CN106501156B - 现场确定外管弱透水层水文地质参数的外管降深双管法 - Google Patents

现场确定外管弱透水层水文地质参数的外管降深双管法 Download PDF

Info

Publication number
CN106501156B
CN106501156B CN201611146674.8A CN201611146674A CN106501156B CN 106501156 B CN106501156 B CN 106501156B CN 201611146674 A CN201611146674 A CN 201611146674A CN 106501156 B CN106501156 B CN 106501156B
Authority
CN
China
Prior art keywords
aquiclude
water
outer tube
tube
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611146674.8A
Other languages
English (en)
Other versions
CN106501156A (zh
Inventor
周志芳
郭巧娜
赵燕容
马筠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201611146674.8A priority Critical patent/CN106501156B/zh
Publication of CN106501156A publication Critical patent/CN106501156A/zh
Application granted granted Critical
Publication of CN106501156B publication Critical patent/CN106501156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种现场确定外管弱透水层水文地质参数的外管降深双管法:首先,基于双管试验模型,推导在外管弱透水层柱体一侧水头降低某一常量而内管保持地下水位不变条件下外管弱透水层单位水平面积的流量公式解析解;然后,给出基于抽水流量随时间变化的实验资料,采用配线法确定外管弱透水层传导系数、渗透系数和贮水率的方法。本发明易操作、获取参数多且精度高,解决目前现场无法原位确定弱透水水文地质参数的关键技术问题,克服了现场取样后在实验室进行测试的误差;有很好的推广应用价值。

Description

现场确定外管弱透水层水文地质参数的外管降深双管法
技术领域
本发明涉及一种现场确定外管弱透水层水文地质参数的外管降深双管法,尤其是一种现场确定弱透水层传导系数、渗透系数、贮水率等水文地质参数的方法。
背景技术
随着社会的快速发展,由于弱透水层释水引起地面沉降的资源与环境问题日趋严重。仅中国长江三角洲,由于地下水超采引起的地面沉降大于200mm的面积已占区域面积的十分之一,其中最大累积沉降量达2.80m,已造成的经济损失达500亿美元;此外,地下水的污染也由上部含水层向深部扩展。所有这些都与含水层系统重要的组成部分弱透水层的水文地质特性密切相关。弱透水层的水文地质参数(如传导系数、渗透系数、贮水率)不仅对预测、评价和控制地面沉降有重要意义,而且对地下水资源开发、评价和计算以及含水层系统污染物运移规律和热能传导规律的研究有着重要的意义。
虽然,对于含水层水文地质参数确定方法已有较多研究,大多数为现场抽水(或注水)试验的方法,然而,相邻含水层的弱透水层的水文地质参数确定方法研究的却很少,这一方面是由于我们一直以来认为弱透水层是隔水层或相对隔水层,作为水资源量其贡献率很小,因此很少专门给予重视和得到必要的研究,时常将弱透水层忽略或者作为一种边界处理;另一方面也缺少一种有效的原理和方法能用于现场直接确定这些参数。此外,即使有对确定弱透水层水文地质参数的实验研究的,也局限于室内研究,目前尚无对确定弱透水层水文地质参数的现场原位研究的试验理论和方法的实践,因此,本发明的提出可以填补现场确定弱透水层水文地质参数的技术方法的空白,具有很强的应用价值。
发明内容
发明目的:针对现有技术中存在的问题,本发明基于现场双管技术,推导在外管弱透水层柱体一侧水头降低某一常量而内管保持地下水位不变条件下外管弱透水层单位水平面积的流量公式解析解,提出一种现场确定外管弱透水层水文地质参数的外管降深双管法。这一方法不仅理论严密,而且可以实现现场原位测试,具有试验装置及试验过程简单、易操作,获取的参数齐全、精度高等优点。因此有很好的推广应用价值。
技术方案:一种现场确定外管弱透水层水文地质参数的外管降深双管法,首先,在现场形成具有确定外管弱透水层水文地质参数的外管降深双管试验模型,基于双管试验模型,推导在外管弱透水层柱体一侧水头降低某一常量而内管保持地下水位不变条件下外管弱透水层单位水平面积的流量公式解析解;然后,根据抽水流量随时间变化的试验实测资料,采用配线法确定弱透水层传导系数、渗透系数和贮水率。
双管试验模型的实现方法为:首先,在现场钻孔至需要测试的弱透水层的顶面,同时将套管下至弱透水层的顶面并将套管内弱透水层顶面以上的土样取出钻孔,然后利用钻机压力将套管从弱透水层的顶面压至弱透水层的底面,然后在套管中心放入直径约为套管直径一半的PVC管,同样,将PVC管下放置至弱透水层的顶面,然后再用钻机压力将PVC管压入至需要测试的弱透水层的试段底部,并通过吸泥的方式将PVC管中的弱透水层土样吸出PVC管,然后在圆环形套管中弱透水层顶面铺设砾石作为反滤层,并在PVC管中对应于弱透水层的试段底部位置铺设砾石作为反滤层。这样就在现场形成了确定外管弱透水层水文地质参数的双管实验模型。
此时,确保圆环套管和PVC内管中水位与钻孔外地下水位一致。在PVC管上部端口位置设置马利奥特瓶,马利奥特瓶的进水管下端放置地下水位高程处,使PVC管内水位保持定水位(地下水位)。在圆环套管中布置抽水泵管,将抽水泵管底部放置地下水位以下一段距离(试段顶面以上),在试验准备完成后,瞬时开启抽水泵,使圆环套管中水位产生一定的水位差(保证水位在试段顶面以上),并保持内外管的水头差固定不变,并记录抽水泵的流量随时间变化;然后,基于双管试验模型,推导在外管弱透水层柱体一侧水头降低某一常量而内管保持地下水位不变条件下外管弱透水层单位水平面积的流量公式解析解,根据实测的圆环套管中记录的抽水流量随时间变化的实验资料,采用配线法确定弱透水层传导系数、渗透系数和贮水率。
本发明实验装置及实验过程简单、易操作,解析解理论严密,采用配线法确定参数,方法简单易掌握,可以解决目前现场无法原位确定弱透水水文地质参数的关键技术问题,克服了现场取样后在实验室进行测试的误差;同时,一次实验可以同时求得弱透水层传导系数、渗透系数和贮水率,获取的参数多;由于抽水流量测量容易实现且误差小,由此求得的参数精度高。最为重要的是,该方法实现了现场确定弱透水层水文地质参数,因此,该方法有很好的推广应用价值。
所述双管试验模型从下到上依次包括试样段、滤层、水;从外到内依次包括直径为127mm的外管、圆环试样、直径为75mm的内管和滤层;所述内管上部端口位置设置马利奥特瓶,马利奥特瓶的进水管下端放置地下水位高程处,使PVC管内水位保持定水位(地下水位);所述外管圆环试样上部铺设一层砾石滤层,在圆环套管中布置抽水泵管,将抽水泵管底部放置地下水位以下一段距离(试段顶面以上),在试验准备完成后,瞬时开启抽水泵,使圆环套管中水位产生一定的水位差,并保持内外管的水头差固定不变,并记录抽水泵的流量随时间变化。
所述基于抽水流量随时间变化的实验资料,采用配线法确定弱透水层传导系数、渗透系数和贮水率的方法,即将记录的外管弱透水层的抽水流量Q除以外管弱透水层圆环横截面积S,化为单位面积流量q(cm/min),在与标准曲线相同模的双对数坐标系中作q~t实测曲线,与标准曲线配线,使两条曲线重叠最好,任选一匹配点,记下对应的坐标值[q]、和[t],代入相应公式计算传导系数a、渗透系数K、贮水率μ。
有益效果:与现有技术相比,本发明所提供的确定弱透水层水文地质参数的方法具有以下优点:
①推得的解析解,理论严密,因此方法有严格的理论依据;
②实现弱透水层水文地质参数的原位测试,并且试验装置及试验过程简单、易操作;
③采用配线法确定参数,方法简单易掌握;
④一次实验可以同时求得弱透水层传导系数、渗透系数和贮水率,获取的参数多;
⑤由于流量测量容易实现且误差小,由此求得的参数精度高。因此,该方法有很好的推广应用价值。
附图说明
图1为本发明实施例的流程图;
图2为本发明实施例的双管试验模型;
图3为截面流量标准曲线;
图4为截面流量标准曲线。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
现场确定外管弱透水层水文地质参数的外管降深双管法,首先,基于双管试验模型,推导在外管弱透水层柱体一侧水头降低某一常量而内管保持地下水位不变条件下外管弱透水层单位水平面积的流量公式解析解;然后,给出基于抽水流量随时间变化的实验资料,采用配线法确定外管弱透水层传导系数、渗透系数和贮水率的方法。
双管试验模型从下到上依次包括试样段、滤层、水;从外到内依次包括直径为127mm的外管、圆环试样、直径为75mm的内管和滤层;所述内管上部端口位置设置马利奥特瓶,马利奥特瓶的进水管下端放置地下水位高程处,使PVC管内水位保持定水位(地下水位);所述外管圆环试样上部铺设一层砾石滤层,在圆环套管中布置抽水泵管,将抽水泵管底部放置地下水位以下一段距离(试段顶面以上),在试验准备完成后,瞬时开启抽水泵,使圆环套管中水位产生水位差,保证水位在试段顶面以上,也就是水位不能低于试段顶面,并保持内外管的水头差固定不变,并记录抽水泵的流量随时间变化。
弱透水层参数确定的原理:
(1)弱透水层水流模型的解析解
假设外管弱透水层柱体饱和承压且压力水头处处相等,外管弱透水层柱体通过抽水泵使水头降低某一定值(但不能低于外管弱透水层的顶面),而内管弱透水层地下水位不变,同时测定抽水流量随时间的变化。这时弱透水层为垂向流,取如图2坐标系,这样弱透水层水流模型为
式中,u(z,t)为外管弱透水层z点t时刻的水位变化值,0<u<l,其中的u指的是u(z,t),z点代表试段中Z轴上的点;为外管弱透水层侧水位降深;l为弱透水层厚度;a=K/μ为弱透水层传导系数;K为弱透水层渗透系数;μ为弱透水层贮水率。
对于外管弱透水层水流模型I,经分离变量和傅立叶变换,得解为
(2)弱透水层流量的解析解
t时刻通过位置z单位水平面积的流量
无量纲化:
其中,为无量纲流量,而为无量纲位置和时间;为与弱透水层性质和厚度有关参数,称为滞后指数。
在式(3)中令得弱透水层顶面和底面单位水平面积流量(取正值,不考虑流量方向)变化如图3和图4。
从弱透水层顶面单位水平面积流量变化图3看出,起初时刻流量最大并随着时间增大迅速衰减,当即t≥τ0后,流量趋于定值底面单位水平面积流量变化则相反(如图4),起初时刻流量为0,并随着时间增大迅速增大,当以后增速趋缓;当即t≥τ0后,流量也趋于定值
弱透水层参数确定方法:
对于时刻通过位置单位水平面积的流量
对上述二式两边同时取对数,有
(6)、(7)二式右边的第二项都是常数,因此在双对数坐标系内,实验获得的q(0,t)~t和截面标准曲线(如图3)在形状上是相同的,只是纵横坐标平移了采用配线法,将二曲线重叠,任选一匹配点,记下对应的坐标值[q]、和[t],代入上述(4)、(5)二式,得:
渗透系数:
扩散系数:
贮水率:
当t=τ0或t→∞时弱透水层流量趋于稳定。这时顶、底面单位时间流入与流出量相等,记为qy,有式(2)同样可得渗透系数:
另外,有式(3)对于时刻通过位置单位水平面积的流量
对上述二式两边同时取对数,有:
当实验测得z=l截面q~t资料,同样以截面标准曲线如图4所示,采用配线法确定上述参数。
如图1所示,试验步骤:
(1)首先,在现场钻孔至需要测试的弱透水层的顶面,同时将套管下至弱透水层的顶面并将套管内弱透水层顶面以上的土样取出钻孔,然后利用钻机压力将套管从弱透水层的顶面压至弱透水层的底面,然后在套管中心放入直径约为套管直径一半的PVC管,同样,将PVC管下放置至弱透水层的顶面,然后再用钻机压力将PVC管压入至需要测试的弱透水层的试段底部,并通过吸泥的方式将PVC管中的弱透水层土样吸出PVC管,然后在圆环形套管中弱透水层顶面铺设砾石作为反滤层,并在PVC管中对应于弱透水层的试段底部位置铺设砾石作为反滤层。这样就在现场形成了确定外管弱透水层水文地质参数的双管外管模型。
(2)确保圆环套管和PVC内管中水位与钻孔外地下水位一致。在PVC管上部端口位置设置马利奥特瓶,马利奥特瓶的进水管下端放置地下水位高程处,使PVC管内水位保持定水位(地下水位)。在圆环套管中布置抽水泵管,将抽水泵管底部放置地下水位以下一段距离(试段顶面以上)。
(3)在试验准备完成后,瞬时开启抽水泵,使圆环套管中水位产生一定的水位差,产生水位差后要保证水位在试段顶面以上,也就是水位不能低于试段顶面,并保持内外管的水头差固定不变,并记录抽水泵的流量随时间变化;
(4)记录:抽水泵流量观测的时间,宜在打开抽水泵后第1、2、3、4、6、8、10、15、20、25、30、40、50、60、80、100、120min钟各观测一次,记录在表中,以后可每隔30min钟观测一次。
(5)持续观测,直至每隔30min抽水流量基本不变,可终止试验。
(6)参数计算:将记录的抽水流量Q除以外管圆环横截面积S,化为单位面积流量q(cm/min),在与标准曲线相同模的双对数坐标系中作q(0,t)~t实测曲线,与标准曲线配线,使二条曲线重叠最好,任选一匹配点,记下对应的坐标值[q]、和[t],代入式(8)、(9)和(10)计算渗透系数K、传导系数a和贮水率μ。

Claims (3)

1.一种现场确定外管弱透水层水文地质参数的外管降深双管法,其特征在于:首先,在现场形成具有确定外管弱透水层水文地质参数的外管降深双管试验模型,基于双管试验模型,推导在外管弱透水层柱体一侧水头降低某一常量而内管保持地下水位不变条件下外管弱透水层单位水平面积的流量公式解析解;然后,根据抽水流量随时间变化的实验实测资料,采用配线法确定弱透水层传导系数、渗透系数和贮水率;
双管试验模型的实现方法为:首先,在现场钻孔至需要测试的弱透水层的顶面,同时将直径为127mm的套管下至弱透水层的顶面并将套管内弱透水层顶面以上的土样取出钻孔,然后利用钻机压力将套管从弱透水层的顶面压至弱透水层的底面,然后在套管中心放入直径为75mm的PVC管,同样,将PVC管下放置至弱透水层的顶面,然后再用钻机压力将PVC管压入至需要测试的弱透水层的试段底部,并通过吸泥的方式将PVC管中的弱透水层土样吸出PVC管,然后在圆环形套管中弱透水层顶面铺设砾石作为滤层,并在PVC管中对应于弱透水层的试段底部位置铺设砾石作为滤层;这样就在现场形成了确定外管弱透水层水文地质参数的双管试验模型。
2.如权利要求1所述的现场确定外管弱透水层水文地质参数的外管降深双管法,其特征在于:确保圆环套管和PVC内管中水位与钻孔外地下水位一致,在PVC管上部端口位置设置马利奥特瓶,马利奥特瓶的进水管下端放置地下水位高程处,使PVC管内水位保持定水位,定水位即是地下水位;在圆环套管中布置抽水泵管,将抽水泵管底部放置地下水位以下一段距离,试段顶面以上,在试验准备完成后,开启抽水泵,使圆环套管中水位产生水位差,并保持内外管的水头差固定不变,并记录抽水泵的流量随时间变化;然后,基于双管试验模型,推导在外管弱透水层柱体一侧水头降低某一常量而内管保持地下水位不变条件下外管弱透水层单位水平面积的流量公式解析解,根据实测的圆环套管中记录的抽水流量随时间变化的实验实测资料,采用配线法确定弱透水层传导系数、渗透系数和贮水率。
3.如权利要求1所述的现场确定外管弱透水层水文地质参数的外管降深双管法,其特征在于:所述基于抽水流量随时间变化的实验实测资料,采用配线法确定弱透水层传导系数、渗透系数和贮水率的方法,即将记录的外管弱透水层的抽水流量Q除以外管弱透水层圆环横截面积S,化为单位面积流量q,单位为cm/min,在与标准曲线相同模的双对数坐标系中作q~t实测曲线,与标准曲线配线,使两条曲线重叠最好,任选一匹配点,记下对应的坐标值[q]、和[t],代入相应公式计算传导系数a、渗透系数K、贮水率μ。
CN201611146674.8A 2016-12-13 2016-12-13 现场确定外管弱透水层水文地质参数的外管降深双管法 Active CN106501156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611146674.8A CN106501156B (zh) 2016-12-13 2016-12-13 现场确定外管弱透水层水文地质参数的外管降深双管法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611146674.8A CN106501156B (zh) 2016-12-13 2016-12-13 现场确定外管弱透水层水文地质参数的外管降深双管法

Publications (2)

Publication Number Publication Date
CN106501156A CN106501156A (zh) 2017-03-15
CN106501156B true CN106501156B (zh) 2019-04-30

Family

ID=58330222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611146674.8A Active CN106501156B (zh) 2016-12-13 2016-12-13 现场确定外管弱透水层水文地质参数的外管降深双管法

Country Status (1)

Country Link
CN (1) CN106501156B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865008A (zh) * 2019-10-28 2020-03-06 河海大学 基于有限尺度下圆形定水头边界非稳定流抽水的水文地质参数测定方法
CN113050190A (zh) * 2021-03-03 2021-06-29 河北益坤岩土工程新技术有限公司 直线边界非稳定流抽水试验水文地质参数智能计算方法
CN114487347B (zh) * 2022-01-24 2022-10-25 河海大学 一种识别钻孔正薄壁效应并确定含水层水文地质参数的微水试验法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104327A (zh) * 1993-09-07 1995-06-28 铁道部第三勘测设计院第二分院 弱含水层渗透系数快速测定方法
EP1489235A1 (en) * 2003-06-20 2004-12-22 Services Petroliers Schlumberger Method and system for storing liquid in a geological formation
CN102183447A (zh) * 2011-03-09 2011-09-14 河海大学 一种含水层渗透系数测试系统和测试方法
CN102809642A (zh) * 2012-08-03 2012-12-05 河海大学 一种确定弱透水层水文地质参数的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104327A (zh) * 1993-09-07 1995-06-28 铁道部第三勘测设计院第二分院 弱含水层渗透系数快速测定方法
EP1489235A1 (en) * 2003-06-20 2004-12-22 Services Petroliers Schlumberger Method and system for storing liquid in a geological formation
CN102183447A (zh) * 2011-03-09 2011-09-14 河海大学 一种含水层渗透系数测试系统和测试方法
CN102809642A (zh) * 2012-08-03 2012-12-05 河海大学 一种确定弱透水层水文地质参数的方法

Also Published As

Publication number Publication date
CN106501156A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
RU2671502C2 (ru) Индексы структурного различия верхних зон заполнения ордовикского известняка и способ их определения
CN106522928B (zh) 一种酸化压裂后停泵测井口压降不稳定试井方法
CN106501156B (zh) 现场确定外管弱透水层水文地质参数的外管降深双管法
CN111075441B (zh) 一种边底水稠油油藏热采后冷采三维物理模拟实验装置及方法
CN206292074U (zh) 一种活塞抽吸式地下水定深采集装置
CN103161436B (zh) 一种稠油热采水平井试井解释方法
CN102809642A (zh) 一种确定弱透水层水文地质参数的方法
WO2022227822A1 (zh) 一种孔隙型可渗透岩石的仿真模拟方法及系统
CN106680177B (zh) 现场确定内管弱透水层水文地质参数的内管降深双管法
Ma et al. Simulation and interpretation of the pressure response for formation testing while drilling
CN106680175B (zh) 现场确定内管弱透水层水文地质参数的外管降深双管法
Shi et al. History matching of CO2 core flooding CT scan saturation profiles with porosity dependent capillary pressure
CN209707171U (zh) 一种用于深层地下水监测的定深分层取样装置
CN110907238A (zh) 一种壤中气分层采集方法及装置
CN106501157B (zh) 现场确定外管弱透水层水文地质参数的内管降深双管法
CN110879196B (zh) 富含油凝析气藏油水相渗测试方法
CN108106687A (zh) 一种含软夹层的基岩地下水流网探究方法及双胶囊止水器
CN104533397A (zh) 一种砂岩气层定量识别方法
CN105386430B (zh) 一种止水帷幕作用下止水帷幕两侧水位差的确定方法
CN106321076A (zh) 一种注水井启动压力测试方法
Zhao et al. A field test data research based on a new hydraulic parameters quick test technology
CN106680176B (zh) 原位确定弱透水层固结系数和变形滞后指数的双管内管法
CN203101229U (zh) 一种含水层渗透系数分段测量装置
CN106596372B (zh) 原位确定弱透水层固结系数和变形滞后指数的双管外管法
Gao et al. Application of dilation-recompaction model in fracturing optimisation in tight oil reservoir

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant