CN106499399A - 一种在富水粉土地层中重叠隧道的盾构掘进施工方法 - Google Patents

一种在富水粉土地层中重叠隧道的盾构掘进施工方法 Download PDF

Info

Publication number
CN106499399A
CN106499399A CN201611257826.1A CN201611257826A CN106499399A CN 106499399 A CN106499399 A CN 106499399A CN 201611257826 A CN201611257826 A CN 201611257826A CN 106499399 A CN106499399 A CN 106499399A
Authority
CN
China
Prior art keywords
tunnel
construction
jurisdiction
section
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611257826.1A
Other languages
English (en)
Inventor
陈勇光
陈强
陈卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway No 2 Engineering Group Co Ltd
Original Assignee
China Railway No 2 Engineering Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway No 2 Engineering Group Co Ltd filed Critical China Railway No 2 Engineering Group Co Ltd
Priority to CN201611257826.1A priority Critical patent/CN106499399A/zh
Publication of CN106499399A publication Critical patent/CN106499399A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

本发明公开了隧道施工技术领域,特别公开了一种在富水粉土地层中重叠隧道的盾构掘进施工方法,包括的步骤有:(a)搭设支架体系;(b)在试验段试掘进,并得出施工参数;(c)配置双液浆注浆系统、清洗系统和混合器;(d)确定双液浆的配合比;(e)正式盾构施工;(f)进行渣土改良,并同步进行双液浆注浆施工;(g)对洞内管片外土体进行加固处理。该施工方法通过在下方轨道内临时布置支撑体系,解决了下行隧道及其管片容易遭到损坏的问题,从而完成对下行隧道的保护,设置双液浆注浆系统,将混合后的浆液灌注到管片背后,使浆液快速凝固并快速达到需求强度,有效形成止水效果,从而避免土体在施工过程中发生沉降。

Description

一种在富水粉土地层中重叠隧道的盾构掘进施工方法
技术领域
本发明涉及隧道施工技术领域,特别涉及一种在富水粉土地层中重叠隧道的盾构掘进施工方法。
背景技术
近年来,我国城市轨道交通得到了迅速发展,在进行城市隧道施工过程中,通常采用盾构机进行隧道掘进,盾构线路规划由于受到城市环境及在建施工地铁线路等相关因素的影响,新建的地铁线路不可避免地与已建成或已运营隧道进行交叉施工。现有技术中,通常通过在试验段进行试掘进施工,总结得出施工参数,在试掘进过程中,同时对渣土改良剂掺入量进行试验,并收集整理得出工艺参数。在正式盾构施工过程中,根据上述方法得出的施工参数和渣土改良剂的工艺参数进行施工,并采取同步注浆的方式进行注浆,浆液采用惰性浆液(水泥砂浆)。
当施工地段为富水粉土粉砂地层时,如果还是采取上述施工方法进行施工,则会发生螺旋机喷涌和盾构机栽头等问题,同时在进行注浆时,浆液扩散半径大,使得有效浆液注入量偏小,导致注浆量不饱满,并且浆液不能快速凝固,导致发生无法有效止水的问题,其强度也不能支撑土体的重量,这些原因都将导致建构筑物、施工土体等极易发生沉降等问题。
而且,在盾构掘进施工完成后,土体由于受到掘进施工的扰动,地面也会经常发生较大的沉降。
此外,当两个重叠的隧道之间的净距过小,在使用盾构机对上行隧道进行掘进施工时,很容易破坏下方已成型的隧道,造成下行隧道内管片的损坏等质量安全问题,重叠的隧道之间的净距小于洞径时,认为净距过小。
发明内容
本发明的目的在于:在富水粉土地层中进行盾构掘进施工时,当施工隧道的下方存在已经建成的隧道,上下两个隧道重叠且两个隧道之间的净距过小,存在上行隧道掘进施工时损坏下行隧道及其管片的问题,并且在此种情况下,富水粉土地层的浆液注入量小、无法快速凝固,不能有效止水和支撑土体重量,提供一种在富水粉土地层中重叠隧道的盾构掘进施工方法,该方法通过在下方轨道内布置临时支架,同时采用双液浆注浆系统,从而完成对下行隧道的保护,通过设置的混合器对两种浆液充分混合,并同步灌注到管片背后,使上行隧道施工中的浆液快速凝固并达到需求强度,有效形成止水效果,从而避免土体在施工过程中发生沉降。
为了实现上述发明目的,本发明提供了以下技术方案:
一种在富水粉土地层中重叠隧道的盾构掘进施工方法,包括以下步骤:
a、在下行隧道内临时搭设用于支撑管片的支撑体系,下行隧道为已建成隧道;
b、使用盾构机在试验段试掘进,并得出施工参数;
c、在盾构机上配置双液浆注浆系统、清洗系统和混合器,所述混合器用于混合所述双液浆注浆系统输送的双液浆,所述双液浆注浆系统为包含单独储放的两种浆液,两种所述浆液混合后能快速凝固的注浆系统;
d、确定双液浆的配合比;
e、按照步骤a得出的施工参数,进行正式盾构施工;
f、采用加水或加注泡沫的工艺,进行渣土改良,并同步进行双液浆注浆施工;
g、分别对上行隧道和下行隧道的管片外侧土体进行加固处理。
上述施工步骤中,只有当上行隧道的试验段与下行隧道也存在重叠情况时,才严格按照上述施工步骤进行,此时,需要先在下行隧道内搭设临时支架,用于保护下行隧道和隧道管片的质量安全,避免在试验段进行试掘进时就将下行隧道或管片损坏,当上行隧道的试验段与下行隧道不存在重叠时,步骤a可以在步骤e之前的任何阶段进行,也可以和某一步骤或多个步骤同时进行,此时,在开展步骤e之前的任何步骤均不会对重叠隧道处的下行隧道或管片造成损坏等质量问题。
采取上述方式,通过在下方轨道内临时布置支撑体系,解决了下行隧道及其管片容易遭到损坏的问题,从而完成对下行隧道的保护,同时采用双液浆注浆系统,通过设置的混合器对两种浆液充分混合,并同步灌注到管片背后,使上行隧道施工中的浆液快速凝固并达到需求强度,有效形成止水效果,从而避免土体在施工过程中发生沉降,从而损坏下行隧道。
在试验段进行试掘进,并且在试掘进过程进行施工记录和数据监测,从而整理得出施工参数,在正式施工过程中,依据得出的施工参数进行盾构施工。由于盾构机在富水粉土粉砂地层掘进过程中,浆液扩散半径大,导致有效浆液注入量偏小,通过设置的混合器对浆液充分混合后,同步将混合后的浆液灌注到管片背后,从而有效改善渣土性能,使注浆量饱满充实,提高浆液注入量,避免土体发生沉降等影响工程质量的问题,同时采用双液浆注浆的方式,预先确定双液浆的配合比,并通过配置在盾构机上的混合器使双液浆混合,进行双液浆注浆施工后,浆液快速凝固,进而达到需求强度,起到止水效果,从而避免土体在施工过程中发生沉降等问题。
在下行隧道内搭设临时支架,在上行隧道盾构机通过重叠段的过程中跟踪该临时支架,保持盾体下方的已成型隧道随时处于被支撑保护的状态,确保管片质量安全。
优选的,在步骤a中,所述支撑体系包括多个相互平行的型钢支架和用于连接型钢支架的型钢连接梁,所述型钢支架为门字形的平面框架结构,包括竖直布置的两根立柱和连接两根立柱的横撑,所述横撑靠近两根立柱的上端,在所述立柱和横撑上还设置有多根用于支撑管片的支撑柱,多个所述支撑柱沿平面框架结构外侧布置,并延伸至管片。
将型钢支架设置为门字形的平面框架结构,保证下行隧道运输的正常进行,即正常的运输设备从门字形平面框架结构的中间通过,设置多根支撑柱,使管片得到充分的支撑,避免上行隧道在施工时对下行隧道的破坏,从而有效保护下行隧道和布置在隧道内的管片。
优选的,各个所述型钢支架安装在临时轨道的牛腿上,且位置与盾构机对应,并分别向下行隧道的前方和后方各延伸30~60m,所述型钢支架与管片接触的地方布置有木楔。
用于支撑临时轨道的支撑梁的两端为临时轨道的牛腿,能用于承受较大的载荷,将型钢支架安装在牛腿上,在通过型钢将各个型钢支架连接起来,使型钢支架形成一个完整的支撑体系,构成整体,对下行轨道及其管片形成全面支撑。在使用盾构机对上行轨道掘进的过程中,盾构机及盾构机前后的施工地段处于最不稳定的地段,这个地段长度基本上在盾构机前、后方30-60m的范围内,在该地段对应的下行轨道内设置支撑体系,能有效保护下行轨道及其管片,避免遭受质量安全问题。
优选的,所述施工参数包括总推力、推进速度、刀盘扭矩、土仓压力和同步注浆参数,其中:
总推力为2200~2500T,推进速度为2.5~3cm/min,刀盘扭矩1.8~2.2MNm,土仓压力2.8~3.2bar,同步注浆量为4方,注浆压力控制在3.5~4bar之间。
在盾构施工过程中,严格按照确定施工参数组织施工,通过在试验段的试掘进施工过程中的施工记录和数据监测,整理并总结得出施工参数,为了确保隧道施工安全,严格执行上述施工参数。不同的地层特性,施工参数是不一样的,施工参数直接关系到施工安全和工程质量,在富水粉土地层中进行盾构施工时,按照上述施工参数进行,能确保施工安全,同时保证施工质量。
优选的,所述双液浆注浆系统包括水泥浆系统和水玻璃溶液系统,该双液浆注浆系统分别独自配备有对应的储浆装置和泵送装置。
所述水泥浆系统和水玻璃溶液系统通过各自的泵送装置输送至混合器中进行充分、均匀混合,双液注浆系统为两种浆液混合后能快速凝固的注浆系统,采用水泥浆系统和水玻璃溶液系统,二者以一定配合比混合并进行注浆后,能快速凝固,从而较好地起到止水作用,分别独自配备储浆装置和泵送装置,储浆装置能对场外拌制好的浆液进行储存,使二者在进入混合器中混合前保持各自的状态,分别设置泵送装置,保证二者均具有较大的泵送压力,分别将储浆装置中的浆液输送至混合器中进行充分、均匀混合。
优选的,所述步骤f中,双液浆注浆施工过程包括以下步骤:
f1、分别拌制水泥浆和水玻璃溶液;
f2、将水泥浆和水玻璃溶液转注入各自的储浆装置;
f3、确定水泥浆和水玻璃溶液的体积配合比,并通过各自的泵送装置将储浆装置中的浆液分别灌注到混合器中混合;
f4、混合器中设置有推进注浆部件,使用推进注浆部件将混合后的双液浆同步注入管片外侧的土体中。
采取上述方式,水泥浆和水玻璃溶液在混合器内充分、均匀地混合,混合后通过推进注浆部件后注入管片外侧的土体中,双液同步注浆系统可使管片背后浆液快速凝固、快速达到强度,并有效形成止水效果,对前后期土体沉降控制的效果非常明显。
优选的,所述水泥浆的成分包括水泥、粉煤灰和水,其重量配合比为1:1:2;所述水玻璃溶液的成分包括水玻璃和水,其重量配合比为1:2;所述水泥浆和水玻璃溶液的体积配合比7:1。
水泥浆和水玻璃溶液的配合比例决定了二者混合后的初凝时间以及凝固后的强度,将其体积配合比设置为7:1,使双液浆的初凝时间为2小时,双液浆凝固后的强度达到1.6MPa,在注浆施工前,对双液浆配合比进行试验,并根据前期配合比实验以及现场适配预留双液浆试样,确定此配合比下的双液浆的初凝时间为2小时,浆液体凝固后的强度约1.6Mpa,使灌注的双液浆在凝固后具有良好的自稳性。
优选的,在步骤f中,依据同步注浆参数进行双液浆注浆施工,所述同步注浆参数包括注浆总量、注浆压力和同步注浆流量,所述注浆总量为4m3/环,其中水泥浆3.5m3/环,水玻璃溶液0.5m3/环,注浆压力为0.35~0.40MPa,推进速度为2.5cm~3cm/min时,同步注浆流量为38L~45L/min。
优选的,所述渣土改良的方式包括泡沫剂改良方式和聚合物改良方式。盾构机在穿越圆砾土、粉土、粉砂之类粘粒含量较高的地质,采用加水或加注泡沫的碴土改良工艺,就可以达到良好的改良效果,在实际施工过程中,应随时根据土仓状态、土仓压力、碴土性状及地质条件的变化及时调整泡沫参数;当盾构机通过富水粉土、粉砂、圆砾地层时,螺旋机容易喷涌,将导致土仓压力大幅波动、地下水流失严重、掌子面失稳坍塌、地层损失超量、出土量不易控制的后果,在盾构机推进过程中,可以通过加聚合物对渣土进行改良,通常将高分子聚合物配置成浓度比例合适的水溶液,并充分搅拌至黏稠状,再将溶液与渣土以一定体积比例注入土仓中。
通过加泡沫及高分子聚合物,能有效改善渣土性能,保证盾构机土压平衡,施工过程中,根据渣土分析、监测数据,及时对泡沫或聚合物参量进行调整,确保施工安全。
优选的,所述步骤g中,预先在上行轨道和下行轨道内的管片上留设注浆孔,并通过注浆孔进行注浆加固,包括以下步骤:
g1、进行浆液配制,注浆材料为水泥和水,水泥和水的重量配合为1:1;
g2、进行孔口注浆,注浆压力为0.6~0.8MPa,浆液扩散半径1.2~1.5m,注浆流量控制在10~20L/min。
上下完全重叠隧道侧穿上下完全重叠运营隧道施工完成后,为减小工后沉降对运营隧道及成型隧道的影响,通过在管片上预留的注浆孔对下行管道内的管片上方和上行轨道内的管片下方的土体进行注浆加固,注浆采用在管片预留孔内插长钢花管注浆的方式进行,注浆加固后土体无侧限抗压强度满足要求。
与现有技术相比,本发明的有益效果:
1、采取上述方式,通过在下方轨道内临时布置支撑体系,解决了下行隧道及其管片容易遭到损坏的问题,从而完成对下行隧道的保护,同时采用双液浆注浆系统,通过设置的混合器对两种浆液充分混合,并同步灌注到管片背后,使上行隧道施工中的浆液快速凝固并达到需求强度,有效形成止水效果,从而避免土体在施工过程中发生沉降,从而损坏下行隧道;
2、由于盾构机在富水粉土粉砂地层掘进过程中,浆液扩散半径大,导致有效浆液注入量偏小,通过设置的混合器对浆液充分混合后,同步将混合后的浆液灌注到管片背后,从而有效改善渣土性能,使注浆量饱满充实,提高浆液注入量,避免土体发生沉降等影响工程质量的问题,同时采用双液浆注浆的方式,预先确定双液浆的体积配合比,并通过配置在盾构机上的混合器使双液浆混合,进行双液浆注浆施工后,浆液快速凝固,进而达到需求强度,起到止水效果,从而避免土体在施工过程中发生沉降等问题;
3、不同的地层特性,施工参数是不一样的,施工参数直接关系到施工安全和工程质量,在富水粉土地层中进行盾构施工时,按照总推力为2200~2500T、推进速度为2.5~3cm/min、刀盘扭矩1.8~2.2MNm、土仓压力2.8~3.2bar、同步注浆量4方、注浆压力3.5~4bar的施工参数进行施工,能确保施工安全,同时保证施工质量;
4、当盾构机通过富水粉土、粉砂、圆砾地层时,螺旋机容易喷涌,将导致土仓压力大幅波动、地下水流失严重、掌子面失稳坍塌、地层损失超量、出土量不易控制的后果,通过加泡沫及高分子聚合物,能有效改善渣土性能,保证盾构机土压平衡;
5、上下完全重叠隧道侧穿上下完全重叠运营隧道施工完成后,为减小工后沉降对运营隧道及成型隧道的影响,通过在管片上预留的注浆孔对下行管道内的管片上方和上行轨道内的管片下方的土体进行注浆加固,注浆采用在管片预留孔内插长钢花管注浆的方式进行,注浆加固后土体无侧限抗压强度满足要求。
附图说明:
图1为本发明富水粉土地层的盾构掘进施工方法的流程图。
图2为双液浆注浆施工的结构示意图。
图3为聚合物改良方式改良渣土的结构示意图。
图4为重叠隧道管片外侧土体加固的加固区域分布图。
图5双液浆注浆施工的流程图。
图6为重叠隧道管片外侧土体加固施工的流程图。
图7为支撑体系的结构示意图。
图8为支撑体系中的型钢支架的结构示意图
图中标记:1-盾构机,101-刀盘,102-土仓,103-承压墙,2-双液浆注浆系统,21-水玻璃溶液系统,22-水泥浆系统,3-混合器,4-型钢支架,41-立柱,42-横撑,43-支撑柱,44-加强柱,5-球阀,6-高压水枪,7-聚合物水溶液装置,8-型钢连接梁,9-牛腿,10-木楔,11-管片,12-上行隧道,121-上行隧道加固区域,13-下行隧道,131-下行隧道加固区域。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例
本实施例用于在富水粉土地层中重叠隧道的盾构施工场合。
如图1所示,在富水粉土地层中重叠隧道的盾构掘进施工方法,包括以下步骤:
a、在下行隧道内临时搭设用于支撑管片的支撑体系,下行隧道为已建成隧道;
b、使用盾构机在试验段试掘进,并得出施工参数;
c、在盾构机上配置双液浆注浆系统、清洗系统和混合器,所述混合器用于混合所述双液浆注浆系统输送的双液浆,所述双液浆注浆系统为包含单独储放的两种浆液,两种所述浆液混合后能快速凝固的注浆系统;
d、确定双液浆的配合比;
e、按照步骤a得出的施工参数,进行正式盾构施工;
f、采用加水或加注泡沫的工艺,进行渣土改良,并同步进行双液浆注浆施工;
g、分别对上行隧道和下行隧道的管片外侧土体进行加固处理。
上述施工步骤中,只有当上行隧道的试验段与下行隧道也存在重叠情况时,才严格按照上述施工步骤进行,此时,需要先在下行隧道内搭设临时支架,用于保护下行隧道和隧道管片的质量安全,避免在试验段进行试掘进时就将下行隧道或管片损坏,当上行隧道的试验段与下行隧道不存在重叠时,步骤a可以在步骤e之前的任何阶段进行,也可以和某一步骤或多个步骤同时进行,此时,在开展步骤e之前的任何步骤均不会对重叠隧道处的下行隧道或管片造成损坏等质量问题,步骤a中的下行隧道为已建成隧道,但不包括已建成并处于运行状态的隧道。
采取上述方式,通过在下方轨道内临时布置支撑体系,解决了下行隧道及其管片容易遭到损坏的问题,从而完成对下行隧道的保护,同时采用双液浆注浆系统,通过设置的混合器对两种浆液充分混合,并同步灌注到管片背后,使上行隧道施工中的浆液快速凝固并达到需求强度,有效形成止水效果,从而避免土体在施工过程中发生沉降,从而损坏下行隧道。
在试验段进行试掘进,并且在试掘进过程进行施工记录和数据监测,从而整理得出施工参数,在正式施工过程中,依据得出的施工参数进行盾构施工。由于盾构机在富水粉土粉砂地层掘进过程中,浆液扩散半径大,导致有效浆液注入量偏小,通过设置的混合器对浆液充分混合后,同步将混合后的浆液灌注到管片背后,从而有效改善渣土性能,使注浆量饱满充实,提高浆液注入量,避免土体发生沉降等影响工程质量的问题,同时采用双液浆注浆的方式,预先确定双液浆的配合比,并通过配置在盾构机上的混合器使双液浆混合,进行双液浆注浆施工后,浆液快速凝固,进而达到需求强度,起到止水效果,从而避免土体在施工过程中发生沉降等问题。
在下行隧道内搭设临时支架,在上行隧道盾构机通过重叠段的过程中跟踪该临时支架,保持盾体下方的已成型隧道随时处于被支撑保护的状态,确保管片质量安全。
如图7和图8所示,步骤a中,支撑体系包括多个相互平行的型钢支架4和用于连接型钢支架4的型钢连接梁8,所述型钢支架4为门字形的平面框架结构,包括竖直布置的两根立柱41和连接两根立柱41的横撑42,所述横撑42靠近两根立柱41的上端,在所述立柱41和横撑42上还设置有多根用于支撑管片11的支撑柱43,多个所述支撑柱43沿平面框架结构外侧布置,并延伸至管片11。
将型钢支架4设置为门字形的平面框架结构,保证下行隧道运输的正常进行,即正常的运输设备从门字形平面框架结构的中间通过,设置多根支撑柱43,使管片得到充分的支撑,避免上行隧道在施工时对下行隧道的破坏,从而有效保护下行隧道和布置在隧道内的管片。
为了提高型钢支架4的支撑强度,保证支撑效果,在支撑柱43上还布置有多根加强柱44,所述加强柱44连接在相邻两根加强柱44之间。
各个所述型钢支架4安装在临时轨道的牛腿9上,且位置与盾构机对应,布置在盾构机下方的下行隧道内,并分别向下行轨道的前方和后方各延伸30~60m,所述型钢支架4与管片11接触的地方布置有木楔10,使型钢支架4紧密布置在隧道管片内。
用于支撑临时轨道的支撑梁的两端为临时轨道的牛腿,能用于承受较大的载荷,将型钢支架安装在牛腿上,在通过型钢将各个型钢支架连接起来,使型钢支架形成一个完整的支撑体系,构成整体,对下行轨道及其管片形成全面支撑。在使用盾构机对上行轨道掘进的过程中,盾构机及盾构机前后的施工地段处于最不稳定的地段,这个地段长度基本上在盾构机前、后方30-60m的范围内,在该地段对应的下行轨道内设置支撑体系,能有效保护下行轨道及其管片,避免遭受质量安全问题。
施工参数包括总推力、推进速度、刀盘扭矩、土仓压力和同步注浆参数,其中,总推力为2200~2500T,推进速度为2.5~3cm/min,刀盘扭矩1.8~2.2MNm,土仓压力2.8~3.2bar,同步注浆量为4方,注浆压力控制在3.5~4bar之间。
在盾构施工过程中,严格按照确定施工参数组织施工,通过在试验段的试掘进施工过程中的施工记录和数据监测,整理并总结得出施工参数,为了确保隧道施工安全,严格执行上述施工参数。不同的地层特性,施工参数是不一样的,施工参数直接关系到施工安全和工程质量,在富水粉土地层中进行盾构施工时,按照上述施工参数进行,能确保施工安全,同时保证施工质量。
如图2所示,双液浆注浆施工系统包括在隧道前方推进的盾构机1,盾构机1的尾部配备有混合器3,还包括放置在隧道管片4上的双液浆注浆系统2,双液浆注浆系统2包括水泥浆系统22和水玻璃溶液系统21,该双液浆注浆系统2分别独自配备有对应的储浆装置和泵送装置,水泥浆系统22和水玻璃溶液系统21通过各自的泵送装置输送至混合器3中进行充分、均匀混合,混合后的浆液在注入管片4外侧。
双液注浆系统2为两种浆液混合后能快速凝固的注浆系统,采用水泥浆系统22和水玻璃溶液系统21,二者以一定配合比混合并进行注浆后,能快速凝固,从而较好地起到止水作用,分别独自配备储浆装置和泵送装置,储浆装置能对场外拌制好的浆液进行储存,使二者在进入混合器中混合前保持各自的状态,分别设置泵送装置,保证二者均具有较大的泵送压力,分别将储浆装置中的浆液输送至混合器中进行充分、均匀混合。
如图5所示,在进行双液浆注浆施工过程时,按照以下操作步骤进行操作:
f1、在场外分别拌制水泥浆和水玻璃溶液;
f2、将拌制好的水泥浆和水玻璃溶液运输至盾构掘进现场;
f3、对水泥浆和水玻璃溶液进行转浆,使其转注入各自的储浆装置;
f4、确定水泥浆和水玻璃溶液的配合比,并通过各自的储浆装置分别将浆液灌注入混合器中混合;
f5、混合器中设置有推进注浆部件,使用推进注浆部件将混合后的双液浆通过注浆系统管路同步注入管片外侧的土体中;
f6、清洗注浆系统管路,并重复步骤c5进入下一循环施工。
采取上述方式,水泥浆和水玻璃溶液在混合器内充分、均匀地混合,混合后通过推进注浆部件后注入管片外侧的土体中,双液同步注浆系统可使管片背后浆液快速凝固、快速达到强度,并有效形成止水效果,对前后期土体沉降控制的效果非常明显。
水泥浆的成分包括水泥、粉煤灰和水,其重量配合比为1:1:2;水玻璃溶液的成分包括水玻璃和水,其重量配合比为1:2;水泥浆和水玻璃溶液的体积配合比7:1。
水泥浆和水玻璃溶液的配合比例决定了二者混合后的初凝时间以及凝固后的强度,将其体积配合比设置为7:1,使双液浆的初凝时间为2小时,双液浆凝固后的强度达到1.6MPa,在注浆施工前,对双液浆配合比进行试验,并根据前期配合比实验以及现场适配预留双液浆试样,确定此配合比下的双液浆的初凝时间为2小时,浆液体凝固后的强度约1.6Mpa,使灌注的双液浆在凝固后具有良好的自稳性。
在步骤f中,依据同步注浆参数进行双液浆注浆施工,所述同步注浆参数包括注浆总量、注浆压力和同步注浆流量,所述注浆总量为4m3/环,其中水泥浆3.5m3/环,水玻璃溶液0.5m3/环,注浆压力为0.35~0.40MPa,推进速度为2.5cm~3cm/min时,同步注浆流量为38L~45L/min。
渣土改良的方式包括泡沫剂改良方式和聚合物改良方式,盾构机在穿越圆砾土、粉土、粉砂之类粘粒含量较高的地质,采用加水或加注泡沫的碴土改良工艺,就可以达到良好的改良效果,在实际施工过程中,应随时根据土仓状态、土仓压力、碴土性状及地质条件的变化及时调整泡沫参数,当盾构机通过富水粉土、粉砂、圆砾地层时,螺旋机容易喷涌,将导致土仓压力大幅波动、地下水流失严重、掌子面失稳坍塌、地层损失超量、出土量不易控制的后果,在盾构机推进过程中,可以通过加聚合物对渣土进行改良,通常将高分子聚合物配置成浓度比例合适的水溶液,并充分搅拌至黏稠状,再将溶液与渣土以一定体积比例注入土仓中。
如图3所示,在采用聚合物改良方式改良渣土时,将高分子聚合物装入聚合物水溶液装置7中,在聚合物水溶液装置7上设置加注管路,通过管路将高分子聚合物加入到土仓102中,使盾构机的刀盘101在往前掘进的过程中,通过往土仓102中加泡沫及高分子聚合物改善渣土性能,使盾构机土压保持平衡,防止发生盾构机栽头的问题,加注管路一端与聚合物水溶液装置7连通,另一端经过球阀5通向土仓102内,球阀5安装在土仓102的承压墙103上,在加注管路上还布置有高压水枪6,使聚合物以较高压力喷射入土仓102内。
通过加泡沫及高分子聚合物,能有效改善渣土性能,保证盾构机土压平衡,施工过程中,根据渣土分析、监测数据,及时对泡沫或聚合物参量进行调整,确保施工安全。
在对管片外土体进行加固处理时,预先在上行轨道和下行轨道内的管片上留设注浆孔,并通过注浆孔进行注浆加固。
如图6所示,管片外土体的加固施工过程按下述步骤进行,包括:
g1、进行注浆准备,包括确定孔位、疏通预留孔、振插注浆管和安放防喷装置;
g2、进行浆液配制,注浆材料为水泥和水,水灰比为1:1;
g3、进行孔口注浆,注浆压力为0.6~0.8MPa,浆液扩散半径1.2~1.5m,注浆流量控制在10~20L/min;
g4、注浆完成后,封闭孔口;
g5、注浆管路移位,进行下一个管片注浆加固。
如图4所示,对上行轨道12的管片11外侧进行加固,上行轨道加固区域121为拱底区域,该区域沿上行轨道11的垂直中心面对称布置,形成扇形区域,扇形区域的中心夹角为120度,同时对下行轨道13的管片11外侧进行加固,下行轨道加固区域131为拱顶区域,该区域沿下行轨道13的垂直中心面对称布置,形成扇形区域,扇形区域的中心夹角为180度。采取这种方式,使上行轨道和下行轨道之间的薄弱区域得到双重加固,有效保证土体结构的稳定性,避免发生沉陷坍塌。
上下完全重叠隧道侧穿上下完全重叠运营隧道施工完成后,为减小工后沉降对运营隧道及成型隧道的影响,通过在管片上预留的注浆孔对下行管道内的管片上方和上行轨道内的管片下方的土体进行注浆加固,注浆采用在管片预留孔内插长钢花管注浆的方式进行,注浆加固后土体无侧限抗压强度满足要求。
本实施的在富水粉土地层中重叠隧道的盾构掘进施工方法通过在下方轨道内临时布置支撑体系,解决了下行隧道及其管片容易遭到损坏的问题,从而完成对下行隧道的保护,同时采用双液浆注浆系统,通过设置的混合器对两种浆液充分混合,并同步灌注到管片背后,使上行隧道施工中的浆液快速凝固并达到需求强度,有效形成止水效果,从而避免土体在施工过程中发生沉降,从而损坏下行隧道。
本实施例同时采用双液浆注浆系统进行注浆,解决了浆液扩散半径大,有效浆液注入量偏小的问题,通过设置的混合器对浆液充分混合后,同步将混合后的浆液灌注到管片背后,从而有效改善渣土性能,使注浆量饱满充实,提高浆液注入量,避免土体发生沉降等影响工程质量的问题,同时采用双液浆注浆的方式,预先确定双液浆的体积配合比,并通过配置在盾构机上的混合器使双液浆混合,进行双液浆注浆施工后,浆液快速凝固,进而达到需求强度,起到止水效果,从而避免土体在施工过程中发生沉降等问题。

Claims (10)

1.一种在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,包括以下步骤:
a、在下行隧道内临时搭设用于支撑管片的支撑体系,下行隧道为已建成隧道;
b、使用盾构机在试验段试掘进,并得出施工参数;
c、在盾构机上配置双液浆注浆系统、清洗系统和混合器,所述混合器用于混合所述双液浆注浆系统输送的双液浆,所述双液浆注浆系统为包含单独储放的两种浆液,两种所述浆液混合后能快速凝固的注浆系统;
d、确定双液浆的配合比;
e、按照步骤a得出的施工参数,进行正式盾构施工;
f、采用加水或加注泡沫的工艺,进行渣土改良,并同步进行双液浆注浆施工;
g、分别对上行隧道和下行隧道的管片外侧土体进行加固处理。
2.根据权利要求1所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,在步骤a中,所述支撑体系包括多个相互平行的型钢支架和用于连接型钢支架的型钢连接梁,所述型钢支架为门字形的平面框架结构,包括竖直布置的两根立柱和连接两根立柱的横撑,所述横撑靠近两根立柱的上端,在所述立柱和横撑上还设置有多根用于支撑管片的支撑柱,多个所述支撑柱沿平面框架结构外侧布置,并延伸至管片。
3.根据权利要求2所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,在下行轨道内设有临时轨道,各个所述型钢支架安装在临时轨道的牛腿上,且位置与盾构机对应,并分别向下行隧道的前方和后方各延伸30~60m,所述支架与管片接触的地方布置有木楔。
4.根据权利要求1所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,所述施工参数包括总推力、推进速度、刀盘扭矩、土仓压力和同步注浆参数,其中:
总推力为2200~2500T,推进速度为2.5~3cm/min,刀盘扭矩1.8~2.2MNm,土仓压力2.8~3.2bar,同步注浆量为4方,注浆压力控制在3.5~4bar之间。
5.根据权利要求4所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,所述双液浆注浆系统包括水泥浆系统和水玻璃溶液系统,该双液浆注浆系统分别独自配备有对应的储浆装置和泵送装置,并通过各自的泵送装置输送至混合器中进行充分、均匀混合。
6.根据权利要求5所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,所述步骤f中,双液浆注浆施工过程包括以下步骤:
f1、在场外分别拌制水泥浆和水玻璃溶液;
f2、将拌制好的水泥浆和水玻璃溶液运输至盾构掘进现场;
f3、对水泥浆和水玻璃溶液进行转浆,使其转注入各自的储浆装置;
f4、确定水泥浆和水玻璃溶液的配合比,并通过各自的储浆装置分别将浆液灌注入混合器中混合;
f5、混合器中设置有推进注浆部件,使用推进注浆部件将混合后的双液浆通过注浆系统管路同步注入管片外侧的土体中;
f6、清洗注浆系统管路,并重复步骤c5进入下一循环施工。
7.根据权利要求5所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,所述水泥浆的成分包括水泥、粉煤灰和水,其重量配合比为1:1:2;所述水玻璃溶液的成分包括水玻璃和水,其重量配合比为1:2;所述水泥浆和水玻璃溶液的体积配合比7:1。
8.根据权利要求1-7之一所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,在步骤f中,依据同步注浆参数进行双液浆注浆施工,所述同步注浆参数包括注浆总量、注浆压力和同步注浆流量,所述注浆总量为4m3/环,其中水泥浆3.5m3/环,水玻璃溶液0.5m3/环,注浆压力为0.35~0.40MPa,推进速度为2.5cm~3cm/min时,同步注浆流量为38L~45L/min。
9.根据权利要求1-7之一所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,所述渣土改良的方式包括泡沫剂改良方式和聚合物改良方式。
10.根据权利要求1-7之一所述的在富水粉土地层中重叠隧道的盾构掘进施工方法,其特征在于,所述步骤g中,预先在上行轨道和下行轨道内的管片上留设注浆孔,并通过注浆孔进行注浆加固,具体包括以下步骤:
g1、进行浆液配制,注浆材料为水泥和水,水泥和水的重量配合为1:1;
g2、进行孔口注浆,注浆压力为0.6~0.8MPa,浆液扩散半径1.2~1.5m,注浆流量控制在10~20L/min。
CN201611257826.1A 2016-12-30 2016-12-30 一种在富水粉土地层中重叠隧道的盾构掘进施工方法 Pending CN106499399A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611257826.1A CN106499399A (zh) 2016-12-30 2016-12-30 一种在富水粉土地层中重叠隧道的盾构掘进施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611257826.1A CN106499399A (zh) 2016-12-30 2016-12-30 一种在富水粉土地层中重叠隧道的盾构掘进施工方法

Publications (1)

Publication Number Publication Date
CN106499399A true CN106499399A (zh) 2017-03-15

Family

ID=58333438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611257826.1A Pending CN106499399A (zh) 2016-12-30 2016-12-30 一种在富水粉土地层中重叠隧道的盾构掘进施工方法

Country Status (1)

Country Link
CN (1) CN106499399A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143342A (zh) * 2017-06-29 2017-09-08 中铁工程装备集团有限公司 一种多刀盘掘进机的渣土改良系统
CN108240226A (zh) * 2018-02-11 2018-07-03 济南轨道交通集团有限公司 近距离交叠地铁隧道同步建设预留盾构空推条件施工方法
CN109736830A (zh) * 2019-01-10 2019-05-10 中铁建南方建设投资有限公司 一种tbm隧道建筑施工中横向封堵的实现方法
CN110469347A (zh) * 2019-09-03 2019-11-19 重庆城建控股(集团)有限责任公司 富水隧洞双浆液注浆方法
CN110645005A (zh) * 2019-10-30 2020-01-03 中铁开发投资集团有限公司 一种高富水圆砾地层土压平衡盾构快速掘进施工方法
CN111734444A (zh) * 2020-07-31 2020-10-02 中铁二十局集团第五工程有限公司 一种临近既有线盾构管片注浆加固结构的施工方法
CN113374496A (zh) * 2021-06-23 2021-09-10 上海隧道工程有限公司 上穿越隧道结构及施工方法
CN117266888A (zh) * 2023-11-21 2023-12-22 中铁电气化局集团有限公司 一种上下重叠隧道预留注浆装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403307A (zh) * 2008-08-04 2009-04-08 中铁十一局集团城市轨道工程有限公司 复合土压平衡盾构机穿越浅埋富水砂层的施工方法
CN201554469U (zh) * 2009-12-17 2010-08-18 中铁一局集团有限公司 重叠盾构隧道用可移动式轮式台车支撑体系
CN102312673A (zh) * 2010-07-09 2012-01-11 上海市基础工程有限公司 复杂工况条件下盾构近距离穿越已运营地铁隧道施工方法
CN102720508A (zh) * 2012-04-28 2012-10-10 中铁二局股份有限公司 粉土粉砂地层连续下穿密集建筑物盾构施工方法
CN103277110A (zh) * 2013-05-13 2013-09-04 中铁十四局集团有限公司 叠落式盾构隧道的施工方法
CN104653191A (zh) * 2014-12-31 2015-05-27 广东华隧建设股份有限公司 一种土压盾构机在富水圆砾地层中高效掘进的方法
CN105041324A (zh) * 2015-06-12 2015-11-11 北京城建设计发展集团股份有限公司 一种富水风化不均板岩交互地层盾构掘进用渣土改良方法
CN105332710A (zh) * 2015-12-09 2016-02-17 中铁十八局集团第五工程有限公司 适用于软弱地质下小净距长距离的上下重叠隧道施工方法
CN205477628U (zh) * 2015-10-28 2016-08-17 广州建恒机电设备安装有限公司 盾构掘进同步注双液浆装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403307A (zh) * 2008-08-04 2009-04-08 中铁十一局集团城市轨道工程有限公司 复合土压平衡盾构机穿越浅埋富水砂层的施工方法
CN201554469U (zh) * 2009-12-17 2010-08-18 中铁一局集团有限公司 重叠盾构隧道用可移动式轮式台车支撑体系
CN102312673A (zh) * 2010-07-09 2012-01-11 上海市基础工程有限公司 复杂工况条件下盾构近距离穿越已运营地铁隧道施工方法
CN102720508A (zh) * 2012-04-28 2012-10-10 中铁二局股份有限公司 粉土粉砂地层连续下穿密集建筑物盾构施工方法
CN103277110A (zh) * 2013-05-13 2013-09-04 中铁十四局集团有限公司 叠落式盾构隧道的施工方法
CN104653191A (zh) * 2014-12-31 2015-05-27 广东华隧建设股份有限公司 一种土压盾构机在富水圆砾地层中高效掘进的方法
CN105041324A (zh) * 2015-06-12 2015-11-11 北京城建设计发展集团股份有限公司 一种富水风化不均板岩交互地层盾构掘进用渣土改良方法
CN205477628U (zh) * 2015-10-28 2016-08-17 广州建恒机电设备安装有限公司 盾构掘进同步注双液浆装置
CN105332710A (zh) * 2015-12-09 2016-02-17 中铁十八局集团第五工程有限公司 适用于软弱地质下小净距长距离的上下重叠隧道施工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
卿三惠等: "《隧道及地铁工程 第2版》", 31 October 2013, 中国铁道出版社 *
秦立朝等: "长距离重叠隧道连续下穿平瓦房施工技术", 《2015年4月建筑科技与管理学术交流会论文集》 *
雷升祥等: "《综合管廊与管道盾构》", 31 July 2015, 中国铁道出版社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143342A (zh) * 2017-06-29 2017-09-08 中铁工程装备集团有限公司 一种多刀盘掘进机的渣土改良系统
CN108240226A (zh) * 2018-02-11 2018-07-03 济南轨道交通集团有限公司 近距离交叠地铁隧道同步建设预留盾构空推条件施工方法
CN108240226B (zh) * 2018-02-11 2019-08-13 济南轨道交通集团有限公司 近距离交叠地铁隧道同步建设预留盾构空推条件施工方法
CN109736830A (zh) * 2019-01-10 2019-05-10 中铁建南方建设投资有限公司 一种tbm隧道建筑施工中横向封堵的实现方法
CN110469347A (zh) * 2019-09-03 2019-11-19 重庆城建控股(集团)有限责任公司 富水隧洞双浆液注浆方法
CN110645005A (zh) * 2019-10-30 2020-01-03 中铁开发投资集团有限公司 一种高富水圆砾地层土压平衡盾构快速掘进施工方法
CN111734444A (zh) * 2020-07-31 2020-10-02 中铁二十局集团第五工程有限公司 一种临近既有线盾构管片注浆加固结构的施工方法
CN113374496A (zh) * 2021-06-23 2021-09-10 上海隧道工程有限公司 上穿越隧道结构及施工方法
CN117266888A (zh) * 2023-11-21 2023-12-22 中铁电气化局集团有限公司 一种上下重叠隧道预留注浆装置
CN117266888B (zh) * 2023-11-21 2024-01-23 中铁电气化局集团有限公司 一种上下重叠隧道预留注浆装置

Similar Documents

Publication Publication Date Title
CN106499399A (zh) 一种在富水粉土地层中重叠隧道的盾构掘进施工方法
CN106761782A (zh) 一种在富水粉土地层中盾构下穿运营隧道的掘进施工方法
CN104453946B (zh) 一种软弱围岩隧道修建的超前加固施工方法
CN104653197B (zh) 超大变断面隧道施工方法
CN104500077B (zh) 一种浅埋暗挖隧道穿越平房区施工方法
WO2021223573A1 (zh) 新增暗挖通道与既有站厅层连通接驳施工结构
CN104564128B (zh) 一种浅埋暗挖隧道施工用变形监测方法
CN106567718B (zh) 一种复合地层单拱超大跨地铁车站拉槽支撑代换的施工方法
CN106703814A (zh) 暗挖地铁车站洞桩施工方法
CN105201516B (zh) 一种地铁车站主体结构及其四联拱pba暗挖施工方法
CN103306684A (zh) 盾构管片背后注浆工艺
CN105804761A (zh) 适用于液化砂土地层盾构近距离穿越建筑物的施工方法
CN102296961A (zh) 一种岩溶隧道大规模溶腔处理方法
CN109083682A (zh) 一种矿山巷道防渗高强度密闭墙的施工方法
CN106968690A (zh) 坍塌土质的隧道施工方法
CN110130927A (zh) 一种炭质板岩隧道大变形控制施工方法
CN107288642A (zh) Pba施工工艺
CN103899323A (zh) 一种盾构穿越铁路站场的施工方法
CN107023300A (zh) 一种采用棚护法建造地铁车站的施工方法
CN106049195A (zh) 一种高速铁路既有线路基基底加固方法
CN113153308A (zh) 双联拱隧道塌方段施工方法
CN108691552A (zh) 大断面马蹄形盾构路堑接收施工方法
CN101806223B (zh) 一种回撤通道的加固方法
CN109057802A (zh) 大断面浅埋隧道下穿高速公路施工方法
CN112538870B (zh) 一种富水砂层盾构隧道下穿高架桥用隔离加固结构及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Jinniu District Kam Tong Road Chengdu city Sichuan province 610031 No. 16

Applicant after: China Railway Second Bureau Construction Co.,Ltd.

Address before: Jinniu District Kam Tong Road Chengdu city Sichuan province 610031 No. 16

Applicant before: CHINA RAILWAY NO.2 ENGINEERING GROUP Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190801

Address after: Jinniu District Kam Tong Road Chengdu city Sichuan province 610031 No. 16

Applicant after: CHINA RAILWAY NO.2 ENGINEERING GROUP Co.,Ltd.

Address before: Jinniu District Kam Tong Road Chengdu city Sichuan province 610031 No. 16

Applicant before: China Railway Second Bureau Construction Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315