CN106515847B - 一种拖拉机导航用液压转向控制系统及控制方法 - Google Patents

一种拖拉机导航用液压转向控制系统及控制方法 Download PDF

Info

Publication number
CN106515847B
CN106515847B CN201611103825.1A CN201611103825A CN106515847B CN 106515847 B CN106515847 B CN 106515847B CN 201611103825 A CN201611103825 A CN 201611103825A CN 106515847 B CN106515847 B CN 106515847B
Authority
CN
China
Prior art keywords
steering
voltage
controller
module
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611103825.1A
Other languages
English (en)
Other versions
CN106515847A (zh
Inventor
尹成强
孙群
高洁
武健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaocheng University
Original Assignee
Liaocheng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaocheng University filed Critical Liaocheng University
Priority to CN201611103825.1A priority Critical patent/CN106515847B/zh
Publication of CN106515847A publication Critical patent/CN106515847A/zh
Application granted granted Critical
Publication of CN106515847B publication Critical patent/CN106515847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/30Safety devices, e.g. alternate emergency power supply or transmission means to ensure steering upon failure of the primary steering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Abstract

本发明公开了一种拖拉机导航用液压转向控制系统及控制方法,包括转向控制器,其特征是:所述转向控制器分别连接转角检测模块、电源模块、输出控制模块、电压检测模块、报警及紧急处理模块和串口通信模块,输出控制模块还分别与电源模块、电压检测模块和电磁比例换向阀连接。本发明通过设有电压检测模块和转角检测模块,分别对转向控制器的输出电压和车轮转角进行实时检测,实现闭环控制,采用改进史密斯预估控制方法设计电压伺服控制器和抗扰动控制器,能够使车轮转角精确、稳定跟踪电压设定值,系统具有集成度高、与上位机连接方便、控制精准等优点,可满足拖拉机导航液压转向控制要求。

Description

一种拖拉机导航用液压转向控制系统及控制方法
技术领域
本发明涉及拖拉机自动导航领域,具体地讲,涉及一种拖拉机导航用液压转向控制系统及控制方法。
背景技术
农机自动导航技术是精细农业的一项重要技术,拖拉机自动导航是农业现代化的重要基础,实现拖拉机自动导航可以让农业作业者降低工作强度,避免繁重的驾驶劳动,并且能显著地提高农机的作业精度,提高农田的土地利用率,降低生产成本,提高产量。
目前,国内外关于农用拖拉机自动导航技术的研究较多,但研究热点大多集中在定位方法和导航控制方法上。如授权号101833334A的发明专利公开了一种拖拉机自动导航控制系统及其方法,申请号为104656647A的发明专利公开了一种低矮作物田间自走拖拉机导航控制系统,申请号为201210379655.5的发明专利公开了一种机动车转向控制装置及方法,通过转向连杆和电机实现转向控制。但是,对实现拖拉机自动导航的液压转向系统的研究则相对较少。因拖拉机液压转向系统是拖拉机自动导航的关键技术之一,它对拖拉机实现精确的路径跟踪效果会产生重大的影响,并且液压转向系统的性能及对液压系统的控制方法将直接关系拖拉机自动转向的稳定性和可靠性。
现有的拖拉机自动导航液压转向系统多采用PWM脉冲控制或电压控制,但往往都是开环控制,没有对输出脉冲或电压进行检测,导致输出失控的现象发生。另外,液压阀存在向左向右的最大行程,当液压阀运行至最大行程时不加以控制,则会损坏阀体。同时,拖拉机液压转向系统和车轮容易受到工作环境的影响,采用常规控制方法和PID方法抗干扰能力低,转向系统在受到干扰后容易产生振荡和发散现象。
综上,现有技术的控制方法有两种:
1、简单的开环控制:不需反馈量,直接根据拖拉机的横向偏移量和航向偏移角度设定输出电压值或脉冲对液压转向系统进行控制。
2、PID控制,属于闭环控制,只有一个PID控制器,以车轮转角为反馈量进行控制,这种控制方法在没有干扰情况下具有良好的跟踪效果,但是一旦出现干扰,控制系统容易产生振荡或发散,导致拖拉机行驶不跟踪既定路径或失控。
发明内容
本发明要解决的技术问题是提供一种拖拉机导航用液压转向控制系统及控制方法,实现液压转向系统良好的伺服跟踪能力和抗干扰能力。
本发明采用如下技术方案实现发明目的:
一种拖拉机导航用液压转向控制系统,包括转向控制器,其特征在于:所述转向控制器分别连接转角检测模块、电源模块、输出控制模块、电压检测模块、报警及紧急处理模块和串口通信模块;输出控制模块连接电源模块、电压检测模块和电磁比例换向阀;电压检测模块分别与输出控制模块和转向控制器电连接。
本技术方案设有电压检测模块,转向控制器会实时对输出电压进行检测,不会出现输出失控现象,并且能够将测得的输出电压用作反馈信号,提高控制效果;另外,本技术方案还设有报警及紧急处理模块,能够在液压阀运行至最大位置时发出报警信息并启动相应的紧急响应动作,使换向阀回归中心位置,避免当液压阀运行至最大行程处而不加以控制仍然加同向的控制信号则容易损坏液压阀体。
作为对本技术方案的进一步限定:
报警及紧急处理模块与转向控制器电连接。
转向控制器采用飞思卡尔单片机MC9S12XS128MAL。
转角检测模块由线位移传感器HPS-M1和信号调理电路组成。
电源模块由产生24V电压芯片LT4356IS、产生5V电压芯片LM7805、产生正负15电压芯片MD20-12D15、产生10V电压芯片AD581及外围电路组成。
输出控制模块由D/A转换芯片DAC0832、运算放大器LM358N及外围电路组成。
电压检测模块由运算放大器AD741和外围电路组成。
通过设计电压检测模块,能够对换向阀控制模块的输出电压实施闭环控制,通过实时检测输出电压,避免输出电压失控现象发生。
报警及紧急处理模块由喇叭、发光灯、光耦和继电器等组成。报警和紧急处理模块能够在液压阀运行至最大位置时发出报警信息并启动相应的紧急响应动作。
串口通信模块由串口通信芯片MAX232芯片及其外围电路组成。
转向控制系统采用改进史密斯预估控制方法进行设计,由输出控制电压设定值U(S)、电压设定值滤波器L(S)、电压伺服控制器C(S)、转向系统G(S)、车轮转角反馈A(S)、抗扰动控制器D(S)和转向系统辨识模型的非延迟环节G0(S)和转向系统辨识模型的延迟环节E(S)组成。其中输出控制电压设定值U(S)与电压设定值滤波器L(S)的输入端连接,电压设定值滤波器L(S)的输出端与电压伺服控制器C(S)的正向输入端连接,电压伺服控制器C(S)的输出端与转向系统G(S)的正向输入端连接,转向系统G(S)的输出端与车轮转角反馈A(S)的输入端连接,车轮转角反馈A(S)的输出端与抗扰动控制器D(S)的正向输入端连接,抗扰动控制器D(S)的输出端与转向系统G(S)的反向输入端连接;同时,电压伺服控制器C(S)的输出端与转向系统辨识模型的非延迟环节G0(S)的输入端连接,转向系统辨识模型的非延迟环节G0(S)的输出端与转向系统辨识模型的延迟环节E(S)的输入端连接,转向系统辨识模型的延迟环节E(S)的输出端与抗扰动控制器D(S)的反向输入端连接,转向系统辨识模型的非延迟环节G0(S)的输出端与电压伺服控制器C(S)的反向输入端连接。
作为对本技术方案的进一步限定,所述转向系统辨识模型的非延迟环节G0(S)=k/s(τs+1),其中k为转向系统辨识模型的增益,k=22.7,τ为转向系统辨识模型时间常数,τ=0.05;所述转向系统辨识模型的延迟环节E(S)=e-θs,θ为转向系统辨识模型的延迟时间,θ=0.12。
作为对本技术方案的进一步限定,所述电压伺服控制器C(S)设计为PID形式其中Ck为电压伺服控制器的比例项系数,Cτi为电压伺服控制器的积分项系数,Cτd为电压伺服控制器的微分项系数;所述抗扰动控制器D(S)设计为串联一滤波器的PID形式其中Dk为抗扰动控制器的比例项系数,Dτi为抗扰动控制器的积分项系数,Dτd为抗扰动控制器的微分项系数,a,b为所述超前滞后滤波器参数;所述电压设定值滤波器L(S)设计形式为L(S)=1/(l2s2+l1s+1),其中l2,l1为电压设定值滤波器参数。
本申请中,S、s在公式中均表示拉普拉斯算符;其中在控制器表示上采用大写表示,在运算中采用小写表示。
与现有技术相比,本发明的优点和积极效果是:本发明通过设有电压检测模块和转角检测模块,分别对转向控制器的输出电压和车轮转角进行检测,实现闭环控制,采用改进史密斯预估控制方法设计电压伺服控制器和抗扰动控制器,能够使车轮转向角精确、稳定跟踪电压设定值,报警和紧急处理模块能够在液压阀运行至最大或当曲线路径弯度过大时发出报警信息并启动相应的紧急响应动作。
本发明的技术方案的有益效果:
1、电压检测模块,使转向控制器会实时对输出电压进行检测,不会出现输出失控现象,并且能够将测得的输出电压用作反馈信号,提高控制效果。
2、从控制方法上:设计两个控制器:电压伺服控制器和抗扰动控制器。
(1)电压伺服控制器(相当于上述的PID控制器,但是因设计原理和结构的不同,设计的电压伺服控制器虽然也是PID形式,但是其参数的确定方法不同,确定的值也不同)。
(2)抗扰动控制器,在被控对象(液压转向系统和车轮)在受到干扰时,此控制器起作用,能使干扰对设定值的影响降到最小,并且在干扰消除后系统能迅速跟踪设定值,而不会出现发散和失控现象。
附图说明
图1为本发明的原理框图。
图2为本发明所采用的控制方法结构示意图。
图3为本发明的电压检测模块的电路原理图。
图4为本发明的转角检测模块的电路原理图。
图5为本发明的输出控制模块的电路原理图。
图6为本发明的车轮转角与设定电压的伺服性能仿真效果图。
图7为本发明的车轮转角与设定电压的抗扰动性能仿真效果图。
附图标记说明:1-转角检测模块;2-报警及紧急处理模块;3-转向控制器;4-电源模块;5-串口通信模块;6-输出控制模块;7-电磁比例换向阀;8-电压检测模块。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法及方案。为了使公众对本发明有更好的了解,在具体实施方式中对本发明的细节描述中,详尽描述了一些特定的细节部分,对于未描述的部分,均为本领域技术的常规技术。
本发明实施例提供了一种拖拉机导航用液压转向控制系统,参考图1-图7。拖拉机导航用液压转向控制系统,参见图1,图3-图5,包括转向控制器3,所述转向控制器3分别连接转角检测模块1、电源模块4、输出控制模块6、电压检测模块8、报警及紧急处理模块2和串口通信模块5,所述输出控制模块6还与电源模块4、电压检测模块8和电磁比例换向阀7连接。
转向控制器3采用16位飞思卡尔单片机MC9S12XS128MAL,能够根据接收的上位机信息确定车轮转角大小,并通过输出电压精确控制转角量,是液压转向控制系统核心。
电压检测模块8分别与输出控制模块6和转向控制器3电连接,用于对输出控制电压进行检测,可避免输出电压失控现象发生。参见图3,输出控制电压经电阻R27后接入放大器U7的反向端,U7的正向输入端接地,U7的输出端经电阻R28连接U7的反向输入端形成负反馈,同时U7的输出端经电阻R29接入放大器U8的反向输入端,2.5V的电压经过R31与R32分压后与放大器U8的正向输入端相连接,放大器U8的输出端经电阻R30后连接U8的反向输入端形成负反馈,同时,放大器U8的输出与转向控制器3的模拟量输入口PA3相连接。
转角检测模块1与转向控制器3电连接,能够完成对车轮转角的实时检测,检测数据经过RC滤波和放大后接入导航控制器。参见图4,选用HPS-M1型线位移传感器将车轮转角信号转换成电压信号后经过电阻R13和电容C11滤波后进入放大器U12的反向输入端,放大器U12的正向输入端经电阻R15接地,U12的输出端经电阻R14后接入其反向输入端,同时U12的输出端经电阻R16后接入放大器U13的反向输入端,放大器U13的同向输入端经电阻R18后接地,U13的输出端经电阻R17后接入其反向输入端,同时与导航控制器的模拟量输入口PA5相接。
报警及紧急处理模块2与转向控制器3电连接,由喇叭、发光灯、光耦和继电器等组成。用于在液压阀运行至最大位置时,转向控制器3可以控制其与喇叭和发光灯相连的引脚为高电平发出报警信息,并且控制输出电压为零使液压阀回归中心位置。
电源模块4与转向控制器3和输出控制模块6电连接,由车载蓄电池供电,分别经过LT4356IS电路和LM7805电路产生24V防浪涌电压和5V电压,经过MD20-12D15模块产生正负15的电压,经过AD581产生10V的基准电压,为保证导航控制器的供电电压不至于过高或过低,设计了电源监控保护电路。
输出控制模块6与电源模块4、电压检测模块8和电磁比例换向阀7相连接,参见图5,选用D/A转换芯片DAC0832输出0-255的数字量,该数字量经过放大器U18-U21产生正10V至负10V范围内的电压用于控制转向电磁阀。
串口通信模块5与导航控制器相连接,采用MAX232芯片及外围电路,MAX232的10、9引脚分别与导航控制器的TX、RX引脚相连接,通过串口通信模块5可完成液压转向系统和上位机的数据交换。
本发明液压转向控制方法如下:
转向控制系统采用改进史密斯预估控制方法进行设计,由输出控制电压设定值U(S)、电压设定值滤波器L(S)、电压伺服控制器C(S)、转向系统G(S)、车轮转角反馈A(S)、抗扰动控制器D(S)和转向系统辨识模型的非延迟环节G0(S)和转向系统辨识模型的延迟环节E(S)组成。其中输出控制电压设定值U(S)与电压设定值滤波器L(S)的输入端连接,电压设定值滤波器L(S)的输出端与电压伺服控制器C(S)的正向输入端连接,电压伺服控制器C(S)的输出端与转向系统G(S)的正向输入端连接,转向系统G(S)的输出端与车轮转角反馈A(S)的输入端连接,车轮转角反馈A(S)的输出端与抗扰动控制器D(S)的正向输入端连接,抗扰动控制器D(S)的输出端与转向系统G(S)的反向输入端连接;同时,电压伺服控制器C(S)的输出端与转向系统辨识模型的非延迟环节G0(S)的输入端连接,转向系统辨识模型的非延迟环节G0(S)的输出端与转向系统辨识模型的延迟环节E(S)的输入端连接,转向系统辨识模型的延迟环节E(S)的输出端与抗扰动控制器D(S)的反向输入端连接,转向系统辨识模型的非延迟环节G0(S)的输出端与电压伺服控制器C(S)的反向输入端连接。
所述转向系统辨识模型的非延迟环节G0(S)=k/s(τs+1),其中k为转向系统辨识模型的增益,k=22.7,τ为转向系统辨识模型时间常数,τ=0.05;所述转向系统辨识模型的延迟环节E(S)=e-θs,θ为转向系统辨识模型的延迟时间,θ=0.12。
所述电压伺服控制器C(S)设计为PID形式其中Ck为电压伺服控制器的比例项系数,Cτi为电压伺服控制器的积分项系数,Cτd为电压伺服控制器的微分项系数;所述抗扰动控制器D(S)设计为串联一滤波器的PID形式:
其中Dk为抗扰动控制器的比例项系数,Dτi为抗扰动控制器的积分项系数,Dτd为抗扰动控制器的微分项系数,a,b为所述超前滞后滤波器参数;所述电压设定值滤波器L(S)设计形式为L(S)=1/(l2s2+l1s+1),其中l2,l1为电压设定值滤波器参数。
对采用以上方法设计的控制系统通过MATLAB软件中的SIMULINKL组件进行仿真实验,在输出控制电压设定值处加上一单位阶跃信号,5秒时在转向系统加一幅值为0.1的反向单位阶跃信号,得到车轮转角控制效果如图6所示。由图6可以看出,本发明给出的控制方法能够使车轮转角平稳、没有超调地跟踪输出控制电压。当假设转向系统的延迟时间增加20%时,得到受扰动转向系统的车轮转角响应效果如图7所示,系统在开始响应时出现的超调比较小,并且在受到单位阶跃信号扰动后,出现微小的波动后迅速跟踪电压设定值,没有出现发散的现象,可以看出,本发明给出的控制方法具有很好的抗扰动性能。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种拖拉机导航用液压转向控制系统,包括转向控制器,其特征在于:所述转向控制器分别连接转角检测模块、电源模块、输出控制模块、电压检测模块、报警及紧急处理模块和串口通信模块,输出控制模块还与电源模块、电压检测模块和电磁比例换向阀连接;所述电压检测模块分别与输出控制模块和转向控制器电连接;报警及紧急处理模块与转向控制器电连接;
所述转向控制器包括输出控制电压设定值U(S)、电压设定值滤波器L(S)、电压伺服控制器C(S)、转向系统G(S)、车轮转角反馈A(S)、抗扰动控制器D(S)和转向系统辨识模型的非延迟环节G0(S)和转向系统辨识模型的延迟环节E(S);输出控制电压设定值U(S)与电压设定值滤波器L(S)的输入端连接,电压设定值滤波器L(S)的输出端与电压伺服控制器C(S)的正向输入端连接,电压伺服控制器C(S)的输出端与转向系统G(S)的正向输入端连接,转向系统G(S)的输出端与车轮转角反馈A(S)的输入端连接,车轮转角反馈A(S)的输出端与抗扰动控制器D(S)的正向输入端连接,抗扰动控制器D(S)的输出端与转向系统G(S)的反向输入端连接;同时,电压伺服控制器C(S)的输出端与转向系统辨识模型的非延迟环节G0(S)的输入端连接,转向系统辨识模型的非延迟环节G0(S)的输出端与转向系统辨识模型的延迟环节E(S)的输入端连接,转向系统辨识模型的延迟环节E(S)的输出端与抗扰动控制器D(S)的反向输入端连接,转向系统辨识模型的非延迟环节G0(S)的输出端与电压伺服控制器C(S)的反向输入端连接。
2.根据权利要求1所述拖拉机导航用液压转向控制系统的设计方法,其特征在于:所述转向系统辨识模型的非延迟环节G0(S)=k/s(τs+1),其中k为转向系统辨识模型的增益,k=22.7,τ为转向系统辨识模型时间常数,τ=0.05;所述转向系统辨识模型的延迟环节E(S)=e-θs,θ为转向系统辨识模型的延迟时间,θ=0.12;S、s均表示的是拉普拉斯算符。
3.根据权利要求1所述拖拉机导航用液压转向控制系统的设计方法,其特征在于:所述电压伺服控制器C(S)设计为PID形式其中Ck为电压伺服控制器的比例项系数,Cτi为电压伺服控制器的积分项系数,Cτd为电压伺服控制器的微分项系数;所述抗扰动控制器D(S)设计为串联一滤波器的PID形式其中Dk为抗扰动控制器的比例项系数,Dτi为抗扰动控制器的积分项系数,Dτd为抗扰动控制器的微分项系数,a,b为超前滞后滤波器参数;所述电压设定值滤波器L(S)设计形式为L(S)=1/(l2s2+l1s+1),其中l2,l1为电压设定值滤波器参数;S、s均表示的是拉普拉斯算符。
CN201611103825.1A 2016-12-05 2016-12-05 一种拖拉机导航用液压转向控制系统及控制方法 Active CN106515847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611103825.1A CN106515847B (zh) 2016-12-05 2016-12-05 一种拖拉机导航用液压转向控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611103825.1A CN106515847B (zh) 2016-12-05 2016-12-05 一种拖拉机导航用液压转向控制系统及控制方法

Publications (2)

Publication Number Publication Date
CN106515847A CN106515847A (zh) 2017-03-22
CN106515847B true CN106515847B (zh) 2018-08-17

Family

ID=58354884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611103825.1A Active CN106515847B (zh) 2016-12-05 2016-12-05 一种拖拉机导航用液压转向控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN106515847B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007003256T5 (de) * 2007-01-10 2009-12-24 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Lenkvorrichtung
CN202966414U (zh) * 2012-09-26 2013-06-05 江苏骄阳转向系统有限公司 一种变流量电控液压转向系统
CN203064022U (zh) * 2012-09-29 2013-07-17 深圳职业技术学院 机动车转向控制装置
CN103979008A (zh) * 2013-02-13 2014-08-13 日立汽车系统转向器株式会社 电源电压监控电路、车辆的传感器电路及动力转向装置
CN105253192A (zh) * 2015-11-11 2016-01-20 盐城市盐海拖拉机制造有限公司 一种汽车电动液压助力转向系统的控制方法
CN206217997U (zh) * 2016-12-05 2017-06-06 聊城大学 一种拖拉机导航用液压转向控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629533B2 (ja) * 2005-08-22 2011-02-09 日立オートモティブシステムズ株式会社 液圧制御装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007003256T5 (de) * 2007-01-10 2009-12-24 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Lenkvorrichtung
CN202966414U (zh) * 2012-09-26 2013-06-05 江苏骄阳转向系统有限公司 一种变流量电控液压转向系统
CN203064022U (zh) * 2012-09-29 2013-07-17 深圳职业技术学院 机动车转向控制装置
CN103979008A (zh) * 2013-02-13 2014-08-13 日立汽车系统转向器株式会社 电源电压监控电路、车辆的传感器电路及动力转向装置
CN105253192A (zh) * 2015-11-11 2016-01-20 盐城市盐海拖拉机制造有限公司 一种汽车电动液压助力转向系统的控制方法
CN206217997U (zh) * 2016-12-05 2017-06-06 聊城大学 一种拖拉机导航用液压转向控制系统

Also Published As

Publication number Publication date
CN106515847A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106502252B (zh) 多传感器融合的拖拉机导航控制系统的控制方法
CN102591342B (zh) 基于电子罗盘的割草机器人局部路径规划方法
CN105612909B (zh) 基于视觉和多传感器融合的智能割草机器人控制系统
CN205941678U (zh) 一种基于分流器的动力电池电流检测装置
CN206696705U (zh) 基于模糊控制的农机车载导航控制器
CN106515847B (zh) 一种拖拉机导航用液压转向控制系统及控制方法
CN201965486U (zh) 智能循迹小车
CN201853134U (zh) 一种应用于播深自控系统的室内试验台
CN206217997U (zh) 一种拖拉机导航用液压转向控制系统
CN207403804U (zh) 一种桑园液压转向微耕机的机电液控制系统
CN107651007A (zh) 一种桑园液压转向微耕机的机电液控制系统及方法
CN111594295A (zh) 一种双线圈组滑油屑末在线监测系统
CN101907895B (zh) 驾束式激光导航装置
CN205826070U (zh) 一种偏远地区水库液位远程监测系统
CN109362689A (zh) 一种无人机变量施药控制装置及其分级控制方法
CN109239437B (zh) 一种含自检冗余功能的电流传感器
CN109819757A (zh) 一种联合收获机的收获边界定位跟踪系统及方法
CN203324814U (zh) 智能避障小车
CN207198344U (zh) 一种基于GMR传感器的ZigBee车辆检测系统
CN206648662U (zh) 基于电感传感器的自动循迹装置
Nan Research on Robot Obstacle Avoidance System Based on Computer Path Planning
CN206726002U (zh) 应用在电动车的远程监控系统
CN212563380U (zh) 一种双线圈组滑油屑末在线监测系统
CN110308677A (zh) 一种分动箱监控方法及系统
CN220872914U (zh) 一种非编程电磁循迹小车

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant