CN106505586B - 大功率低频振荡试验电源装置 - Google Patents

大功率低频振荡试验电源装置 Download PDF

Info

Publication number
CN106505586B
CN106505586B CN201610921622.7A CN201610921622A CN106505586B CN 106505586 B CN106505586 B CN 106505586B CN 201610921622 A CN201610921622 A CN 201610921622A CN 106505586 B CN106505586 B CN 106505586B
Authority
CN
China
Prior art keywords
voltage
frequency
low
control
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610921622.7A
Other languages
English (en)
Other versions
CN106505586A (zh
Inventor
祁晓笑
于永军
郭自勇
孙贤大
王绪宝
王方楠
吕孝国
王飞义
李海生
杨洋
刘大贵
王强
王继浩
孔祥声
杨永飞
范巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Rongxin Industrial Electric Power Technology Co ltd
Electric Power Research Institute of State Grid Xinjiang Electric Power Co Ltd
Original Assignee
Liaoning Rongxin Xingye Electric Power Technology Co Ltd
Electric Power Research Institute of State Grid Xinjiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Rongxin Xingye Electric Power Technology Co Ltd, Electric Power Research Institute of State Grid Xinjiang Electric Power Co Ltd filed Critical Liaoning Rongxin Xingye Electric Power Technology Co Ltd
Priority to CN201610921622.7A priority Critical patent/CN106505586B/zh
Publication of CN106505586A publication Critical patent/CN106505586A/zh
Application granted granted Critical
Publication of CN106505586B publication Critical patent/CN106505586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明一种大功率低频振荡试验电源装置,可测试动态无功补偿装置及并网变流器等设备在电网存在低频振荡工况下的控制性能及低频振荡抑制功能。大功率低频振荡试验电源装置并联在电网上通过采样电网电压、整流阀侧电流、直流侧电压实现整流侧的定直流侧电压及定无功功率控制;逆变侧通过采样电源输出电压作为控制器反馈输入信号进行定交流侧电压与频率控制,同时采用电压闭环对电网低频电压进行控制从而实现电网电压低频振荡发生器功能。

Description

大功率低频振荡试验电源装置
技术领域
本发明涉及的是一种大功率低频振荡试验电源装置,针对动态无功补偿装置及并网变流器等设备在电网存在低频振荡情况下性能进行测试。
背景技术
随着电网规模的日益扩大和电网负荷水平的急剧增长,谐波问题日益突出。负载电流中存在的谐波信号有可能与电网系统阻抗或系统中的无功补偿装置发生谐振,引起谐振放大现象,造成负载过电压保护。谐波电流通常指电网频率整数倍的谐波,但也存在非整数倍的谐波,称为间谐波。位于电网频率附近的间谐波与电网阻抗发生谐振时,电网电压幅度将会出现以电网频率和间谐波频率的差值为振荡频率的低频振荡现象。
风电场装设动态无功补偿设备可以提供无功支撑,有效缓解电网电压波动及提高系统稳定性。在电网发生低频振荡工况下动态无功补偿设备及风机控制策略及参数对电力系统稳定具有重要影响,无低频振荡抑制控制策略或相关参数参数设置不合理可能进一步发散电力系统低频振荡现象。
针对并网变流器等设备存在诱发低频振荡可能波及在低频荡工况下动态无功补偿装置存在进一步发散电力系统低频振荡现象,决定研发设计一种大功率低频振荡试验电源装置,可实现对动态无功补偿装置及并网变流器等设备在电网存在低频振荡情况下性能进行测试。
发明内容
本发明是一种大功率低频振荡试验电源装置,测试动态无功补偿装置及并网变流器等设备在电网存在低频振荡工况下的控制性能及低频振荡抑制功能。
为实现上述发明目的,通过以下技术方案实现:
一种大功率低频振荡试验电源装置,包括系统电源、电网电压PT、整流阀侧电流CT、低频振荡试验电源、电源输出电压PT、整流侧控制器、逆变侧控制器、风机变流器或无功补偿器、直流电压PT,其特征在于,所述大功率低频振荡试验电源装置并联在电网上通过采样电网电压、整流阀侧电流、直流侧电压实现整流侧的定直流侧电压及定无功功率控制;逆变侧通过采样电源输出电压作为控制器反馈输入信号进行定交流侧电压与频率控制,同时采用电压闭环对电网低频电压进行控制,从而实现电网电压低频振荡发生器功能。
所述的一种大功率低频振荡试验电源装置,具体的实现方法是:
1)将低频振荡实验电源并联挂接在系统电源上,启动整流侧单元,整流侧控制器采样电网电压PT、整流阀侧电流CT、直流电压PT实现整流侧的定直流侧电压及定无功功率控制;
2)直流侧电压建立后启动逆变侧单元,逆变侧控制器通过采样电源输出电压PT5作为控制器反馈输入信号进行定交流侧电压与频率控制;启动风机变流器或无功补偿设备使其正常工作;逆变侧通过电压闭环对电网低频电压进行控制从而实现电网电压低频振荡发生器功能;观察被测试设备性能及使能变流器或补偿设备低频振荡抑制功能,观察被测试设备抑制效果;
整流侧定直流侧电压及定无功功率控制的具体控制策略如下:
整流控制策略由直流电压外环与有功、无功电流内环组成,直流电压外环参考值Udc_ref与反馈值Udc_fdb做差进入PI控制器环节;PI控制器输出作为有功电流内环的电流参考值;整流器输出电流检测值Ia、Ib、Ic经abc/dq变换得到同步旋转坐标系下的直流电Id、Iq;将电流内环电流参考值Id_ref、Iq_ref与电流反馈值Id、Iq进行比较通过相应的PI调节器实现电流内环的无静差控制;电流内环PI控制器输出分量Ud*、Uq*与前馈分量、解耦分量运算得到整流器控制输出Md、Mq;Md、Mq经dq/abc逆变换得到整流控制调制波Ma、Mb、Mc从而实现整流侧定直流侧电压与定无功功率控制;
逆变侧定交流侧电压与频率控制的控制策略如下:
首先实现电网基频电压与低频电压的检测:逆变侧低频振荡发生器采样逆变器输出电压Ua、Ub、Uc;Ua、Ub、Uc在基频下进行DQ变换得到Ud与Uq;经平均值滤波后输出基频成分在DQ坐标系下的直流分量Ud_f与Uq_f;同时Ud与Uq经过带通滤波器得到低频振荡分量Ud_dp与Uq_dp;低频振荡分量Ud_dp与Uq_dp在振荡频率下进行DQ变换得到振荡频率成分在DQ坐标系下的直流分量Ud_dp_d、Ud_dp_q、Uq_dp_d、Uq_dp_q;求取DQ坐标系下的电压幅值A_d_dp、A_q_dp;
通过上述检测实现基波d轴幅值Ud_f、基波q轴幅值Uq_f,低频d轴幅值A_d_dp、低频q轴幅值A_q_dp检测;基频幅值Ud_f、Uq_f与Ud_ref、Uq_ref做差进入PI控制器环节;PI控制器输出Ud*、Uq*在基频下进行DQ反变换得到调制波Ma、Mb、Mc控制逆变器基频输出电压;低频幅值A_d_dp、A_q_dp与Ud_dp_ref、Uq_dp_ref做差进入PI控制器环节;PI控制器输出Ud_dp、Uq_dp与低频振荡频率正弦波相乘得到低频振荡控制分量Ud_dp*、Uq_dp*;Ud_dp*、Uq_dp*在基频下进行DQ反变换得到调制波Ma_dp、Mb_dp、Mc_dp,控制逆变器低频输出电压。
与现有技术相比,本发明的有益效果是:
针对并网变流器等设备存在诱发低频振荡可能波及在低频荡工况下动态无功补偿装置存在进一步发散电力系统低频振荡现象,研发设计的一种大功率低频振荡试验电源装置,可实现对动态无功补偿装置及并网变流器等设备在电网存在低频振荡情况下性能进行测试。
附图说明
图1低频振荡测试系统拓扑结构图。
图2整流侧控制策略原理框图。
图3逆变侧控制策略原理框图。
图4电网基频电压与低频电压检测原理框图。
图5低频振荡实验电源测试具体实施流程图。
图6低频振荡(10Hz、0.1pu)实验电源发生器电压波形。
图7低频振荡(10Hz、0.1pu)实验电源发生器电压FFT频谱。
具体实施方式
下面结合附图对本发明的具体内容及实施例作进一步详细描述。
大功率低频振荡试验电源装置并联在电网上通过采样电网电压、整流阀电流、直流侧电压实现整流侧的定直流侧电压及定无功功率控制;逆变侧通过采样电源输出电压作为控制器反馈输入信号进行定交流侧电压与频率控制,同时采用电压闭环对电网低频电压进行控制从而实现电网电压低频振荡发生器功能。
如图1所示,大功率低频振荡试验电源装置,本发明方案包含系统电源1电网电压PT 2、整流阀侧电流CT 3、低频振荡实验电源4、电源输出电压PT 5、整流侧控制器6、逆变侧控制器7、风机变流器或无功补偿器8、直流侧电压PT9。方案拓扑如图1所示:通过低频振荡实验电源4并联挂接在系统电源1上,启动整流侧单元,整流侧控制器6采样电网电压PT 2、整流阀侧电流CT3、直流侧电压PT9实现整流侧的定直流侧电压及定无功功率控制;直流侧电压建立后启动逆变侧单元,逆变侧控制器7通过采样电源输出电压PT5作为控制器反馈输入信号进行定交流侧电压与频率控制;启动风机变流器或无功补偿设备8使其正常工作;逆变侧通过电压闭环对电网低频电压进行控制从而实现电网电压低频振荡发生器功能;观察被测试设备性能及;使能变流器或补偿设备低频振荡抑制功能,观察被测试设备抑制效果。
试验过程如下:
1.完成低频振荡实验电源初步调试(完成实验电源控制箱、信号处理单元、实验电源阀组和设备初步调试)。确定低频振荡实验电源能够正常的进行采样和控制等重要操作。
2.启动整流侧,通过图2所示控制策略实现整流侧定直流侧电压与定无功功率控制功能;
3.启动逆变侧,通过图3所示控制策略实现定交流侧电压及频率控制功能;
4.对整流侧、逆变侧数据进行分析,确定系统运行正常。
5.接入被测试设备,启动被测试设备使其正常运行。
6.通过上位机设置低频振荡幅值及频率,观察被测设备运行状态并对其数据进行分析,判断设备在电网电压中存在低频振荡工况下工作性能,同时通过低频振荡实验电源录波数据分析被测设备的性能表现。
7.使能被测设备的低频振荡抑制功能,对低频振荡实验电源的录波数据进行分析,评估被测设备的抑制功能效果。
8.分析整理相关数据。
如图2所示,整流侧的控制策略如下:
整流控制策略由直流电压外环与有功、无功电流内环组成。直流电压外环参考值Udc_ref与反馈值Udc_fdb做差进入PI控制器环节;PI控制器输出作为有功电流内环的电流参考值;整流器输出电流检测值Ia、Ib、Ic经abc/dq变换得到同步旋转坐标系下的直流量Id、Iq;将电流内环电流参考值Id_ref、Iq_ref与电流反馈值Id、Iq进行比较通过相应的PI调节器实现电流内环的无静差控制;电流内环PI控制器输出分量Ud*、Uq*与前馈分量、解耦分量运算得到整流器控制输出Md、Mq;Md、Mq经dq/abc逆变换得到整流控制调制波Ma、Mb、Mc从而实现整流侧定直流侧电压与定无功功率控制;
如图4所示,电网基频电压与低频电压检测方法如下:
逆变侧低频振荡发生器采样逆变器输出电压Ua、Ub、Uc;Ua、Ub、Uc在基频下进行DQ变换得到Ud与Uq;经平均值滤波后输出基频成分在DQ坐标系下的直流分量Ud_f与Uq_f;同时Ud与Uq经过带通滤波器得到低频振荡分量Ud_dp与Uq_dp;低频振荡分量Ud_dp与Uq_dp在振荡频率下进行DQ变换得到振荡频率成分在DQ坐标系下的直流分量Ud_dp_d、Ud_dp_q、Uq_dp_d、Uq_dp_q;求取DQ坐标系下的电压幅值A_d_dp、A_q_dp。
通过上述检测实现基波d轴幅值Ud_f、基波q轴幅值Uq_f,低频d轴幅值A_d_dp、低频q轴幅值A_q_dp检测。
如图3所示,逆变侧的控制策略如下:
基频幅值Ud_f、Uq_f与Ud_ref、Uq_ref做差进入PI控制器环节;PI控制器输出Ud*、Uq*在基频下进行DQ反变换得到调制波Ma、Mb、Mc控制逆变器基频输出电压;低频幅值A_d_dp、A_q_dp与Ud_dp_ref、Uq_dp_ref做差进入PI控制器环节;PI控制器输出Ud_dp、Uq_dp与低频振荡频率正弦波相乘得到低频振荡控制分量Ud_dp*、Uq_dp*;Ud_dp*、Uq_dp*在基频下进行DQ反变换得到调制波Ma_dp、Mb_dp、Mc_dp,控制逆变器低频输出电压。

Claims (1)

1.一种大功率低频振荡试验电源装置,包括电网系统电源、电网电压PT、整流阀侧电流CT、低频振荡试验电源、电源输出电压PT、整流侧控制器、逆变侧控制器、风机变流器或无功补偿器、直流电压PT,所述大功率低频振荡试验电源装置并联在电网上通过采样电网电压、整流阀侧电流、直流侧电压实现整流侧的定直流侧电压及定无功功率控制;逆变侧通过采样电源输出电压作为控制器反馈输入信号进行定交流侧电压与频率控制,同时采用电压闭环对电网低频电压进行控制,从而实现电网电压低频振荡发生器功能,其特征在于,具体的实现方法是:
1)将低频振荡试验电源并联挂接在电网系统电源上,启动整流侧单元,整流侧控制器采样电网电压PT、整流阀侧电流CT、直流电压PT实现整流侧的定直流侧电压及定无功功率控制;
2)直流侧电压建立后启动逆变侧单元,逆变侧控制器通过采样电源输出电压PT作为控制器反馈输入信号进行定交流侧电压与频率控制;启动风机变流器或无功补偿器使其正常工作;逆变侧通过电压闭环对电网低频电压进行控制从而实现电网电压低频振荡发生器功能;观察被测试设备性能及使能变流器或补偿器低频振荡抑制功能,观察被测试设备抑制效果;
整流侧定直流侧电压及定无功功率控制的具体控制策略如下:
整流控制策略由直流电压外环与有功、无功电流内环组成,直流电压外环参考值Udc_ref与反馈值Udc_fdb做差进入PI控制器环节;PI控制器输出作为有功电流内环的电流参考值;整流器输出电流检测值Ia、Ib、Ic经abc/dq变换得到同步旋转坐标系下的直流电Id、Iq;将电流内环电流参考值Id_ref、Iq_ref与电流反馈值Id、Iq进行比较通过相应的PI调节器实现电流内环的无静差控制;电流内环PI控制器输出分量Ud*、Uq*与前馈分量、解耦分量运算得到整流器控制输出Md、Mq;Md、Mq经dq/abc逆变换得到整流控制调制波Ma、Mb、Mc从而实现整流侧定直流侧电压与定无功功率控制;
逆变侧定交流侧电压与频率控制的控制策略如下:
首先实现电网基频电压与低频电压的检测:逆变侧低频振荡发生器采样逆变器输出电压Ua、Ub、Uc;Ua、Ub、Uc在基频下进行DQ变换得到Ud与Uq;经平均值滤波后输出基频成分在DQ坐标系下的基波d轴幅值Ud_f与基波q轴幅值Uq_f;同时Ud与Uq经过带通滤波器得到低频振荡分量Ud_dp与Uq_dp;低频振荡分量Ud_dp与Uq_dp在振荡频率下进行DQ变换得到振荡频率成分在DQ坐标系下的直流分量Ud_dp_d、Ud_dp_q、Uq_dp_d、Uq_dp_q;求取DQ坐标系下的电压幅值A_d_dp、A_q_dp;
通过上述检测实现基波d轴幅值Ud_f、基波q轴幅值Uq_f,低频d轴幅值A_d_dp、低频q轴幅值A_q_dp检测;基波d轴幅值Ud_f、基波q轴幅值Uq_f与参考值Ud_ref、Uq_ref做差进入PI控制器环节;PI控制器输出Ud*、Uq*在基频下进行DQ反变换得到调制波Ma、Mb、Mc控制逆变器基频输出电压;低频d轴幅值A_d_dp、低频q轴幅值A_q_dp与参考值Ud_dp_ref、Uq_dp_ref做差进入PI控制器环节;PI控制器输出Ud_dp、Uq_dp与低频振荡频率正弦波相乘得到低频振荡控制分量Ud_dp*、Uq_dp*;Ud_dp*、Uq_dp*在基频下进行DQ反变换得到调制波Ma_dp、Mb_dp、Mc_dp,控制逆变器低频输出电压。
CN201610921622.7A 2016-10-21 2016-10-21 大功率低频振荡试验电源装置 Active CN106505586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610921622.7A CN106505586B (zh) 2016-10-21 2016-10-21 大功率低频振荡试验电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610921622.7A CN106505586B (zh) 2016-10-21 2016-10-21 大功率低频振荡试验电源装置

Publications (2)

Publication Number Publication Date
CN106505586A CN106505586A (zh) 2017-03-15
CN106505586B true CN106505586B (zh) 2019-09-20

Family

ID=58318429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610921622.7A Active CN106505586B (zh) 2016-10-21 2016-10-21 大功率低频振荡试验电源装置

Country Status (1)

Country Link
CN (1) CN106505586B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863893A (zh) * 2017-12-14 2018-03-30 中机国际工程设计研究院有限责任公司 中点自平衡三电平整流系统
CN117650495B (zh) * 2024-01-30 2024-04-09 清华大学 柔性交流牵引变流器接触网故障暂态电压抑制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2001213B (en) * 1977-07-18 1982-01-06 Siemens Ag Control arrangement
CN102545201A (zh) * 2011-12-27 2012-07-04 上海交通大学 高压直流输电小信号模型建立的方法
CN102944778A (zh) * 2012-11-05 2013-02-27 电子科技大学 一种便携式电力系统低频振荡检测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2001213B (en) * 1977-07-18 1982-01-06 Siemens Ag Control arrangement
CN102545201A (zh) * 2011-12-27 2012-07-04 上海交通大学 高压直流输电小信号模型建立的方法
CN102944778A (zh) * 2012-11-05 2013-02-27 电子科技大学 一种便携式电力系统低频振荡检测装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Active power modulation assisting controller scheme implemented on a VSC-HVDC link establishing effective damping of low frequency power oscillations;Melios Hadjikypris et al.;《2014 IEEE International Energy Conference (ENERGYCON)》;20140516;第295-302页 *
基于低频电源的LC串联谐振滤波电路的设计;孙四通等;《proceeding 2011 International Conference on Software Engineering and Multimedia Communication》;20110709;第211-213页 *
连接VSC-HVDC的弱电网低频振荡研究;刘正茂等;《电力科学与技术学报》;20160328;第31卷(第1期);第34-40页 *

Also Published As

Publication number Publication date
CN106505586A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
Sangwongwanich et al. Analysis and modeling of interharmonics from grid-connected photovoltaic systems
Roinila et al. Broadband methods for online grid impedance measurement
Kumar et al. Dual-tree complex wavelet transform-based control algorithm for power quality improvement in a distribution system
JP6043543B2 (ja) インバータ回路を制御する制御回路、および、当該制御回路を備えたインバータ装置
US9184652B2 (en) Method and apparatus for inverter output current harmonic reduction
Hu et al. A configurable virtual impedance method for grid-connected virtual synchronous generator to improve the quality of output current
Qian et al. An improved adaptive detection method for power quality improvement
CN106505586B (zh) 大功率低频振荡试验电源装置
WO2019184305A1 (zh) 一种适用于并网逆变器的无电流传感器型进网电流控制方法
Soltani et al. Effects of passive components on the input current interharmonics of adjustable-speed drives
CN104950194B (zh) 电力网络中的孤岛状况的检测
Yang et al. Automation of impedance measurement for harmonic stability assessment of MMC-HVDC systems
Arya et al. Amplitude adaptive notch filter with optimized PI gains for mitigation of voltage based power quality problems
Yang et al. Analysis on harmonic resonance of offshore wind farm transmitted by MMC-HVDC system
CN101876689A (zh) 大型发电机组监测系统
Peresada et al. Selective and adaptive harmonics estimation for three-phase shunt active power filters
Habibullin et al. Active power filter with common DC link for compensation of harmonic distortion in power grids
Sun Modeling and analysis of harmonic resonance involving renewable energy sources
Razali et al. Real-time implementation of dq control for grid connected three phase voltage source converter
Razali et al. Implementation of dq decoupling and feed-forward current controller for grid connected three phase voltage source converter
Guowei et al. The control for grid connected inverter of distributed generation under unbalanced grid voltage
CN205484448U (zh) 基于电流源的异频信号恒流输出装置
Miao et al. Online measurements of high-band grid impedance using variable frequency carrier based PWM schemes
Wang et al. A Data-Driven Oscillation Mode Identification for Converter-Dominated Power Systems
Xu et al. A design of power quality analysis and monitoring circuit for high power motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 830011 Xinjiang Uygur Autonomous Region Urumqi Hi-tech Industrial Development Zone (New Urban District) No. 66 East Lane, Changchun Middle Road

Applicant after: STATE GRID XINJIANG ELECTRIC POWER CO., LTD., ELECTRIC POWER Research Institute

Applicant after: MONTNETS RONGXIN TECHNOLOGY GROUP CO.,LTD.

Address before: 830011 Xinjiang Uygur Autonomous Region Urumqi Hi-tech Industrial Development Zone (New Urban District) No. 66 East Lane, Changchun Middle Road

Applicant before: ELECTRIC POWER SCIENCES RESEARCH INSTITUTE OF STATE GRID XINJIANG ELECTRIC POWER Co.

Applicant before: MONTNETS RONGXIN TECHNOLOGY GROUP CO.,LTD.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20190430

Address after: 830011 No. 200 Hengda Street, Urumqi High-tech Industrial Development Zone, Xinjiang Uygur Autonomous Region

Applicant after: STATE GRID XINJIANG ELECTRIC POWER CO., LTD., ELECTRIC POWER Research Institute

Applicant after: LIAONING RONGXIN INDUSTRIAL ELECTRIC POWER TECHNOLOGY CO.,LTD.

Address before: 830011 Xinjiang Uygur Autonomous Region Urumqi Hi-tech Industrial Development Zone (New Urban District) No. 66 East Lane, Changchun Middle Road

Applicant before: STATE GRID XINJIANG ELECTRIC POWER CO., LTD., ELECTRIC POWER Research Institute

Applicant before: MONTNETS RONGXIN TECHNOLOGY GROUP CO.,LTD.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant