDEC去除漂移带来的影响,得出该红外传感器对应波段的痕量气体的吸收衰减量,计算得出对应痕量气体的浓度;浓度计算以朗博比尔定律为依据,并考虑光源的聚光效率与气室表面光反射效率、探测器长时偏移与噪声特性;
步骤九:重复步骤二到步骤八,依次对其余辅助光、检测光进行驱动,得出N种痕量气体含含量;
步骤十:所述电子处理模块(4)得到的N种痕量气体含含量浓度后,通过模糊识别的方法对火情的可能性进行推算,得出火情预判概率,概率超过设定的阈值时启动警报。
CN201610908348.XA 2016-10-18 2016-10-18 多气体并行痕量检测火灾预警装置及方法 Active CN106525737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610908348.XA CN106525737B (zh) 2016-10-18 2016-10-18 多气体并行痕量检测火灾预警装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610908348.XA CN106525737B (zh) 2016-10-18 2016-10-18 多气体并行痕量检测火灾预警装置及方法

Publications (2)

Publication Number Publication Date
CN106525737A true CN106525737A (zh) 2017-03-22
CN106525737B CN106525737B (zh) 2019-04-02

Family

ID=58332397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610908348.XA Active CN106525737B (zh) 2016-10-18 2016-10-18 多气体并行痕量检测火灾预警装置及方法

Country Status (1)

Country Link
CN (1) CN106525737B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839363A (zh) * 2019-03-20 2019-06-04 中国科学院半导体研究所 多种气体检测仪
CN111610189A (zh) * 2020-07-03 2020-09-01 福州大学 一种多组分气体浓度光学标定系统及方法
CN115639650A (zh) * 2022-12-26 2023-01-24 武汉乾希科技有限公司 光发射接收组件激光器以及光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138242C2 (de) * 1991-11-21 1997-07-17 Compur Monitors Sensor Technol Vorrichtung zur gasanalytischen Brandkontrolle
US7186979B1 (en) * 2005-11-21 2007-03-06 Airware, Inc. Passive NDIR carbon dioxide sensor fire detector
CN101308090A (zh) * 2008-06-09 2008-11-19 中国科学技术大学 一种火场多参量激光波长调制光谱检测方法和装置
CN101893558A (zh) * 2010-06-30 2010-11-24 合肥科大立安安全技术有限责任公司 三组分火灾气体探测器
CN201697873U (zh) * 2010-05-28 2011-01-05 公安部沈阳消防研究所 一种开路式光纤红外可燃气体探测器
CN104237135A (zh) * 2014-10-22 2014-12-24 东北林业大学 基于石英音叉增强型光声光谱技术的co气体检测系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138242C2 (de) * 1991-11-21 1997-07-17 Compur Monitors Sensor Technol Vorrichtung zur gasanalytischen Brandkontrolle
US7186979B1 (en) * 2005-11-21 2007-03-06 Airware, Inc. Passive NDIR carbon dioxide sensor fire detector
CN101308090A (zh) * 2008-06-09 2008-11-19 中国科学技术大学 一种火场多参量激光波长调制光谱检测方法和装置
CN201697873U (zh) * 2010-05-28 2011-01-05 公安部沈阳消防研究所 一种开路式光纤红外可燃气体探测器
CN101893558A (zh) * 2010-06-30 2010-11-24 合肥科大立安安全技术有限责任公司 三组分火灾气体探测器
CN104237135A (zh) * 2014-10-22 2014-12-24 东北林业大学 基于石英音叉增强型光声光谱技术的co气体检测系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839363A (zh) * 2019-03-20 2019-06-04 中国科学院半导体研究所 多种气体检测仪
CN111610189A (zh) * 2020-07-03 2020-09-01 福州大学 一种多组分气体浓度光学标定系统及方法
CN111610189B (zh) * 2020-07-03 2021-08-31 福州大学 一种多组分气体浓度光学标定系统及方法
CN115639650A (zh) * 2022-12-26 2023-01-24 武汉乾希科技有限公司 光发射接收组件激光器以及光模块
CN115639650B (zh) * 2022-12-26 2023-09-15 武汉乾希科技有限公司 光发射接收组件激光器以及光模块

Also Published As

Publication number Publication date
CN106525737B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US8816867B2 (en) Detector
CN106525737A (zh) 多气体并行痕量检测火灾预警装置及方法
AU2013220147B2 (en) Combustion product detection
US11692985B2 (en) Gas identification by measuring stain development at multiple specific wavelength regions with narrow band optical sensors
CN1418358A (zh) 烟雾检测器的改进,尤其是管道烟雾检测器的改进
CN101551326B (zh) 智能无线车载嵌入式汽车尾气分析装置
CN105806402A (zh) 一种飞行式高空环境检测仪
CN107328739B (zh) 全集成式红外气体传感器及其工作方法
CN102608010B (zh) 微粒子pm检测方法及设备
CN110892460B (zh) 带有室内空气质量检测和监测的无腔室型烟雾检测器
CN103278489A (zh) 荧光氧气传感器
CN107037019A (zh) 叠层结构荧光传感器
CN103293139B (zh) 一种荧光爆炸物探测仪的传感装置
US20090101842A1 (en) Standoff bioagent-detection apparatus and method using multi-wavelength differential laser-induced fluorescence
US20220011288A1 (en) Measurement device, in particular for detecting hydrogen in the ground of a region
CN205788608U (zh) 温度烟气感应检测仪
CN206740651U (zh) 一种叠层结构荧光传感器
CN105203485A (zh) 室内气体的检测装置及方法
CN106290089A (zh) 一种高精度的微型化颗粒物传感器
US20170328876A1 (en) Gas concentration detection device and detection method thereof
CN205103152U (zh) 分离式气体遥测装置
CN203870018U (zh) 一种多种类气体检测装置
EP3001181A1 (en) Device for detecting the concentration of a solution
GB2483533A (en) Gas safety monitor using phosphorescent material in a sol-gel
CN203259345U (zh) 具有集气软管脱落检测的汽车排气流量分析仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant