CN106510708A - 用于多对比度脑磁共振数据中异常检测的框架 - Google Patents
用于多对比度脑磁共振数据中异常检测的框架 Download PDFInfo
- Publication number
- CN106510708A CN106510708A CN201610827542.5A CN201610827542A CN106510708A CN 106510708 A CN106510708 A CN 106510708A CN 201610827542 A CN201610827542 A CN 201610827542A CN 106510708 A CN106510708 A CN 106510708A
- Authority
- CN
- China
- Prior art keywords
- abnormal
- view data
- computer
- brain
- voxel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 36
- 238000001514 detection method Methods 0.000 title claims description 19
- 230000005856 abnormality Effects 0.000 title abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 77
- 230000002159 abnormal effect Effects 0.000 claims description 69
- 230000008569 process Effects 0.000 claims description 41
- 238000003384 imaging method Methods 0.000 claims description 11
- 210000001519 tissue Anatomy 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000036541 health Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 6
- 230000003821 menstrual periods Effects 0.000 claims description 4
- 210000003625 skull Anatomy 0.000 claims description 4
- 238000012952 Resampling Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 claims description 3
- 230000008520 organization Effects 0.000 claims description 3
- 201000006417 multiple sclerosis Diseases 0.000 description 12
- 208000006011 Stroke Diseases 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 210000004885 white matter Anatomy 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000002595 magnetic resonance imaging Methods 0.000 description 6
- 230000015654 memory Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 210000004884 grey matter Anatomy 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 3
- 230000006931 brain damage Effects 0.000 description 3
- 231100000874 brain damage Toxicity 0.000 description 3
- 208000029028 brain injury Diseases 0.000 description 3
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 206010008190 Cerebrovascular accident Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 241001269238 Data Species 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000003727 cerebral blood flow Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000256844 Apis mellifera Species 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000013450 outlier detection Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009529 traumatic brain injury Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/0037—Performing a preliminary scan, e.g. a prescan for identifying a region of interest
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0042—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
- A61B2576/02—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
- A61B2576/026—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0013—Medical image data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/20—Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
- A61B5/201—Assessing renal or kidney functions
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- High Energy & Nuclear Physics (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Primary Health Care (AREA)
- Psychology (AREA)
- Neurosurgery (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910992877.6A CN110710973B (zh) | 2015-09-15 | 2016-09-14 | 用于多对比度脑磁共振数据中异常检测的框架 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/854,330 US20170071470A1 (en) | 2015-09-15 | 2015-09-15 | Framework for Abnormality Detection in Multi-Contrast Brain Magnetic Resonance Data |
US14/854330 | 2015-09-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910992877.6A Division CN110710973B (zh) | 2015-09-15 | 2016-09-14 | 用于多对比度脑磁共振数据中异常检测的框架 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106510708A true CN106510708A (zh) | 2017-03-22 |
CN106510708B CN106510708B (zh) | 2021-10-22 |
Family
ID=58257040
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610827542.5A Active CN106510708B (zh) | 2015-09-15 | 2016-09-14 | 用于多对比度脑磁共振数据中异常检测的框架 |
CN201910992877.6A Active CN110710973B (zh) | 2015-09-15 | 2016-09-14 | 用于多对比度脑磁共振数据中异常检测的框架 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910992877.6A Active CN110710973B (zh) | 2015-09-15 | 2016-09-14 | 用于多对比度脑磁共振数据中异常检测的框架 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20170071470A1 (zh) |
CN (2) | CN106510708B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111242169A (zh) * | 2019-12-31 | 2020-06-05 | 浙江工业大学 | 一种基于图片相似度计算的脑纤维视角自动选择方法 |
CN111696113A (zh) * | 2019-03-14 | 2020-09-22 | 西门子医疗有限公司 | 用于监视生物过程的方法和系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170071470A1 (en) * | 2015-09-15 | 2017-03-16 | Siemens Healthcare Gmbh | Framework for Abnormality Detection in Multi-Contrast Brain Magnetic Resonance Data |
US20200037962A1 (en) * | 2018-08-01 | 2020-02-06 | General Electric Company | Plane selection using localizer images |
US20230389879A1 (en) * | 2022-06-03 | 2023-12-07 | Optum, Inc. | Machine learning techniques for mri processing using regional scoring of non-parametric voxel integrity rankings |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040148140A1 (en) * | 2001-05-31 | 2004-07-29 | Lionel Tarassenko | Patient condition display |
CN102939616A (zh) * | 2010-06-14 | 2013-02-20 | 皇家飞利浦电子股份有限公司 | 组织分类 |
US20140149325A1 (en) * | 2011-05-24 | 2014-05-29 | Isis Innovation Limited | System monitor and method of system monitoring |
CN104881687A (zh) * | 2015-06-02 | 2015-09-02 | 四川理工学院 | 基于半监督高斯混合模型的磁共振图像分类方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1066380A (zh) * | 1991-05-07 | 1992-11-25 | 王宪举 | 脑电向量分析仪及其方法 |
DE10155790B4 (de) * | 2001-11-14 | 2005-04-07 | Siemens Ag | Magnet-Resonanz-Bildgebung unter Verwendung einer interaktiven Kontrastoptimierung |
DE10162927A1 (de) * | 2001-12-20 | 2003-07-17 | Siemens Ag | Auswerten von mittels funktionaler Magnet-Resonanz-Tomographie gewonnenen Bildern des Gehirns |
CN101068498A (zh) * | 2004-10-04 | 2007-11-07 | 旗帜健康公司 | 链接来自多模态数据集的图案的方法 |
JP4921882B2 (ja) * | 2006-07-31 | 2012-04-25 | 株式会社東芝 | 脳血管診断装置及び医用画像診断装置 |
CN101896942B (zh) * | 2007-12-14 | 2014-09-10 | 皇家飞利浦电子股份有限公司 | 脑图像数据的图像分析 |
GB0914915D0 (en) * | 2009-08-26 | 2009-09-30 | Oxford Biosignals Ltd | System monitoring |
DE102011005445B4 (de) * | 2011-03-11 | 2014-10-09 | Siemens Aktiengesellschaft | Normalisierung von Magnetresonanzbilddaten bei bewegtem Tisch |
WO2012149401A1 (en) * | 2011-04-29 | 2012-11-01 | Magnetic Resonance Innovations, Inc. | Tissue similarity mapping |
US9888876B2 (en) * | 2012-03-21 | 2018-02-13 | The Johns Hopkins University | Method of analyzing multi-sequence MRI data for analysing brain abnormalities in a subject |
US9734573B2 (en) * | 2013-04-17 | 2017-08-15 | The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services | Methods and systems for automatically determining magnetic field inversion time of a tissue species |
US9324155B2 (en) * | 2014-03-10 | 2016-04-26 | General Electric Company | Systems and methods for determining parameters for image analysis |
US20170071470A1 (en) * | 2015-09-15 | 2017-03-16 | Siemens Healthcare Gmbh | Framework for Abnormality Detection in Multi-Contrast Brain Magnetic Resonance Data |
-
2015
- 2015-09-15 US US14/854,330 patent/US20170071470A1/en not_active Abandoned
-
2016
- 2016-09-14 CN CN201610827542.5A patent/CN106510708B/zh active Active
- 2016-09-14 CN CN201910992877.6A patent/CN110710973B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040148140A1 (en) * | 2001-05-31 | 2004-07-29 | Lionel Tarassenko | Patient condition display |
CN102939616A (zh) * | 2010-06-14 | 2013-02-20 | 皇家飞利浦电子股份有限公司 | 组织分类 |
US20140149325A1 (en) * | 2011-05-24 | 2014-05-29 | Isis Innovation Limited | System monitor and method of system monitoring |
CN104881687A (zh) * | 2015-06-02 | 2015-09-02 | 四川理工学院 | 基于半监督高斯混合模型的磁共振图像分类方法 |
Non-Patent Citations (3)
Title |
---|
RACHANA RANA 等: "Brain Tumour Extraction from MRI Images Using Bounding-Box with Level Set Method", 《2013 SIXTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING》 * |
S.J.ROBERTS: "Extreme value statistics for novelty detection in biomedical data processing", 《MEDICAL SIGNAL PROCESSING》 * |
SAMUEL HUGUENY等: "NOVELTY DETECTION WITH MULTIVARIATE EXTREME VALUE THEORY, PART II: AN ANALYTICAL APPROACH TO UNIMODAL ESTIMATION", 《2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111696113A (zh) * | 2019-03-14 | 2020-09-22 | 西门子医疗有限公司 | 用于监视生物过程的方法和系统 |
CN111696113B (zh) * | 2019-03-14 | 2023-11-21 | 西门子医疗有限公司 | 用于监视生物过程的方法和系统 |
CN111242169A (zh) * | 2019-12-31 | 2020-06-05 | 浙江工业大学 | 一种基于图片相似度计算的脑纤维视角自动选择方法 |
CN111242169B (zh) * | 2019-12-31 | 2024-03-26 | 浙江工业大学 | 一种基于图片相似度计算的脑纤维视角自动选择方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170071470A1 (en) | 2017-03-16 |
CN106510708B (zh) | 2021-10-22 |
CN110710973B (zh) | 2024-04-16 |
CN110710973A (zh) | 2020-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11741601B2 (en) | Systems and methods for analyzing perfusion-weighted medical imaging using deep neural networks | |
EP3207521B1 (en) | Image analysis method supporting illness development prediction for a neoplasm in a human or animal body | |
US12000918B2 (en) | Systems and methods of reconstructing magnetic resonance images using deep learning | |
CN106510708A (zh) | 用于多对比度脑磁共振数据中异常检测的框架 | |
Mehmood et al. | Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation | |
Ristovski et al. | Uncertainty in medical visualization: Towards a taxonomy | |
CN110415234A (zh) | 基于多参数磁共振成像的脑部肿瘤分割方法 | |
Yang et al. | A deep learning segmentation approach in free‐breathing real‐time cardiac magnetic resonance imaging | |
US11900606B2 (en) | Tumor segmentation tool | |
Singh et al. | Classification of first trimester ultrasound images using deep convolutional neural network | |
Ansari et al. | Multiple sclerosis lesion segmentation in brain MRI using inception modules embedded in a convolutional neural network | |
US20230386032A1 (en) | Lesion Detection and Segmentation | |
CN114332132A (zh) | 图像分割方法、装置和计算机设备 | |
Li et al. | BrainK for structural image processing: creating electrical models of the human head | |
Yerukalareddy et al. | Brain tumor classification based on mr images using GAN as a pre-trained model | |
US20240346805A1 (en) | Object reconstruction in digital images | |
Wein et al. | Forecasting brain activity based on models of spatiotemporal brain dynamics: A comparison of graph neural network architectures | |
Lee et al. | Detection of cerebral microbleeds in MR images using a single‐stage triplanar ensemble detection network (TPE‐Det) | |
US11435422B2 (en) | Anomaly detection using magnetic resonance fingerprinting | |
Lim et al. | Fitting a directional microstructure model to diffusion-relaxation mri data with self-supervised machine learning | |
US20230337987A1 (en) | Detecting motion artifacts from k-space data in segmentedmagnetic resonance imaging | |
Abd-Elmoniem et al. | Direct pixel to pixel principal strain mapping from tagging MRI using end to end deep convolutional neural network (DeepStrain) | |
US20220346659A1 (en) | Mapping peritumoral infiltration and prediction of recurrence using multi-parametric magnetic resonance fingerprinting radiomics | |
Moghtaderi et al. | Advancing multimodal medical image fusion: an adaptive image decomposition approach based on multilevel Guided filtering | |
Nunes et al. | A Survey on Visualizing Magnetic Resonance Spectroscopy Data. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Erlangen, Germany Applicant after: Siemens Healthineers AG Address before: Erlangen, Germany Applicant before: SIEMENS HEALTHCARE GmbH |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240830 Address after: German Phu F Haim Patentee after: Siemens Medical AG Country or region after: Germany Address before: Erlangen Patentee before: Siemens Healthineers AG Country or region before: Germany |
|
TR01 | Transfer of patent right |