CN106499592B - 海上风电机的塔筒结构 - Google Patents

海上风电机的塔筒结构 Download PDF

Info

Publication number
CN106499592B
CN106499592B CN201610950451.0A CN201610950451A CN106499592B CN 106499592 B CN106499592 B CN 106499592B CN 201610950451 A CN201610950451 A CN 201610950451A CN 106499592 B CN106499592 B CN 106499592B
Authority
CN
China
Prior art keywords
tower
barrel
magnesium alloy
tapered pole
strength magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610950451.0A
Other languages
English (en)
Other versions
CN106499592A (zh
Inventor
李白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Yisen Metal Structure Co., Ltd.
Original Assignee
Qingdao Yisen Metal Structure Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Yisen Metal Structure Co Ltd filed Critical Qingdao Yisen Metal Structure Co Ltd
Priority to CN201610950451.0A priority Critical patent/CN106499592B/zh
Publication of CN106499592A publication Critical patent/CN106499592A/zh
Application granted granted Critical
Publication of CN106499592B publication Critical patent/CN106499592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • F05B2280/102Light metals
    • F05B2280/1025Magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • F05B2280/1074Alloys not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Development (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Foundations (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及一种海上风电机的塔筒结构,包括塔筒和水下基础,通过对塔筒结构进行改进,使得其轻质化得到提升,减小了海浪对塔筒冲击后对水下基础的剪切应力,从而保证了水下基础的耐久性。通过对塔筒筒壁的材质进行改进,使得在轻质化的情况下,强度得到保障。从而整体使得海上风电机组的维修频率得到控制。

Description

海上风电机的塔筒结构
技术领域
本发明属于合金领域和风力发电领域,具体涉及一种海上风电机的塔筒结构。
背景技术
风力发电机,简称风电机或风电机组,目前,随着陆地资源的短缺和环境的恶化,海上风力发电机组越来越受到重视,海上风场和陆地风场具有很多的不同。陆地风场一般风速分布差异大,而海上风场由于没有大量障碍物的阻挡,因此风速分布均匀;陆地风场的风向受地形影响大,而海上风场风向稳定,但是不易集中,海上风场湍流较小,风切变较小。基于上述不同,海上的风电机与陆上的风电机在建造装备的性能要求即不同。
发明内容
本发明通过提出一种海上风电机的塔筒结构。
具体通过如下技术手段实现:
一种海上风电机的塔筒结构,包括塔筒和水下基础。
所述塔筒上端与风力发电机的塔头相连接,所述塔筒设置为上部为圆柱形,下端为圆台形。
所述塔筒为中空结构,包括筒壁、内杆和横梁,所述筒壁设置在最外侧,所述内杆在筒壁圆心处竖直设置,所述横梁为多个,用于连接所述筒壁和所述内杆。
所述筒壁为高强度镁合金材质,所述高强度镁合金按质量百分比计为:Bi:11~15%,Mn:0.5~1.2%,Ca:2.1~2.8%,La:0.1~0.3%,余量为Mg和不可避免的杂质。在所述高强度镁合金的微观结构中Mg3Bi2相的平均粒径为120~220nm,且所述Mg3Bi2相中80~88%呈球形弥散分布在基体中。
所述水下基础包括与所述塔筒的下端圆台相固接的支撑部和嵌入海床的锥形柱,所述锥形柱为多个,上端均与所述支撑部相固接,下端楔入海床,所述锥形柱为中空结构,在其顶端一侧均设置有填充物注入口。
所述锥形柱的材质为高强度不锈钢,所述填充物为水泥混凝土。
作为优选,所述圆台的高度占整个塔筒高度的1/5~1/4。
作为优选,所述筒壁的厚度为3~8cm。
作为优选,所述锥形柱为8~10个。
作为优选,所述锥形柱的上端为圆柱形,下端为锥形。
所述高强度镁合金在成型之后,进行如下热处理步骤:
1)将成型之后的高强度镁合金置入电阻炉内,随炉加热至490~520℃,保温30~100min后出炉空冷。
2)将步骤1)处理之后的半成品置入到深冷箱中降温至-110~-130℃,保持该温度20~50min后,出深冷箱恢复至室温。
3)将步骤2)处理之后的半成品置入到回火炉中,加热至120~150℃,不保温即随炉冷却至室温,得到高强度镁合金筒壁。
所述高强度不锈钢按质量百分比含量计为:C:0.02~0.03%,Si:0.26~0.55%,Mn:1.0~1.2%,P:≤0.02%,S:≤0.01%,Ni:3.1~5.5%,Ti:0.012~0.016%,Cr:5.2~8.1%,Nb:0.01~0.08%,Mo:0.51~0.86%,RE:0.01~0.02%,V:0.005~0.01,W:0.01~0.03,限制元素H≤0.0001%,N≤0.003%,O≤0.0015%,余量为Fe和不可避免的杂质。
所述高强度不锈钢微观结构中纵截面的表面至表面以下2mm处针状铁素体分布比例是在其纵截面中心直径为2mm区域的分布的3~5倍,表面至表面以下2mm处针状铁素体的平均粒径为5.0~5.5µm,截面中心直径为2mm区域的针状铁素体的平均粒径为3.9~5.1µm;所述高强度不锈钢的微观结构中岛状马氏体的体积百分比为8.5~11%。
作为优选,所述水泥混凝土的混凝土料的组分按质量份数比计为:硅藻土:20~25份,地开石:20~25份,蒙脱石:10~15份,蛭石:15~20份,芒硝:10~12份,氯化铁:1~3份,甲基纤维素:1~3份,碳酸钠:0.5~1.5份。
本发明的效果在于:
1,通过对塔筒筒壁材质进行改进,使得其轻质化的条件下,保证了强度。通过对其中组分的改进,通过Bi和稀土La的同时添加,使得整体的晶粒得到细化,从而保证了高强度,通过对其中微观结构中Mg3Bi2相粒径和形状进行限定,保证了晶粒中Mg3Bi2相的弥散(平均晶粒粒径处于纳米级),从而进一步保证了整体晶粒的细化。本发明高强度镁合金的抗拉强度为420~480MPa,屈服强度为390~400MPa,延伸率为8~12%。
2,通过对塔筒的结构进行改进,使得其整体保证了轻质化,从而降低了对水下基础的横向切应力,从而降低了水下基础的损坏率,但是通过设置内部的内杆和横梁,又能保证其强度,保证了塔头上叶片的转动对塔筒的强度要求。
3,通过设置水下基础中的中空锥形柱,使得在运输安装过程中,该水下基础比较轻质,通过运输船即可进行运输和安装,安装之后向其中灌入混凝土料,从而进行重量加固,达到水下基础的承重效果,方便了运输和安装。
附图说明
图1为本发明塔筒的结构剖示图。
图2为本发明海上风电机的塔筒结构的结构示意图。
其中:1-塔筒,11-下端的圆台,12-筒壁,13-内杆,14-横梁,15-下端横梁,21-支撑部,22-锥形柱,23-填充物注入口,3-海平面。
具体实施方式
实施例1
一种海上风电机的塔筒结构,包括塔筒和水下基础。
所述塔筒上端与风力发电机的塔头相连接,所述塔筒设置为上部为圆柱形,下端为圆台形。
所述塔筒为中空结构,包括筒壁、内杆和横梁,所述筒壁设置在最外侧,所述内杆在筒壁圆心处竖直设置,所述横梁为多个,用于连接所述筒壁和所述内杆。
所述筒壁为高强度镁合金材质,所述高强度镁合金按质量百分比计为:Bi:12%,Mn:0.8%,Ca:2.2%,La:0.15%,余量为Mg和不可避免的杂质。在所述高强度镁合金的微观结构中Mg3Bi2相的平均粒径为180nm,且所述Mg3Bi2相中86%呈球形弥散分布在基体中。
所述水下基础包括与所述塔筒的下端圆台相固接的支撑部和嵌入海床的锥形柱,所述锥形柱为多个,上端均与所述支撑部相固接,下端楔入海床,所述锥形柱为中空结构,在其顶端一侧均设置有填充物注入口。
所述锥形柱的材质为高强度不锈钢,所述填充物为水泥混凝土。
所述圆台的高度占整个塔筒高度的22%。
所述筒壁的厚度为6cm。
所述锥形柱为9个。
所述锥形柱的上端为圆柱形,下端为锥形。
所述高强度镁合金在成型之后,进行如下热处理步骤:
1)将成型之后的高强度镁合金置入电阻炉内,随炉加热至498℃,保温50min后出炉空冷。
2)将步骤1)处理之后的半成品置入到深冷箱中降温至-115℃,保持该温度31min后,出深冷箱恢复至室温。
3)将步骤2)处理之后的半成品置入到回火炉中,加热至130℃,不保温即随炉冷却至室温,得到高强度镁合金筒壁。
通过测量该实施例高强度镁合金的抗拉强度为461MPa,屈服强度为396MPa,延伸率为9.6%。
实施例2
一种海上风电机的塔筒结构,包括塔筒和水下基础。
所述塔筒上端与风力发电机的塔头相连接,所述塔筒设置为上部为圆柱形,下端为圆台形。
所述塔筒为中空结构,包括筒壁、内杆和横梁,所述筒壁设置在最外侧,所述内杆在筒壁圆心处竖直设置,所述横梁为多个,用于连接所述筒壁和所述内杆。
所述筒壁为高强度镁合金材质,所述高强度镁合金按质量百分比计为:Bi:13.9%,Mn:1.1%,Ca:2.6%,La:0.26%,余量为Mg和不可避免的杂质。在所述高强度镁合金的微观结构中Mg3Bi2相的平均粒径为210nm,且所述Mg3Bi2相中86.8%呈球形弥散分布在基体中。
所述水下基础包括与所述塔筒的下端圆台相固接的支撑部和嵌入海床的锥形柱,所述锥形柱为多个,上端均与所述支撑部相固接,下端楔入海床,所述锥形柱为中空结构,在其顶端一侧均设置有填充物注入口。
所述锥形柱的材质为高强度不锈钢,所述填充物为水泥混凝土。
所述圆台的高度占整个塔筒高度的23%。
所述筒壁的厚度为5cm。
所述锥形柱为10个。
所述锥形柱的上端为圆柱形,下端为锥形。
所述高强度镁合金在成型之后,进行如下热处理步骤:
1)将成型之后的高强度镁合金置入电阻炉内,随炉加热至506℃,保温92min后出炉空冷。
2)将步骤1)处理之后的半成品置入到深冷箱中降温至-126℃,保持该温度38min后,出深冷箱恢复至室温。
3)将步骤2)处理之后的半成品置入到回火炉中,加热至138℃,不保温即随炉冷却至室温,得到高强度镁合金筒壁。
本实施例镁合金的抗拉强度为469MPa,屈服强度为392MPa,延伸率为9%。
所述高强度不锈钢按质量百分比含量计为:C:0.028%,Si:0.51%,Mn:1.18%,P:0.012%,S:0.008%,Ni:5.2%,Ti:0.015%,Cr:8.0%,Nb:0.06%,Mo:0.80%,RE:0.018%,V:0.009%,W:0.019%,限制元素H:0.00008%,N:0.0003%,O:0.00015%,余量为Fe和不可避免的杂质。
所述高强度不锈钢微观结构中纵截面的表面至表面以下2mm处针状铁素体分布比例是在其纵截面中心直径为2mm区域的分布的3.9倍,表面至表面以下2mm处针状铁素体的平均粒径为5.3µm,截面中心直径为2mm区域的针状铁素体的平均粒径为5.0µm;所述高强度不锈钢的微观结构中岛状马氏体的体积百分比为9.8%。
所述高强度不锈钢的屈服强度为539MPa,抗拉强度为896MPa,断后伸长率为21%。
所述水泥混凝土的混凝土料的组分按质量份数比计为:硅藻土:23份,地开石:22份,蒙脱石:13份,蛭石:18份,芒硝:11.8份,氯化铁:2.5份,甲基纤维素:2份,碳酸钠:1.2份。
实施例3
一种海上风电机的塔筒结构,包括塔筒和水下基础。
所述塔筒上端与风力发电机的塔头相连接,所述塔筒设置为上部为圆柱形,下端为圆台形。
所述塔筒为中空结构,包括筒壁、内杆和横梁,所述筒壁设置在最外侧,所述内杆在筒壁圆心处竖直设置,所述横梁为多个,用于连接所述筒壁和所述内杆。
所述筒壁为高强度镁合金材质,所述高强度镁合金按质量百分比计为:Bi:13%,Mn:0.8%,Ca:2.5%,La:0.2%,余量为Mg和不可避免的杂质。在所述高强度镁合金的微观结构中Mg3Bi2相的平均粒径为160nm,且所述Mg3Bi2相中85%呈球形弥散分布在基体中。
所述水下基础包括与所述塔筒的下端圆台相固接的支撑部和嵌入海床的锥形柱,所述锥形柱为多个,上端均与所述支撑部相固接,下端楔入海床,所述锥形柱为中空结构,在其顶端一侧均设置有填充物注入口。
所述锥形柱的材质为高强度不锈钢,所述填充物为水泥混凝土。
所述圆台的高度占整个塔筒高度的1/5。
所述筒壁的厚度为6.9cm。
所述锥形柱为8个。
所述锥形柱的上端为圆柱形,下端为锥形。
所述高强度镁合金在成型之后,进行如下热处理步骤:
1)将成型之后的高强度镁合金置入电阻炉内,随炉加热至500℃,保温60min后出炉空冷。
2)将步骤1)处理之后的半成品置入到深冷箱中降温至-120℃,保持该温度30min后,出深冷箱恢复至室温。
3)将步骤2)处理之后的半成品置入到回火炉中,加热至135℃,不保温即随炉冷却至室温,得到高强度镁合金筒壁。
本实施例高强度镁合金筒壁的抗拉强度为460MPa,屈服强度为395MPa,延伸率为10%。

Claims (1)

1.一种海上风电机的塔筒结构的制备方法,所述海上风电机的塔筒结构包括塔筒和水下基础;
所述塔筒上端与海上风电机的塔头相连接,所述塔筒设置为上部为圆柱形,下端为圆台形;
所述塔筒为中空结构,包括筒壁、内杆和横梁,所述筒壁设置在最外侧,所述内杆在筒壁圆心处竖直设置,所述横梁为多个,用于连接所述筒壁和所述内杆;
其特征在于,所述圆台形的高度占整个塔筒高度的1/5~1/4;
所述筒壁的厚度为3~8cm;
所述筒壁为高强度镁合金材质,所述高强度镁合金按质量百分比计为:Bi:11~15%,Mn:0.5~1.2%,Ca:2.1~2.8%,La:0.1~0.3%,余量为Mg和不可避免的杂质;在所述高强度镁合金的微观结构中Mg3Bi2相的平均粒径为120~220nm,且所述Mg3Bi2相中80~88%呈球形弥散分布在基体中;
所述高强度镁合金在成型之后,进行如下热处理步骤:
1)将成型之后的高强度镁合金置入电阻炉内,随炉加热至490~520℃,保温30~100min后出炉空冷;
2)将步骤1)处理之后的半成品置入到深冷箱中降温至-110~-130℃,保持该温度20~50min后,出深冷箱恢复至室温;
3)将步骤2)处理之后的半成品置入到回火炉中,加热至120~150℃,不保温即随炉冷却至室温,得到高强度镁合金筒壁;
所述水下基础包括与所述塔筒的下端圆台相固接的支撑部和嵌入海床的锥形柱,所述锥形柱为8~10个,上端均与所述支撑部相固接,下端楔入海床,所述锥形柱为中空结构,在其顶端一侧均设置有填充物注入口;
所述锥形柱的上端为圆柱形,下端为锥形;
所述锥形柱的材质为高强度不锈钢,所述填充物为水泥混凝土。
CN201610950451.0A 2016-10-27 2016-10-27 海上风电机的塔筒结构 Active CN106499592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610950451.0A CN106499592B (zh) 2016-10-27 2016-10-27 海上风电机的塔筒结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610950451.0A CN106499592B (zh) 2016-10-27 2016-10-27 海上风电机的塔筒结构

Publications (2)

Publication Number Publication Date
CN106499592A CN106499592A (zh) 2017-03-15
CN106499592B true CN106499592B (zh) 2019-04-26

Family

ID=58323019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610950451.0A Active CN106499592B (zh) 2016-10-27 2016-10-27 海上风电机的塔筒结构

Country Status (1)

Country Link
CN (1) CN106499592B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387337B (zh) * 2017-09-01 2023-03-10 三一重能股份有限公司 风力发电机、底架及用于制备该底架的施工设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032075A1 (es) * 2008-09-19 2010-03-25 Alejandro Cortina-Cordero Torre de concreto postensado y acero para generadores eólicos
CN101688270A (zh) * 2007-06-28 2010-03-31 住友电气工业株式会社 镁合金板
EP2261425A1 (en) * 2009-06-12 2010-12-15 D.E.M.E. Nv Hybrid offshore large pile - gravity foundation for constructions, and installation method therefor
WO2013054203A2 (es) * 2011-10-10 2013-04-18 Prefabricados Y Postes De Hormigon, S.A. Basamento de refuerzo para fustes de torres eólicas
CN104314776A (zh) * 2014-10-13 2015-01-28 天津大学前沿技术研究院有限公司 一种用于海上和陆上风电机组的装配式预应力塔筒
CN105155568A (zh) * 2015-07-20 2015-12-16 三一重型能源装备有限公司 海上风电机组、海上风电机组基础及其安装方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688270A (zh) * 2007-06-28 2010-03-31 住友电气工业株式会社 镁合金板
WO2010032075A1 (es) * 2008-09-19 2010-03-25 Alejandro Cortina-Cordero Torre de concreto postensado y acero para generadores eólicos
EP2261425A1 (en) * 2009-06-12 2010-12-15 D.E.M.E. Nv Hybrid offshore large pile - gravity foundation for constructions, and installation method therefor
WO2013054203A2 (es) * 2011-10-10 2013-04-18 Prefabricados Y Postes De Hormigon, S.A. Basamento de refuerzo para fustes de torres eólicas
CN104314776A (zh) * 2014-10-13 2015-01-28 天津大学前沿技术研究院有限公司 一种用于海上和陆上风电机组的装配式预应力塔筒
CN105155568A (zh) * 2015-07-20 2015-12-16 三一重型能源装备有限公司 海上风电机组、海上风电机组基础及其安装方法

Also Published As

Publication number Publication date
CN106499592A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
Pham et al. Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing
Li et al. Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene′ 41 by laser melting deposition manufacturing
CN106499592B (zh) 海上风电机的塔筒结构
CN108265740B (zh) 一种降低陆上风电机组基础结构损伤的装置及施工方法
Chen et al. Effect of thermal aging on the low cycle fatigue behavior of Z3CN20. 09M cast duplex stainless steel
Shi et al. Effect of tensile deformation of austenite on the morphology and strength of lath martensite
CN103643149B (zh) 屈服强度650MPa级大规格含钒钢拉杆用热轧圆钢及其热处理工艺
DE102009040648B4 (de) Schwimmfähige Offshore-Windkraftanlage
Xu et al. Abnormal grain growth of 2196 Al-Cu-Li alloy weld seams during extrusion and heat treatment
Li et al. Effect of post-weld heat treatments on strength and toughness behavior of T-250 maraging steel welded by laser beam
CN105268933A (zh) 一种制备半固态浆料的方法及装置
CN105344470A (zh) 矿山用振动式磁选机
CN103484761A (zh) 一种40~60mm厚管桩用钢板及其生产方法
Wang et al. Long-term stability of precipitated phases in CLAM steel during thermal aging
Ji et al. Morphology and formation mechanism of martensite in steels with different carbon content
Yan et al. In-situ investigation of tensile deformation and fracture mechanism of 12Cr1MoV steel after long-term service
CN106759100B (zh) 一种升降式防洪堤
CN206769106U (zh) 一种装配式钢纤维高强混凝土钢板组合抗爆墙体
CN103643150A (zh) 屈服强度650MPa级大规格含铌钢拉杆用热轧圆钢及其热处理工艺
CN106401880B (zh) 海上风力发电机底座的制备方法
CN204098027U (zh) 一种冻结法护孔异形桩结构
CN106382192A (zh) 一种海上风电机组
CN106756548B (zh) 一种防洪堤的制备方法
CN207891114U (zh) 水体垂向交换装置
CN206016353U (zh) 空分集装式冷箱

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190402

Address after: 266300 Dahang Ercun, Jiaoxi Town, Qingdao City, Shandong Province

Applicant after: Qingdao Yisen Metal Structure Co., Ltd.

Address before: 100176 Beijing Daxing District Yizhuang Jinghai two road five street, Jintian Hengye garden 28 28

Applicant before: Li Bai

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant