CN106483104A - Alcohol concentration measurement apparatus and method using PVDF Terahertz plasma resonance effect - Google Patents
Alcohol concentration measurement apparatus and method using PVDF Terahertz plasma resonance effect Download PDFInfo
- Publication number
- CN106483104A CN106483104A CN201611125163.8A CN201611125163A CN106483104A CN 106483104 A CN106483104 A CN 106483104A CN 201611125163 A CN201611125163 A CN 201611125163A CN 106483104 A CN106483104 A CN 106483104A
- Authority
- CN
- China
- Prior art keywords
- silicon
- film
- angle
- silicon dioxide
- dioxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 239000002033 PVDF binder Substances 0.000 title claims abstract description 32
- 229920002981 polyvinylidene fluoride Polymers 0.000 title claims abstract description 32
- 230000000694 effects Effects 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000005259 measurement Methods 0.000 title claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 57
- 239000010703 silicon Substances 0.000 claims abstract description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 93
- 235000012239 silicon dioxide Nutrition 0.000 claims description 46
- 239000000377 silicon dioxide Substances 0.000 claims description 46
- 239000000243 solution Substances 0.000 claims description 44
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 27
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 27
- -1 polytetrafluoroethylene Polymers 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 25
- 238000011088 calibration curve Methods 0.000 claims description 8
- 239000012086 standard solution Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 239000000126 substance Substances 0.000 description 5
- 235000013361 beverage Nutrition 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920009405 Polyvinylidenefluoride (PVDF) Film Polymers 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000004497 NIR spectroscopy Methods 0.000 description 1
- 235000013334 alcoholic beverage Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000004476 mid-IR spectroscopy Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种利用PVDF太赫兹等离子体谐振效应的酒精浓度测量装置及方法。由返波振荡器发出的单频太赫兹(THz)波在经过硅棱镜反射后到达肖特基二极管探测器。当硅棱镜所在的旋转台旋转一定角度和探测器所在旋转台旋转相应的两倍角度,并且旋转角在特定范围内扫描变化时,探测器可得到角度—反射系数曲线。该反射系数曲线上的谐振峰随酒精浓度变化移动。由于返波振荡器的功率较大,使得探测器所在旋转台的半径较大,使得旋转角度分辨率可以小于一分,本测量装置中待测溶液从纯水到纯酒精变化时角度—反射系数曲线的谐振峰移动大于18度,使得该测量装置测量酒精浓度的精度达到千分之一以上。
The invention discloses an alcohol concentration measuring device and method utilizing PVDF terahertz plasma resonance effect. A single-frequency terahertz (THz) wave emitted by a flyback oscillator reaches a Schottky diode detector after being reflected by a silicon prism. When the rotating table where the silicon prism is located rotates at a certain angle and twice the corresponding angle of the rotating table where the detector is located, and the rotation angle scans and changes within a specific range, the detector can obtain an angle-reflection coefficient curve. The resonant peak on this reflection coefficient curve shifts with alcohol concentration. Due to the large power of the back-wave oscillator, the radius of the rotating table where the detector is located is relatively large, so that the resolution of the rotation angle can be less than one minute. In this measuring device, when the solution to be measured changes from pure water to pure alcohol, the angle-reflection coefficient The resonance peak of the curve moves more than 18 degrees, so that the measuring device can measure the alcohol concentration with an accuracy of more than one thousandth.
Description
技术领域technical field
本发明属于太赫兹波技术领域,涉及一种利用聚偏氟乙烯(PVDF)薄膜太赫兹表面等离子体谐振效应的酒精浓度测量装置。The invention belongs to the technical field of terahertz waves, and relates to an alcohol concentration measuring device utilizing the terahertz surface plasma resonance effect of a polyvinylidene fluoride (PVDF) film.
背景技术Background technique
太赫兹(Terahertz or THz)波通常是指频率在0.1~10THz区间的电磁波,其光子的能量约为1~10meV,正好与分子振动及转动能级之间跃迁的能量大致相当。大多数极性分子如水分子、氨分子等对THz辐射有强烈的吸收,许多有机大分子(DNA、蛋白质等)的振动能级和转动能级之间的跃迁也正好在THz波段范围。因此,物质的THz光谱(包括发射、反射和透射光谱)包含有丰富的物理质和化学信息,其吸收和色散特性可以用来做爆炸物、药物等化学及生物样品的探测和识别,在物理学、化学、生物医学、天文学、材料科学和环境科学等方面具有重要的应用价值。Terahertz (Terahertz or THz) waves usually refer to electromagnetic waves with a frequency in the range of 0.1 to 10 THz. The energy of the photons is about 1 to 10 meV, which is roughly equivalent to the energy of the transition between molecular vibration and rotational energy levels. Most polar molecules such as water molecules and ammonia molecules have a strong absorption of THz radiation, and the transition between the vibrational energy level and rotational energy level of many organic macromolecules (DNA, protein, etc.) is also just in the THz range. Therefore, the THz spectrum (including emission, reflection and transmission spectra) of substances contains rich physical and chemical information, and its absorption and dispersion characteristics can be used to detect and identify chemical and biological samples such as explosives and drugs. It has important application value in science, chemistry, biomedicine, astronomy, material science and environmental science.
PVDF是含氟乙烯基单体的共聚物,它兼具氟树脂和通用树脂的特性,除具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐候性、耐射线辐射性能外,还具有压电性、铁电性、热电性等特殊性能。PVDF有四种多态结构:α、β、γ、δ相,其中β相是电极性形态,具有较高的压电性能。特别是β相的PVDF的THz介电属性可以用Drude模型描述,其等离子频率位于THz频段,使得在介质—PVDF界面可以激发THz表面等离子激元,在传感领域有重要应用。PVDF is a copolymer of fluorine-containing vinyl monomers. It has the characteristics of both fluororesins and general-purpose resins. In addition to good chemical corrosion resistance, high temperature resistance, oxidation resistance, weather resistance, and radiation resistance, it also has It has special properties such as piezoelectricity, ferroelectricity and pyroelectricity. PVDF has four polymorphic structures: α, β, γ, and δ phases, among which the β phase is an electrical polar form with high piezoelectric properties. In particular, the THz dielectric properties of β-phase PVDF can be described by the Drude model, and its plasmon frequency is in the THz frequency band, so that THz surface plasmons can be excited at the medium-PVDF interface, which has important applications in the field of sensing.
溶液浓度是一个重要物理量,在化工、冶金、造纸、酿酒、制糖、环保行业及科研等领域都常常需要对溶液浓度进行测量。其中特别是酒精类饮品是国家控制产品,对其中的乙醇含量有严格规定。快速准确地测定饮品中乙醇含量在食品工业质量控制中十分重要。由于溶液的折射率与吸收率等光学参数与其浓度和温度直接相关因此通过测量溶液的光学参数来测量溶液浓度是常用的方法之一,例如光纤传感器、红外及拉曼谱测量法等等。同膜分离结合酶法等电化学学方法相比,这类具有测量速度快,精度高,尤其适合易燃易爆等场所测量。近红外、中红外及拉曼光谱已经应用于饮品中乙醇含量的测量,但在测量方法建立初期,需要完成大批量实验以建立起化学计量模型。而且模型多以光强度信号或与强度直接相关的量的变化实现被测量的感知,对光源的稳定性要求极高,而且计算复杂。Solution concentration is an important physical quantity, which is often needed to be measured in chemical industry, metallurgy, papermaking, brewing, sugar, environmental protection industry and scientific research. Among them, especially alcoholic beverages are state-controlled products, and there are strict regulations on the content of ethanol in them. Fast and accurate determination of ethanol content in beverages is very important in the quality control of the food industry. Since the optical parameters such as the refractive index and absorptivity of the solution are directly related to its concentration and temperature, it is one of the commonly used methods to measure the solution concentration by measuring the optical parameters of the solution, such as optical fiber sensors, infrared and Raman spectroscopy and so on. Compared with electrochemical methods such as membrane separation combined with enzyme method, this type has fast measurement speed and high precision, and is especially suitable for measurement in flammable and explosive places. Near-infrared, mid-infrared and Raman spectroscopy have been applied to the measurement of ethanol content in beverages, but in the initial stage of the establishment of the measurement method, a large number of experiments need to be completed to establish a stoichiometric model. Moreover, most of the models use the light intensity signal or the change of the quantity directly related to the intensity to realize the perception of the measured object, which has extremely high requirements on the stability of the light source, and the calculation is complicated.
发明内容Contents of the invention
本发明目的是克服现有电化学法和光谱法测量饮品中酒精浓度的不足,提供一种利用太赫兹异向介质谐振效应的酒精浓度测量装置及其方法。The purpose of the present invention is to overcome the shortcomings of existing electrochemical and spectroscopic methods for measuring alcohol concentration in beverages, and provide an alcohol concentration measuring device and method using the resonance effect of terahertz anisotropic media.
本发明的利用PVDF太赫兹等离子体谐振效应的酒精浓度测量装置包括半圆形硅棱镜(1)、第一二氧化硅薄膜(2)、PVDF薄膜(3)、第二二氧化硅薄膜(4)、待测酒精溶液(5)、高阻硅衬底(6)、第一旋转台(7)、返波振荡器(8)、第一聚四氟乙烯透镜(9)、第二聚四氟乙烯透镜(10)、第三聚四氟乙烯透镜(11);第四聚四氟乙烯透镜(12);肖特基二极管探测器(13)、第二旋转台(14);The alcohol concentration measuring device utilizing the PVDF terahertz plasma resonance effect of the present invention comprises a semicircular silicon prism (1), a first silicon dioxide film (2), a PVDF film (3), a second silicon dioxide film (4 ), the alcohol solution to be tested (5), the high-resistance silicon substrate (6), the first rotary table (7), the return wave oscillator (8), the first polytetrafluoroethylene lens (9), the second polytetrafluoroethylene Fluoroethylene lens (10), the third polytetrafluoroethylene lens (11); the fourth polytetrafluoroethylene lens (12); Schottky diode detector (13), the second turntable (14);
半圆形硅棱镜(1)下表面依次紧贴布置第一二氧化硅薄膜(2)、PVDF薄膜(3)、第二二氧化硅薄膜(4)、待测酒精溶液(5)和高阻硅衬底(6),由返波振荡器(8)发出的THz波透过第一聚四氟乙烯透镜(9)、第二聚四氟乙烯透镜(10)聚焦到半圆形硅棱镜(1),再经过半圆形硅棱镜(1)及第一二氧化硅薄膜(2)、PVDF薄膜(3)、第二二氧化硅薄膜(4),被紧贴置于高阻硅衬底(6)上的待测酒精溶液(5)反射后出射半圆形硅棱镜(1),再透过第三聚四氟乙烯透镜(11)、第四聚四氟乙烯透镜(12)到达肖特基二极管探测器(13);The lower surface of the semicircular silicon prism (1) is arranged in close contact with the first silicon dioxide film (2), the PVDF film (3), the second silicon dioxide film (4), the alcohol solution to be tested (5) and the high resistance Silicon substrate (6), the THz wave sent by the return wave oscillator (8) passes through the first polytetrafluoroethylene lens (9), the second polytetrafluoroethylene lens (10) and focuses to the semicircular silicon prism ( 1), and then through the semicircular silicon prism (1), the first silicon dioxide film (2), the PVDF film (3), the second silicon dioxide film (4), and then placed on the high-resistance silicon substrate The alcohol solution to be measured (5) on (6) is reflected and exits the semicircular silicon prism (1), then passes through the third polytetrafluoroethylene lens (11), the fourth polytetrafluoroethylene lens (12) and reaches Xiao Turky diode detector (13);
半圆形硅棱镜(1)、第一二氧化硅薄膜(2)、PVDF薄膜(3)、第二二氧化硅薄膜(4)、待测酒精溶液(5)、高阻硅衬底(6)安装在第一旋转台(7)上;肖特基二极管探测器(13)安装在第二旋转台(14)上。Semicircular silicon prism (1), first silicon dioxide film (2), PVDF film (3), second silicon dioxide film (4), alcohol solution to be tested (5), high resistance silicon substrate (6 ) is installed on the first turntable (7); the Schottky diode detector (13) is installed on the second turntable (14).
第一二氧化硅薄膜(2)和第二二氧化硅薄膜(4)的厚度均为10微米,PVDF薄膜的厚度为30微米,酒精溶液的厚度为200微米。Both the thickness of the first silicon dioxide film (2) and the second silicon dioxide film (4) are 10 microns, the thickness of the PVDF film is 30 microns, and the thickness of the alcohol solution is 200 microns.
待测酒精浓度测量步骤如下:The steps to measure the alcohol concentration to be tested are as follows:
1)首先在高阻硅衬底(6)和第二二氧化硅薄膜(4)之间分别放置待测酒精溶液;1) First place the alcohol solution to be tested between the high-resistance silicon substrate (6) and the second silicon dioxide film (4);
2)返波振荡器(8)发出的太赫兹波工作在0.65THz,在经过半圆形硅棱镜(1)及第一二氧化硅薄膜(2)、PVDF薄膜(3)、第二二氧化硅薄膜(4),被紧贴置于高阻硅衬底(6)上的待测酒精溶液(5)反射后到达肖特基二极管探测器(13),棱镜所在的第一旋转台(7)转动角度θ,肖特基二极管探测器(13)所在的第二旋转台(14)转动2θ;θ在20至80度扫描时,角度扫描的步长小于1分,形成角度—反射系数曲线。2) The terahertz wave emitted by the back-wave oscillator (8) works at 0.65THz, and after passing through the semicircular silicon prism (1) and the first silicon dioxide film (2), PVDF film (3), second dioxide The silicon film (4) arrives at the Schottky diode detector (13) after being reflected by the alcohol solution to be measured (5) that is placed close to the high-resistance silicon substrate (6), and the first rotary table (7) where the prism is located ) rotation angle θ, the second rotary table (14) where the Schottky diode detector (13) is located rotates 2θ; when θ is scanned at 20 to 80 degrees, the step size of the angle scan is less than 1 minute, forming an angle-reflection coefficient curve .
3)根据未知浓度的待测酒精溶液测得的角度—反射系数,计算谐振峰位置;并代入标准溶度-谐振峰测量校正曲线得到待测酒精溶液的精确浓度。3) Calculate the resonant peak position according to the measured angle-reflection coefficient of the alcohol solution of unknown concentration; and substitute into the standard solubility-resonant peak measurement calibration curve to obtain the precise concentration of the alcohol solution to be tested.
标准溶度-谐振峰测量校正曲线通过如下步骤得到:The standard solubility-resonant peak measurement calibration curve is obtained by the following steps:
1)首先在高阻硅衬底(6)和第二二氧化硅薄膜(4)之间分别放置纯水、5%、10%、15%、20%、25%、30%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%的标准酒精溶液;1) First place pure water, 5%, 10%, 15%, 20%, 25%, 30%, 30%, respectively, between the high resistance silicon substrate (6) and the second silicon dioxide film (4). 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100% standard alcohol solution;
2)返波振荡器(8)发出的太赫兹波工作在0.65THz,在经过硅棱镜(1)及第一二氧化硅薄膜(2)、PVDF薄膜(3)、第二二氧化硅薄膜(4),被紧贴置于高阻硅衬底(6)上的不同浓度的标准酒精溶液(5)反射后到达肖特基二极管探测器(13),棱镜所在的第一旋转台(7)转动角度θ,肖特基二极管探测器(13)所在的第二旋转台(14)转动2θ;θ在20至80度扫描时,角度扫描的步长小于1分,形成角度—反射系数曲线。2) The terahertz wave sent by the return wave oscillator (8) works at 0.65THz, and passes through the silicon prism (1) and the first silicon dioxide film (2), the PVDF film (3), the second silicon dioxide film ( 4), after being reflected by standard alcohol solutions (5) of different concentrations placed on the high-resistance silicon substrate (6), it reaches the Schottky diode detector (13), and the first rotary table (7) where the prism is located Rotate the angle θ, the second rotary table (14) where the Schottky diode detector (13) is located rotates 2θ; when θ is scanned at 20 to 80 degrees, the step size of the angle scan is less than 1 minute, forming an angle-reflection coefficient curve.
3)在测量所有标准溶液的角度—反射系数曲线后,计算谐振峰位置并与溶液浓度数据一起建立标准溶度-谐振峰测量校正曲线,从纯水到纯酒精变化过程中,反射系数曲线上的谐振峰移动18度以上,角度扫描的步长小于1分,使得测量酒精浓度精度达到0.1%以上。3) After measuring the angle-reflection coefficient curves of all standard solutions, calculate the resonant peak position and establish the standard solubility-resonant peak measurement calibration curve together with the solution concentration data. During the change from pure water to pure alcohol, the reflection coefficient curve The harmonic peak moves more than 18 degrees, and the step length of angle scanning is less than 1 minute, so that the accuracy of measuring alcohol concentration can reach more than 0.1%.
由返波振荡器发出的单频太赫兹(THz)波在经过硅棱镜反射后到达肖特基二极管探测器。当硅棱镜所在的旋转台旋转一定角度和探测器所在旋转台旋转相应的两倍角度,并且旋转角在特定范围内扫描变化时,探测器可得到角度—反射系数曲线。该反射系数曲线上的谐振峰随酒精浓度变化移动。由于返波振荡器的功率较大,使得探测器所在旋转台的半径较大,使得旋转角度分辨率可以小于一分,本测量装置中待测溶液从纯水到纯酒精变化时角度—反射系数曲线的谐振峰移动大于18度,使得该测量装置测量酒精浓度的精度达到千分之一以上。A single-frequency terahertz (THz) wave emitted by a flyback oscillator reaches a Schottky diode detector after being reflected by a silicon prism. When the rotating table where the silicon prism is located rotates at a certain angle and twice the corresponding angle of the rotating table where the detector is located, and the rotation angle scans and changes within a specific range, the detector can obtain an angle-reflection coefficient curve. The resonant peak on this reflection coefficient curve shifts with alcohol concentration. Due to the large power of the back-wave oscillator, the radius of the rotating table where the detector is located is relatively large, so that the resolution of the rotation angle can be less than one minute. In this measuring device, when the solution to be tested changes from pure water to pure alcohol, the angle-reflection coefficient The resonance peak of the curve moves more than 18 degrees, so that the measuring device can measure the alcohol concentration with an accuracy of more than one thousandth.
附图说明Description of drawings
图1一种利用聚偏氟乙烯(PVDF)薄膜太赫兹表面等离子体谐振效应的酒精浓度测量装置结构示意图;Fig. 1 is a schematic structural diagram of an alcohol concentration measuring device utilizing polyvinylidene fluoride (PVDF) film terahertz surface plasmon resonance effect;
图2测量纯水、20%、40%、60%、80%、100%的标准酒精溶液时的太赫兹反射系数曲线;Figure 2 shows the terahertz reflection coefficient curves when measuring pure water, 20%, 40%, 60%, 80%, and 100% standard alcohol solutions;
图3.测量纯水、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%的标准酒精溶液时的反射系数曲线中谐振角度及其拟合曲线。Figure 3. Resonance angle and its resonance angle in the reflection coefficient curve when measuring pure water, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% standard alcohol solution Curve fitting.
图中:半圆形硅棱镜1、第一二氧化硅薄膜2、PVDF薄膜3、第二二氧化硅薄膜4、待测酒精溶液5、高阻硅衬底6、第一旋转台7、返波振荡器8、第一聚四氟乙烯透镜9、第二聚四氟乙烯透镜10、第三聚四氟乙烯透镜11、第四聚四氟乙烯透镜12、肖特基二极管探测器13、第二旋转台14。In the figure: semicircular silicon prism 1, first silicon dioxide film 2, PVDF film 3, second silicon dioxide film 4, alcohol solution to be tested 5, high resistance silicon substrate 6, first rotary table 7, return Wave oscillator 8, first polytetrafluoroethylene lens 9, second polytetrafluoroethylene lens 10, third polytetrafluoroethylene lens 11, fourth polytetrafluoroethylene lens 12, Schottky diode detector 13, the first Two rotary table 14.
具体实施方式detailed description
如图1所示,一种利用PVDF太赫兹等离子体谐振效应的酒精浓度测量装置,包括半圆形硅棱镜1、第一二氧化硅薄膜2、PVDF薄膜3、第二二氧化硅薄膜4、待测酒精溶液5、高阻硅衬底6、第一旋转台7、返波振荡器8、第一聚四氟乙烯透镜9、第二聚四氟乙烯透镜10、第三聚四氟乙烯透镜11;第四聚四氟乙烯透镜12;肖特基二极管探测器13、第二旋转台14;As shown in Figure 1, a kind of alcohol concentration measuring device utilizing PVDF terahertz plasma resonance effect, comprises semicircular silicon prism 1, the first silicon dioxide film 2, PVDF film 3, the second silicon dioxide film 4, Alcohol solution to be tested 5, high-resistance silicon substrate 6, first rotary table 7, return wave oscillator 8, first PTFE lens 9, second PTFE lens 10, third PTFE lens 11; the fourth polytetrafluoroethylene lens 12; Schottky diode detector 13, the second rotary table 14;
半圆形硅棱镜1下表面依次紧贴布置第一二氧化硅薄膜2、PVDF薄膜3、第二二氧化硅薄膜4、待测酒精溶液5和高阻硅衬底6,由返波振荡器8发出的THz波透过第一聚四氟乙烯透镜9、第二聚四氟乙烯透镜10聚焦到半圆形硅棱镜1,再经过半圆形硅棱镜1及第一二氧化硅薄膜2、PVDF薄膜3、第二二氧化硅薄膜4,被紧贴置于高阻硅衬底6上的待测酒精溶液5反射后出射半圆形硅棱镜1,再透过第三聚四氟乙烯透镜11、第四聚四氟乙烯透镜12到达肖特基二极管探测器13;The lower surface of the semicircular silicon prism 1 is arranged in close proximity to the first silicon dioxide film 2, the PVDF film 3, the second silicon dioxide film 4, the alcohol solution to be tested 5 and the high-resistance silicon substrate 6. The THz wave emitted by 8 passes through the first polytetrafluoroethylene lens 9 and the second polytetrafluoroethylene lens 10 to focus on the semicircular silicon prism 1, and then passes through the semicircular silicon prism 1 and the first silicon dioxide film 2, The PVDF film 3 and the second silicon dioxide film 4 are reflected by the alcohol solution 5 to be tested which is placed close to the high-resistance silicon substrate 6, and then exit the semicircular silicon prism 1, and then pass through the third polytetrafluoroethylene lens 11. The fourth polytetrafluoroethylene lens 12 reaches the Schottky diode detector 13;
半圆形硅棱镜1、第一二氧化硅薄膜2、PVDF薄膜3、第二二氧化硅薄膜4、待测酒精溶液5、高阻硅衬底6安装在第一旋转台7上;肖特基二极管探测器13安装在第二旋转台14上。The semicircular silicon prism 1, the first silicon dioxide film 2, the PVDF film 3, the second silicon dioxide film 4, the alcohol solution to be tested 5, and the high-resistance silicon substrate 6 are installed on the first rotary table 7; Schott The diode-based detector 13 is installed on the second rotary table 14 .
第一二氧化硅薄膜2和第二二氧化硅薄膜4的厚度均为10微米,PVDF薄膜的厚度为30微米,酒精溶液的厚度为200微米。Both the thickness of the first silicon dioxide film 2 and the second silicon dioxide film 4 are 10 microns, the thickness of the PVDF film is 30 microns, and the thickness of the alcohol solution is 200 microns.
测量步骤如下:The measurement steps are as follows:
1)首先在高阻硅衬底6和第二二氧化硅薄膜4之间分别放置待测酒精溶液;1) First place the alcohol solution to be tested between the high-resistance silicon substrate 6 and the second silicon dioxide film 4;
2)返波振荡器8发出的太赫兹波工作在0.65THz,在经过半圆形硅棱镜1及第一二氧化硅薄膜2、PVDF薄膜3、第二二氧化硅薄膜4,被紧贴置于高阻硅衬底6上的待测酒精溶液5反射后到达肖特基二极管探测器13,棱镜所在的第一旋转台7转动角度θ,肖特基二极管探测器13所在的第二旋转台14转动2θ;θ在20至80度扫描时,角度扫描的步长小于1分,形成角度—反射系数曲线。2) The terahertz wave emitted by the back-wave oscillator 8 works at 0.65 THz, and after passing through the semicircular silicon prism 1, the first silicon dioxide film 2, the PVDF film 3, and the second silicon dioxide film 4, it is placed in close contact with the The alcohol solution 5 to be measured on the high-resistance silicon substrate 6 reaches the Schottky diode detector 13 after being reflected, the first rotary table 7 where the prism is located rotates at an angle θ, and the second rotary table where the Schottky diode detector 13 is located 14 Rotate 2θ; when θ scans from 20 to 80 degrees, the step size of the angle scan is less than 1 minute, forming an angle-reflection coefficient curve.
3根据未知浓度的待测酒精溶液测得的角度—反射系数,计算谐振峰位置;并代入标准溶度-谐振峰测量校正曲线得到待测酒精溶液的精确浓度。3 Calculate the resonant peak position according to the measured angle-reflection coefficient of the alcohol solution of unknown concentration; and substitute the standard solubility-resonant peak measurement calibration curve to obtain the precise concentration of the alcohol solution to be tested.
标准溶度-谐振峰测量校正曲线通过如下步骤得到:The standard solubility-resonant peak measurement calibration curve is obtained by the following steps:
1)首先在高阻硅衬底6和第二二氧化硅薄膜4之间分别放置纯水、5%、10%、15%、20%、25%、30%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%的标准酒精溶液;1) First place pure water, 5%, 10%, 15%, 20%, 25%, 30%, 30%, 35%, 40% between the high resistance silicon substrate 6 and the second silicon dioxide film 4 %, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100% standard alcohol solution;
2)返波振荡器8发出的太赫兹波工作在0.65THz,在经过硅棱镜1及第一二氧化硅薄膜2、PVDF薄膜3、第二二氧化硅薄膜4,被紧贴置于高阻硅衬底6上的不同浓度的标准酒精溶液5反射后到达肖特基二极管探测器13,棱镜所在的第一旋转台7转动角度θ,肖特基二极管探测器13所在的第二旋转台14转动2θ;θ在20至80度扫描时,角度扫描的步长小于1分,形成角度—反射系数曲线,如图2所示。2) The terahertz wave emitted by the back-wave oscillator 8 works at 0.65 THz, and after passing through the silicon prism 1, the first silicon dioxide film 2, the PVDF film 3, and the second silicon dioxide film 4, it is placed close to the high-resistance The standard alcohol solutions 5 with different concentrations on the silicon substrate 6 reflect and arrive at the Schottky diode detector 13, the first rotary table 7 where the prism is located rotates at an angle θ, and the second rotary table 14 where the Schottky diode detector 13 is located Rotate 2θ; when θ is scanned at 20 to 80 degrees, the step size of the angle scan is less than 1 minute, forming an angle-reflection coefficient curve, as shown in Figure 2.
3)在测量所有标准溶液的角度—反射系数曲线后,计算谐振峰位置并与溶液浓度数据一起建立标准溶度-谐振峰测量校正曲线(如图3所示),从纯水到纯酒精变化过程中,反射系数曲线上的谐振峰移动18度以上,角度扫描的步长小于1分,使得测量酒精浓度精度达到0.1%以上。3) After measuring the angle-reflection coefficient curves of all standard solutions, calculate the resonant peak position and establish the standard solubility-resonant peak measurement calibration curve (as shown in Figure 3) together with the solution concentration data, changing from pure water to pure alcohol During the process, the resonance peak on the reflection coefficient curve moves more than 18 degrees, and the step length of the angle scan is less than 1 minute, so that the accuracy of measuring the alcohol concentration can reach more than 0.1%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611125163.8A CN106483104A (en) | 2016-12-08 | 2016-12-08 | Alcohol concentration measurement apparatus and method using PVDF Terahertz plasma resonance effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611125163.8A CN106483104A (en) | 2016-12-08 | 2016-12-08 | Alcohol concentration measurement apparatus and method using PVDF Terahertz plasma resonance effect |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106483104A true CN106483104A (en) | 2017-03-08 |
Family
ID=58275998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611125163.8A Pending CN106483104A (en) | 2016-12-08 | 2016-12-08 | Alcohol concentration measurement apparatus and method using PVDF Terahertz plasma resonance effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106483104A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112014913A (en) * | 2020-09-07 | 2020-12-01 | 中国计量大学 | Terahertz artificial surface plasma excitation device and gas detection device |
CN114324345A (en) * | 2021-11-01 | 2022-04-12 | 清华大学深圳国际研究生院 | Material imaging method and device, terminal equipment and storage medium |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330062B1 (en) * | 1999-04-30 | 2001-12-11 | Wisconsin Alumni Research Foundation | Fourier transform surface plasmon resonance adsorption sensor instrument |
US20060231762A1 (en) * | 2003-05-29 | 2006-10-19 | Aisin Seiki Kabushiki Kaisha | Reflection type terahertz spectrometer and spectrometric method |
JP2008304444A (en) * | 2007-06-11 | 2008-12-18 | Tohoku Univ | Total reflection attenuation spectroscopy method and apparatus at terahertz frequencies |
CN101334269A (en) * | 2008-08-06 | 2008-12-31 | 北京航空航天大学 | Multi-layer dielectric material multi-parameter measurement method and system |
US20110216320A1 (en) * | 2008-11-28 | 2011-09-08 | Korea Research Institute Of Standards And Science | Multi-channel surface plasmon resonance sensor using beam profile ellipsometry |
US20110285999A1 (en) * | 2010-05-20 | 2011-11-24 | Sungkyunkwan University Foundation For Corporate Collaboration | Surface plasmon resonance sensor using metallic graphene, reparing method of the same, and surface plasmon resonance sensor system |
CN102589452A (en) * | 2012-01-17 | 2012-07-18 | 华南师范大学 | Method and device for measuring thickness and refractive index of thin film |
CN102830069A (en) * | 2012-08-17 | 2012-12-19 | 中国计量学院 | Alcohol concentration measuring device by using terahertz anisotropic medium resonance effect and method thereof |
US20130076912A1 (en) * | 2010-06-04 | 2013-03-28 | National Institute Of Information And Communications Technology | Reflective imaging device and image acquisition method |
CN202916194U (en) * | 2012-12-04 | 2013-05-01 | 中国计量学院 | Surface plasma resonance sensor |
US20150155681A1 (en) * | 2012-06-06 | 2015-06-04 | National University Of Singapore | Gate-Tunable Graphene-Ferroelectric Hybrid Structure for Photonics and Plasmonics |
CN104736997A (en) * | 2012-10-15 | 2015-06-24 | 韩国标准科学研究院 | Apparatus and method for simultaneously measuring characteristics of molecular junctions and refractive index of buffer solution |
CN105037761A (en) * | 2015-07-06 | 2015-11-11 | 电子科技大学 | Preparation method for polyvinylidene fluoride nanometer film with beta crystal phase |
CN105806811A (en) * | 2016-05-20 | 2016-07-27 | 中山市厚源电子科技有限公司 | LSPR sensor device based on Ag nano particles |
US20160227639A1 (en) * | 2015-02-03 | 2016-08-04 | Ido Kaminer | Apparatus and methods for generating electromagnetic radiation |
CN206378420U (en) * | 2016-12-08 | 2017-08-04 | 中国计量大学 | Utilize the alcohol concentration measurement apparatus of PVDF Terahertz plasma resonance effects |
-
2016
- 2016-12-08 CN CN201611125163.8A patent/CN106483104A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330062B1 (en) * | 1999-04-30 | 2001-12-11 | Wisconsin Alumni Research Foundation | Fourier transform surface plasmon resonance adsorption sensor instrument |
US20060231762A1 (en) * | 2003-05-29 | 2006-10-19 | Aisin Seiki Kabushiki Kaisha | Reflection type terahertz spectrometer and spectrometric method |
JP2008304444A (en) * | 2007-06-11 | 2008-12-18 | Tohoku Univ | Total reflection attenuation spectroscopy method and apparatus at terahertz frequencies |
CN101334269A (en) * | 2008-08-06 | 2008-12-31 | 北京航空航天大学 | Multi-layer dielectric material multi-parameter measurement method and system |
US20110216320A1 (en) * | 2008-11-28 | 2011-09-08 | Korea Research Institute Of Standards And Science | Multi-channel surface plasmon resonance sensor using beam profile ellipsometry |
US20110285999A1 (en) * | 2010-05-20 | 2011-11-24 | Sungkyunkwan University Foundation For Corporate Collaboration | Surface plasmon resonance sensor using metallic graphene, reparing method of the same, and surface plasmon resonance sensor system |
US20130076912A1 (en) * | 2010-06-04 | 2013-03-28 | National Institute Of Information And Communications Technology | Reflective imaging device and image acquisition method |
CN102589452A (en) * | 2012-01-17 | 2012-07-18 | 华南师范大学 | Method and device for measuring thickness and refractive index of thin film |
US20150155681A1 (en) * | 2012-06-06 | 2015-06-04 | National University Of Singapore | Gate-Tunable Graphene-Ferroelectric Hybrid Structure for Photonics and Plasmonics |
CN102830069A (en) * | 2012-08-17 | 2012-12-19 | 中国计量学院 | Alcohol concentration measuring device by using terahertz anisotropic medium resonance effect and method thereof |
CN104736997A (en) * | 2012-10-15 | 2015-06-24 | 韩国标准科学研究院 | Apparatus and method for simultaneously measuring characteristics of molecular junctions and refractive index of buffer solution |
CN202916194U (en) * | 2012-12-04 | 2013-05-01 | 中国计量学院 | Surface plasma resonance sensor |
US20160227639A1 (en) * | 2015-02-03 | 2016-08-04 | Ido Kaminer | Apparatus and methods for generating electromagnetic radiation |
CN105037761A (en) * | 2015-07-06 | 2015-11-11 | 电子科技大学 | Preparation method for polyvinylidene fluoride nanometer film with beta crystal phase |
CN105806811A (en) * | 2016-05-20 | 2016-07-27 | 中山市厚源电子科技有限公司 | LSPR sensor device based on Ag nano particles |
CN206378420U (en) * | 2016-12-08 | 2017-08-04 | 中国计量大学 | Utilize the alcohol concentration measurement apparatus of PVDF Terahertz plasma resonance effects |
Non-Patent Citations (2)
Title |
---|
TRIRANJITA SRIVASTAVA,AMRITA PURKAYASTHA,RAJAN JHA: "Graphene based surface plasmon resonance gas sensor for terahertz", pages 334 * |
XIANGJUN LI,IAN SONG, JOHN X. J. ZHANG: "Integrated Terahertz Surface Plasmon Resonance on Polyvinylidene Fluoride Layer for the Profiling of Fluid Reflectance Spectra", pages 1093 - 1100 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112014913A (en) * | 2020-09-07 | 2020-12-01 | 中国计量大学 | Terahertz artificial surface plasma excitation device and gas detection device |
CN114324345A (en) * | 2021-11-01 | 2022-04-12 | 清华大学深圳国际研究生院 | Material imaging method and device, terminal equipment and storage medium |
CN114324345B (en) * | 2021-11-01 | 2024-01-12 | 清华大学深圳国际研究生院 | Material imaging method and device, terminal equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102830069B (en) | Alcohol concentration measuring device by using terahertz anisotropic medium resonance effect and method thereof | |
Ramer et al. | Attenuated total reflection Fourier transform infrared spectroscopy | |
CN206804521U (en) | Utilize the alcohol concentration measurement apparatus of graphene Terahertz surface plasma effect | |
CN101419157B (en) | Accurate measurement method for optical parameter of edible oil by terahertz time-domain spectrum | |
CN106442424A (en) | Alcohol concentration measuring device utilizing graphene terahertz surface plasma effect and method thereof | |
Roh et al. | Terahertz optical characteristics of two types of metamaterials for molecule sensing | |
CN101532953A (en) | Method for accurately measuring optical parameters of edible oil | |
CN113484276A (en) | Biosensor capable of acquiring broadband enhanced terahertz absorption spectrum and testing method | |
CN202837178U (en) | Alcohol concentration measuring equipment utilizing terahertz incongruous medium resonance effect | |
CN116481444A (en) | A system and method for measuring thickness of plastic film based on transmission spectrum | |
CN106483104A (en) | Alcohol concentration measurement apparatus and method using PVDF Terahertz plasma resonance effect | |
CN116337804A (en) | Optical fiber sensor, optical fiber sensor system and detection method thereof | |
CN206378420U (en) | Utilize the alcohol concentration measurement apparatus of PVDF Terahertz plasma resonance effects | |
CN108088810B (en) | A Humidity Sensor Based on Terahertz Plasma Enhancement Effect and Its System | |
Reddy et al. | Self-referenced composite Fabry-Pérot cavity vapor sensors | |
Luna-Moreno et al. | Determination of quality and adulteration of tequila through the use of surface plasmon resonance | |
Matthiae et al. | Hyperspectral spatially offset Raman spectroscopy in a microfluidic channel | |
CN206378419U (en) | Utilize graphene and the alcohol concentration measurement apparatus of PVDF Terahertz plasma resonant vibration effects | |
Araguillin et al. | Comparative evaluation of wavelength-scanning Otto and Kretschmann configurations of SPR biosensors for low analyte concentration measurement | |
CN106596475B (en) | Alcohol concentration measuring device and method using graphene and PVDF terahertz plasma resonance effect | |
CN110823835B (en) | A waveguide-coupled long-range surface plasmon resonance sensor and its measurement method | |
Omido et al. | Water content in hydrated ethanol fuel measured by a photothermal chamber with a transparent transducer | |
Frey et al. | Near-infrared hollow waveguide gas sensors | |
Ding et al. | Ti: sapphire, broadband vibrational sum-frequency generation spectrometer with a counter-propagating geometry | |
CN216747377U (en) | A TCD Spectrometric Biosensor Based on Linearly Polarized Incidence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170308 |
|
RJ01 | Rejection of invention patent application after publication |