CN106525094A - 在线制备大容量本征型f‑p传感阵列的方法及系统 - Google Patents

在线制备大容量本征型f‑p传感阵列的方法及系统 Download PDF

Info

Publication number
CN106525094A
CN106525094A CN201610965793.XA CN201610965793A CN106525094A CN 106525094 A CN106525094 A CN 106525094A CN 201610965793 A CN201610965793 A CN 201610965793A CN 106525094 A CN106525094 A CN 106525094A
Authority
CN
China
Prior art keywords
optical fiber
sensor arrays
cavity
grating
intrinsical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610965793.XA
Other languages
English (en)
Inventor
唐健冠
李亮
甘维兵
胡文彬
郭会勇
杨明红
姜德生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610965793.XA priority Critical patent/CN106525094A/zh
Publication of CN106525094A publication Critical patent/CN106525094A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/3539Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using time division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35393Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using frequency division multiplexing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

本发明公开了一种在线制备大容量本征型F‑P传感阵列的方法及系统,该方法在光纤拉丝的过程中,使用单脉冲的准分子激光器作为光源对光纤进行刻写,通过控制光纤的拉丝速度和光阑开关闭合时间来控制刻写光栅的时间间隔,即控制F‑P传感阵列的谐振腔的腔长,得到整个光纤无焊点的准分布式大容量本征型F‑P传感阵列。本发明获得的整个F‑P传感阵列无任何焊点,光纤的损耗低,传感F‑P腔的抗机械强度与光纤一样,有利于工程施工;通过光阑开关控制激光脉冲发射的时间间隔和拉丝速度控制F‑P腔的长度和F‑P传感器的间隔;制备过程全自动化,大大提高了制备的效率,传感器的一致性好,将大大提高生产效率。

Description

在线制备大容量本征型F-P传感阵列的方法及系统
技术领域
本发明涉及光纤传感技术领域,尤其涉及一种在线制备大容量本征型F-P传感阵列的方法及系统。
背景技术
光纤F-P型传感器以其结构简单、体积小、安装方便、高可靠性、高灵敏度、时间响应快等优点受到人们普遍的关注,并成为近年来光纤传感技术及其应用研究的热点之一。根据F-P光纤传感器结构不同,可以分为本征型和非本征型光纤传感器。基于FBG的F-P传感器(FBG-FP)是由两个相同的光栅通过光纤连接而成本征型F-P光纤传感器,由于腔长较长,具有低的精细度,当两个FBG的反射率很低时,可等效为双光束干涉,有较高的精度与灵敏度;同时由于光在光纤中的传输损耗低,可采用较长的腔长获得极高的灵敏度,可用来监控应变、温度、振动及超声水听器等。常规的FBG-FP阵列制备方法是通过剥除光纤涂覆层在单根光纤上刻写两个相同的光栅,然后通过两个高反射率光栅熔接进行串接,但是在单个手工制备过程中剥除涂覆层和焊接可能会对传感光纤机械强度造成很大影响,同时焊接将导致光纤的传输损耗增加,其阵列的复用的性能受到一定的限制,且制备效率也较低。如何增加F-P阵列传感器的复用数量以减少系统成本是个十分重要而又关键的问题。
发明专利CN200920187260.9和20151011446.0发明了一种在线制备光纤光栅系统,在线制备FBG阵列是指在光纤拉制的过程中,利用准分子激光器的输出单脉冲激光能量直接刻写低反射率的光纤光栅阵列技术,然后在进行二次涂覆,形成大容量低反射率的弱光栅传感阵列,这种制备技术生产效率高,因而成本大大降低,工艺灵活,涂层均匀,并且光栅阵列无焊点,光纤传输损耗低,抗机械拉力强度与光纤一样,工程施工方便,通常使用时分复用与波分复用技术进行对FBG波长解调,相对于普通的高反射率的波分复用系统,这种方法的复用容量大大增加了传感器的数量,形成大容量的光纤传感系统。武汉理工大学在动态连续制备光纤光栅阵列技术已经成熟,并发表在Chinese Optics Letters.2013,11(3):030602。
发明专利201110420315.8发明一种基于微结构光纤F-P谐振腔准分布式传感器,该发明使用单个光栅串接,一方面该发明通过常规的单模光纤刻写光栅,需剥离光纤涂覆层,然后刻写光栅,再进行涂覆,完成光栅刻写后,使用光纤熔接机焊接,由于技术限制,其腔长的长度难以准确控制;另一方面,由于使用光纤焊接,增加了谐振腔的损耗,并且焊接点和光栅的抗机械强度低。该发明制备效率低,同时传感阵列的质量难以保证。
发明专利CN201510814779.5发明了一种弱光纤光栅F-P腔传感阵列在线制备装置及方法,该方法通过调节相位掩模板之间的缝隙宽度大小来控制光栅的长度,并调节激光束的脉冲频率,控制激光束辐射的时间,从而控制F-P腔的腔长。这个方法可能存在二个问题:1、调节激光束的脉冲频率,将改变准分子激光器输出脉冲的脉宽,从而导致激光器的脉冲输出能量波动很大,并且改变光栅刻写的狭缝,从而引起衍射条纹强度变化很大,光栅的反射率大小波动较大;2、通过改变准分子激光器的频率,可以调节激光脉冲的输出频率;同时将改变脉冲的时间间隔,很难有效的控制F-P腔的长度,可能会存在F-P腔的频率重叠,不能有效通过频分复用方法进行传感信号解调。
发明内容
本发明要解决的技术问题在于针对现有技术中使用单个F-P腔串接的复用能力差的缺陷,提供一种在线制备大容量本征型F-P传感阵列的方法及系统。
本发明解决其技术问题所采用的技术方案是:
本发明提供一种在线制备大容量本征型F-P传感阵列的方法,在光纤拉丝的过程中,使用单脉冲的准分子激光器作为光源对光纤进行刻写,通过控制光纤的拉丝速度和光阑开关闭合时间来控制刻写光栅的时间间隔,即控制F-P传感阵列的谐振腔的腔长,得到整个光纤无焊点的准分布式大容量本征型F-P传感阵列。
进一步地,本发明的控制谐振腔腔长的方法具体为:
当制备的F-P传感阵列的谐振腔为固定腔长时,使用时分复用方法解调;当谐振腔的腔长线性改变时,通过频分复用进行解调。
进一步地,本发明的该方法还包括改变F-P传感阵列的谐振腔长度的方法,具体包括:
在完成一个传感单元的制备时,保持拉丝速度不变,通过线性增加或减少光阑开关的控制时间,使谐振腔的长度线性增大或减小。
进一步地,本发明的在光纤拉丝的过程中,使用准分子激光器同时刻写低反射率的弱光栅,刻写完成后对其进行二次涂覆,光纤绕盘和光纤成缆。
进一步地,本发明的F-P传感阵列的光栅长度为0.3mm~0.5mm,通过调节相位掩模板前的金属挡板缝隙宽度对光栅长度进行调节;通过控制光源的脉冲能量和预制棒的光敏性控制光栅的反射率,使其在0.1%~1%;通过控制啁啾相位掩模板使光栅的反射带宽控制在1nm~2nm。
进一步地,本发明的方法中光阑和光源的控制同步触发。
进一步地,本发明的方法制备得到的F-P传感阵列的谐振腔总的反射率为:
R=2RG{1+cos[2neff(Li)2π/λ]}
其中,RG为光栅的反射率,Li为F-P腔的长度,neff为光栅的有效折射率,λ为布拉格波长。
进一步地,本发明的方法还包括:通过快速切换不同周期的啁啾相位掩模板完成其它波长的F-P传感阵列的制备,通过控制解调的光源带宽来控制波长的数量,实现在一根光纤上完成频分与波分混合复用的F-P传感阵列的制备。
本发明提供一种在线制备大容量本征型F-P传感阵列的系统,包括光纤动态拉丝单元和F-P传感阵列刻写单元,其中:
光纤动态拉丝单元,用于以固定的速度对光纤进行加温、预制和拉丝,并对刻写后的光纤进行二次涂覆、光纤绕盘和光纤成缆;
F-P传感阵列刻写单元,用于使用单脉冲的准分子激光器作为光源对光纤进行刻写,通过控制光阑开关闭合时间来改变F-P传感阵列的谐振腔的腔长,得到整个光纤无焊点的准分布式大容量本征型F-P传感阵列。
进一步地,本发明的光纤动态拉丝单元包括预制棒、高温炉、二次涂覆装置和拉丝速度测量及光纤绕盘装置,光纤设置在预制棒和二次涂覆装置之间;F-P传感阵列刻写单元包括设置在光纤上方的啁啾相位掩模板和金属挡板,金属挡板上方设置有光阑和准分子激光器,准分子激光器通过延时器和晶源与脉冲发射系统与计算机控制系统相连,光阑通过光阑开关控制系统和晶源与脉冲发射系统与计算机控制系统相连。
本发明产生的有益效果是:本发明的在线制备大容量本征型F-P传感阵列的方法及系统,得到的整个F-P传感阵列无任何焊点,光纤的损耗低,传感F-P腔的抗机械强度与光纤一样,有利于工程施工;通过光阑开关控制激光脉冲发射的时间间隔和拉丝速度控制F-P腔的长度和F-P传感器的间隔;制备过程全自动化,大大提高了制备的效率,传感器的一致性好,将大大提高生产效率。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的F-P传感阵列的结构示意图;
图2是本发明实施例的系统结构示意图;
图中,1,预制棒;2,高温炉;3,光纤;4,二次涂覆装置;5,拉丝速度测量及光纤绕盘装置;6,啁啾相位掩模板;7,金属挡板;8,光阑;9,准分子激光器;10,延时器;11,光阑开关控制系统;12,晶源与脉冲发射系统;13,计算机控制系统。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明实施例的在线制备大容量本征型F-P传感阵列的方法,在光纤拉丝的过程中,使用单脉冲的准分子激光器作为光源对光纤进行刻写,通过控制光纤的拉丝速度和光阑开关闭合时间来控制刻写光栅的时间间隔,即控制F-P传感阵列的谐振腔的腔长,得到整个光纤无焊点的准分布式大容量本征型F-P传感阵列。
控制谐振腔腔长的方法具体为:
当制备的F-P传感阵列的谐振腔为固定腔长时,使用时分复用方法解调;当谐振腔的腔长线性改变时,通过频分复用进行解调。
F-P腔的长度通过控制光阑的闭合时间进行改变;当固定腔长时可使用时分复用方法解调;当腔长线性改变时,通过频分复用进行解调;当改变相位掩模板的周期结构时,可刻写不同FBG波长的F-P传感阵列;因此,在单根光纤上可以刻写大容量的F-P腔传感阵列;F-P腔传感阵列空间间隔可通过控制光阑的闭合时间和光纤拉丝速度来确定;可以在单个光纤上同时或者单独使用其中一种方法,如频分与波分复用,时分与波分复用,从而在线刻写大容量本征的F-P腔传感阵列。
该方法还包括改变F-P传感阵列的谐振腔长度的方法,具体包括:
在完成一个传感单元的制备时,保持拉丝速度不变,通过线性增加或减少光阑开关的控制时间,使谐振腔的长度线性增大或减小。
在光纤拉丝的过程中,使用准分子激光器同时刻写低反射率的弱光栅,刻写完成后对其进行二次涂覆,光纤绕盘和光纤成缆。
F-P传感阵列的光栅长度为0.3mm~0.5mm,通过调节相位掩模板前的金属挡板缝隙宽度对光栅长度进行调节;通过控制光源的脉冲能量和预制棒的光敏性控制光栅的反射率,使其在0.1%~1%;通过控制啁啾相位掩模板使光栅的反射带宽控制在1nm~2nm。
该方法中光阑和光源的控制同步触发。
该方法制备得到的F-P传感阵列的谐振腔总的反射率为:
R=2RG{1+cos[2neff(Li)2π/λ]}
其中,RG为光栅的反射率,Li为F-P腔的长度,neff为光栅的有效折射率,λ为布拉格波长。
该方法还包括:通过快速切换不同周期的啁啾相位掩模板完成其它波长的F-P传感阵列的制备,通过控制解调的光源带宽来控制波长的数量,实现在一根光纤上完成频分与波分混合复用的F-P传感阵列的制备。
在本发明的另一个具体实施例中,基于在线刻写光纤光栅的方法来制备大容量本征型F-P阵列传感光纤及传感方法,包括如下步骤:
(1)在线本征型大容量F-P传感阵列制备技术是光纤在进行拉丝的过程中使用准分子激光器单脉冲激光能量刻写低反射率的弱光栅;
(2)在光纤拉丝过程中,同时刻写光栅,控制相位掩模板前金属挡板衍射缝的宽度,使刻写后光栅的长度在0.3mm~0.5mm之间,实现超短长度光栅的刻写,可以降低腔的长度,并且超短的弱光栅能够减少每个F-P阵列传感的光功率到最低;
(3)使用啁啾相位掩模板,控制光栅反射谱的带宽宽度在1nm~2nm之间;
(4)在光纤以一定的速度v m/s拉丝,准分子激光器以一定的频率f Hz发出激光脉冲,每个激光脉冲完成一个光栅的刻写,通过控制准分子激光器的脉冲占空比,控制单脉冲激光的输出能量或者通过改变预制棒的光敏性,从而使光栅反射率在0.1%~1%之间,在制备过程中,尽量保持每个弱光栅的反射率保持一致。
(5)通过控制光纤的拉丝速度和与激光脉冲输出匹配同步的光阑开关来控制激光能量脉冲刻写光栅的时间间隔,从而控制F-P腔中两光栅之间间距,即控制阵列传感中每个F-P腔的长度。为了使阵列中每个F-P腔的解调后的频率不重叠,可使F-P腔的长度以一定步长的线性增加或者减少;在完成前一光栅制备后,控制光阑的开关时间,完成下一光栅的刻写,从而完成一个F-P腔的刻写。传感阵列刻写过程中,光纤拉丝的速度v保持不变,边拉丝,边刻写光栅,同时进行二次涂覆,光纤绕盘。
(6)当激光脉冲发射后,光阑开关自动关闭,通过脉冲发生器触发前通过一个延时器,延时一定的时间,使光阑开关在激光脉冲发射前自动打开;每个F-P传感器的间隔也通过自动控制系统对光阑开关进行控制,确保刻写弱光栅的激光脉冲发射前光阑打开;
(7)也可通过快速切换不同周期的啁啾相位掩模板可完成其它波长的F-P阵列制备,整个过程与上面一样,波长的数量仅受限于解调的光源带宽,从而在一根光纤上可以完成频分与波分混合复用的F-P传感阵列的制备。
(8)也可固定腔长,制备反射谱与腔长完全一样的F-P传感阵列,需通过时分复用解调技术进行解调。
如图2所示,本发明实施例的在线制备大容量本征型F-P传感阵列的系统,包括光纤动态拉丝单元和F-P传感阵列刻写单元,其中:
光纤动态拉丝单元,用于以固定的速度对光纤进行加温、预制和拉丝,并对刻写后的光纤进行二次涂覆、光纤绕盘和光纤成缆;
F-P传感阵列刻写单元,用于使用单脉冲的准分子激光器作为光源对光纤进行刻写,通过控制光阑开关闭合时间来改变F-P传感阵列的谐振腔的腔长,得到整个光纤无焊点的准分布式大容量本征型F-P传感阵列。
光纤动态拉丝单元包括预制棒、高温炉、二次涂覆装置和拉丝速度测量及光纤绕盘装置,光纤设置在预制棒和二次涂覆装置之间;F-P传感阵列刻写单元包括设置在光纤上方的啁啾相位掩模板和金属挡板,金属挡板上方设置有光阑和准分子激光器,准分子激光器通过延时器和晶源与脉冲发射系统与计算机控制系统相连,光阑通过光阑开关控制系统和晶源与脉冲发射系统与计算机控制系统相连。
在本发明的另一个具体实施例中,光纤F-P传感光纤阵列,整个传感光纤无焊点,在单个光纤上集成大量F-P谐振腔,每个F-P腔包含两个相同的弱光栅,即一个传感单元,每个谐振腔之间的间隔可根据现场需求控制(一般情况下,每个F-P谐振腔的间隔远大于F-P腔的长度,以避免相邻谐振腔之间弱光栅产生干涉而相互影响)。
F-P腔中光栅的反射率在0.1~1%之间,低反射率的光纤光栅构成的F-P腔中多次反射光每经过一个往返,其光强会成数量级递减,因此该类谐振腔光谱通常近似为双光束干涉,其F-P谐振腔总的反射率R:
R=2RG{1+cos[2neff(Li)2π/λ]}
其中RG为光栅的反射率,Li为F-P腔的长度,neff为光栅的有效折射率,λ为布拉格波长。从上式的反射率可以看到,谐振腔的反射率是F-P腔的长度的余弦函数,当F-P腔的长度大于光源的相干长度,对反射谱做离散傅里叶变换,将得到两个正负对称的频率峰;当F-P腔的长度不同时,其频率峰互不相同,从而整个F-P传感阵列解调后不会产生频率重叠现象发生。反之,通过测量每个F-P腔的频率峰值,可以测量每个F-P腔的长度。
金属挡板上狭缝缝隙宽度为60μm,为刻写光栅带宽较宽的光栅,采用啁啾的相位掩模板,刻写的光栅长度为l mm,l<0.5mm;在光纤拉丝的过程中,假如光纤的拉丝速度为vmm/s,准分子激光器的发射脉冲的频率为f Hz,脉冲间隔周期为T=1/f,则激光器光阑不开关的条件下,光栅之间的间隔为ΔL=v/f mm,即F-P腔的最短腔长。例如,假如光纤的拉丝速度为100mm/s,激光器的脉冲输出频率为200Hz,则F-P腔的最短腔长可控制到0.5mm,此长度如少于光栅的长度,将可能导致光栅重叠;在光纤拉丝的过程中,从光阑开关中输出两个激光脉冲,将在光纤上刻写两个弱光栅,其两个光栅间隔即腔长为v/f,从而制备出一个完整的F-P腔传感器;光纤在拉丝方向移动距离d mm,d的大小跟现场的空间分辨率要求进行设置,d>>各F-P腔的长度,光阑闭合的时间为d/v;同样地,可以刻写第二个F-P腔,刻写第一个光栅后,为使F-P腔长改变,闭合光阑时间为T=1/f后打开,刻写下一个弱光栅,完成第二个F-P腔的刻写,激光脉冲发射后,立即闭合光澜时间d/v,光纤拉丝移动距离d;继续在线刻写第三个F-P腔,第三个光阑闭合的时间为2T,同样,第i个F-P腔光阑闭合时间为(i-1)T,因此各F-P腔长Li=i*v/f(包含了两个弱光栅一半的长度),i为自然数。
本发明与现有技术相比具有以下主要优点:
(1)整个F-P传感阵列无任何焊点,光纤的损耗低,传感F-P腔的抗机械强度与光纤一样,有利于工程施工;
(2)系统通过光阑开关控制激光脉冲发射的时间间隔和拉丝速度控制F-P腔的长度和F-P传感器的间隔;制备过程全自动化,大大提高了制备的效率,传感器的一致性好,将大大提高生产效率;
(3)通过改变F-P的腔的长度,进行F-P频分复用,通过改变光栅的布拉格波长进行波分复用,从而实现传感光纤F-P阵列的频分复用和波分复用,大大扩大了传感器的数量。数量的大小仅取决于解调光源的带宽和光谱仪或解调仪的光谱分辨率;
(4)F-P腔的长度通过自动控制光阑的开关来准确控制,通过线性增加或者减少了控制时间,由于拉丝过程中拉丝保持速度不变,从而使F-P腔的长度线性单调增加或减少,避免F-P腔的频谱重叠,有效实现F-P腔的频分复用解调;
(5)当F-P腔长改变时,传感阵列解调方便快捷,不需要对光源脉冲调制,直接使用光谱分析仪或者常规的光栅波长解调仪即可;固定F-P腔的长度,可以制备相同参数的F-P阵列,可使用时分复用技术进行解复用;两者制备的方法一样;
(6)本发明基于F-P谐振腔阵列传感的灵敏度与精度将大大超过基于单个弱光栅阵列时分与波分系统。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种在线制备大容量本征型F-P传感阵列的方法,其特征在于,在光纤拉丝的过程中,使用单脉冲的准分子激光器作为光源对光纤进行刻写,通过控制光纤的拉丝速度和光阑开关闭合时间来控制刻写光栅的时间间隔,即控制F-P传感阵列的谐振腔的腔长,得到整个光纤无焊点的准分布式大容量本征型F-P传感阵列。
2.根据权利要求1所述的在线制备大容量本征型F-P传感阵列的方法,其特征在于,控制谐振腔腔长的方法具体为:
当制备的F-P传感阵列的谐振腔为固定腔长时,使用时分复用方法解调;当谐振腔的腔长线性改变时,通过频分复用进行解调。
3.根据权利要求1所述的在线制备大容量本征型F-P传感阵列的方法,其特征在于,该方法还包括改变F-P传感阵列的谐振腔长度的方法,具体包括:
在完成一个传感单元的制备时,保持拉丝速度不变,通过线性增加或减少光阑开关的控制时间,使谐振腔的长度线性增大或减小。
4.根据权利要求1所述的在线制备大容量本征型F-P传感阵列的方法,其特征在于,在光纤拉丝的过程中,使用准分子激光器同时刻写低反射率的弱光栅,刻写完成后对其进行二次涂覆,光纤绕盘和光纤成缆。
5.根据权利要求1所述的在线制备大容量本征型F-P传感阵列的方法,其特征在于,F-P传感阵列的光栅长度为0.3mm~0.5mm,通过调节相位掩模板前的金属挡板缝隙宽度对光栅长度进行调节;通过控制光源的脉冲能量和预制棒的光敏性控制光栅的反射率,使其在0.1%~1%;通过控制啁啾相位掩模板使光栅的反射带宽控制在1nm~2nm。
6.根据权利要求1所述的在线制备大容量本征型F-P传感阵列的方法,其特征在于,该方法中光阑和光源的控制同步触发。
7.根据权利要求1所述的在线制备大容量本征型F-P传感阵列的方法,其特征在于,该方法制备得到的F-P传感阵列的谐振腔总的反射率为:
R=2RG{1+cos[2neff(Li)2π/λ]}
其中,RG为光栅的反射率,Li为F-P腔的长度,neff为光栅的有效折射率,λ为布拉格波长。
8.根据权利要求1所述的在线制备大容量本征型F-P传感阵列的方法,其特征在于,该方法还包括:通过快速切换不同周期的啁啾相位掩模板完成其它波长的F-P传感阵列的制备,通过控制解调的光源带宽来控制波长的数量,实现在一根光纤上完成频分与波分混合复用的F-P传感阵列的制备。
9.一种在线制备大容量本征型F-P传感阵列的系统,其特征在于,包括光纤动态拉丝单元和F-P传感阵列刻写单元,其中:
光纤动态拉丝单元,用于以固定的速度对光纤进行加温、预制和拉丝,并对刻写后的光纤进行二次涂覆、光纤绕盘和光纤成缆;
F-P传感阵列刻写单元,用于使用单脉冲的准分子激光器作为光源对光纤进行刻写,通过控制光阑开关闭合时间来改变F-P传感阵列的谐振腔的腔长,得到整个光纤无焊点的准分布式大容量本征型F-P传感阵列。
10.根据权利要求9所述的在线制备大容量本征型F-P传感阵列的系统,其特征在于,光纤动态拉丝单元包括预制棒、高温炉、二次涂覆装置和拉丝速度测量及光纤绕盘装置,光纤设置在预制棒和二次涂覆装置之间;F-P传感阵列刻写单元包括设置在光纤上方的啁啾相位掩模板和金属挡板,金属挡板上方设置有光阑和准分子激光器,准分子激光器通过延时器和晶源与脉冲发射系统与计算机控制系统相连,光阑通过光阑开关控制系统和晶源与脉冲发射系统与计算机控制系统相连。
CN201610965793.XA 2016-10-28 2016-10-28 在线制备大容量本征型f‑p传感阵列的方法及系统 Pending CN106525094A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610965793.XA CN106525094A (zh) 2016-10-28 2016-10-28 在线制备大容量本征型f‑p传感阵列的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610965793.XA CN106525094A (zh) 2016-10-28 2016-10-28 在线制备大容量本征型f‑p传感阵列的方法及系统

Publications (1)

Publication Number Publication Date
CN106525094A true CN106525094A (zh) 2017-03-22

Family

ID=58326413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610965793.XA Pending CN106525094A (zh) 2016-10-28 2016-10-28 在线制备大容量本征型f‑p传感阵列的方法及系统

Country Status (1)

Country Link
CN (1) CN106525094A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855662A (zh) * 2019-02-28 2019-06-07 武汉理工大学 光纤光栅f-p腔阵列准分布式多参量测量的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1458539A (zh) * 2002-05-17 2003-11-26 清华大学 变占空比的取样光纤光栅及其切趾方法
CN201477226U (zh) * 2009-08-31 2010-05-19 常州南方通信科技有限公司 光纤光栅的在线制作装置
US20110190640A1 (en) * 2010-02-01 2011-08-04 Kort Bremer Pressure sensor with an interferometric sensor and an in-fiber Bragg grating reference sensor
CN102519499A (zh) * 2011-12-14 2012-06-27 华中科技大学 基于微结构光纤法布里-珀罗谐振腔准的准分布式传感器
CN103869409A (zh) * 2014-03-24 2014-06-18 江苏南方通信科技有限公司 光纤光栅的在线制作方法
CN104635295A (zh) * 2015-03-17 2015-05-20 武汉理工大学 一种在线光纤光栅制备系统
CN104678486A (zh) * 2015-03-17 2015-06-03 武汉理工大学 一种光纤光栅的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1458539A (zh) * 2002-05-17 2003-11-26 清华大学 变占空比的取样光纤光栅及其切趾方法
CN201477226U (zh) * 2009-08-31 2010-05-19 常州南方通信科技有限公司 光纤光栅的在线制作装置
US20110190640A1 (en) * 2010-02-01 2011-08-04 Kort Bremer Pressure sensor with an interferometric sensor and an in-fiber Bragg grating reference sensor
CN102519499A (zh) * 2011-12-14 2012-06-27 华中科技大学 基于微结构光纤法布里-珀罗谐振腔准的准分布式传感器
CN103869409A (zh) * 2014-03-24 2014-06-18 江苏南方通信科技有限公司 光纤光栅的在线制作方法
CN104635295A (zh) * 2015-03-17 2015-05-20 武汉理工大学 一种在线光纤光栅制备系统
CN104678486A (zh) * 2015-03-17 2015-06-03 武汉理工大学 一种光纤光栅的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余海湖等: "光纤光栅在线制备技术研究进展", 《功能材料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855662A (zh) * 2019-02-28 2019-06-07 武汉理工大学 光纤光栅f-p腔阵列准分布式多参量测量的方法及装置

Similar Documents

Publication Publication Date Title
CN102519499B (zh) 基于微结构光纤法布里-珀罗谐振腔准的准分布式传感器
CN109238355A (zh) 光纤分布式动静态参量同时传感测量的装置及方法
WO2021196815A1 (zh) 基于低弯曲损耗啁啾光栅阵列光纤的增强型水听器检测装置及方法
KR20190092563A (ko) 환경의 공간적 프로파일의 추정
Yang et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings
CN104181635B (zh) 光强分布式解调系统及分布式传感光纤
CN103471812B (zh) 弱光栅检测装置及其检测方法
CN104076435B (zh) 取样光纤布拉格光栅sfbg的飞秒激光制作装置及方法
CN105865614B (zh) 一种新型光纤珐珀超声水听器及其制作方法
CN101832792A (zh) 一种光波导传感器及其制作方法
CN110411553A (zh) 基于随机光栅的分布式光纤声波传感系统
CN106066203B (zh) 基于超短光纤光栅阵列的分布式高灵敏振动探测系统及方法
CN103412360A (zh) 高频二氧化碳激光辅助湿腐蚀法制作非对称波状长周期光纤光栅
CN108896160A (zh) 一种光纤光栅地声传感系统的传感方法
CN106772739B (zh) 一种弱光栅阵列制备方法与控制系统
CN109000712A (zh) 电缆隧道多参数光纤分布式传感测量装置及测量方法
CN106525094A (zh) 在线制备大容量本征型f‑p传感阵列的方法及系统
CN204101766U (zh) 光强分布式解调系统及分布式传感光纤
CN204881836U (zh) 一种光纤光栅地声传感探头
CN103592064B (zh) 一种光纤法珀力传感器及其制作方法
JP5192742B2 (ja) ブリルアン散乱測定装置
CN205748617U (zh) 一种新型光纤珐珀超声水听器
CN106546320B (zh) 一种基于菲索干涉的超弱光栅周界安防系统
JP2008014934A (ja) Fbgセンサシステム
CN110346863A (zh) 一种基于双光栅结构控制fbg波长的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination