CN106482645A - 一种轨道波磨检测方法 - Google Patents

一种轨道波磨检测方法 Download PDF

Info

Publication number
CN106482645A
CN106482645A CN201610858975.7A CN201610858975A CN106482645A CN 106482645 A CN106482645 A CN 106482645A CN 201610858975 A CN201610858975 A CN 201610858975A CN 106482645 A CN106482645 A CN 106482645A
Authority
CN
China
Prior art keywords
image
row
coordinate
roi
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610858975.7A
Other languages
English (en)
Inventor
李春茂
康高强
王爱民
曹保江
邱德川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201610858975.7A priority Critical patent/CN106482645A/zh
Publication of CN106482645A publication Critical patent/CN106482645A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种轨道波磨检测方法,包括以下步骤:布置传感器组件,并用传感器组件对原始图像进行采集;对输入的原始数据进行计数,在一行数据输入完成时输出数据准备好信号;根据像素的灰度值是否大于设定阈值判断该像素是否属于ROI,并计算该行中满足条件的像素的个数m,以及他们列坐标之和mx;计算图像ROI的中心的坐标值mxn=[mx/m],通过第二缓存器完成图像的行缓存;根据图像ROI的中心坐标mxn,提取出该行图像ROI中的所有像素的灰度值,计算出相应的列坐标值;将图像的特征数据传输至上位机,上位机测量出其轮廓,进而检测出钢轨的波磨。本发明能快速准确地检测出钢轨的波磨情况,提高了检测速度,节省了人力物力,减少了对铁路系统运行的影响。

Description

一种轨道波磨检测方法
技术领域
本发明属于轨道交通装备故障检测领域,具体涉及一种检测钢轨波浪形磨损情况的检测方法。
背景技术
随着高铁的快速发展、车流密度的加大和新型机车车辆结构的推广使用,铁路现场钢轨波磨分布面越来越广,钢轨波磨现象越来越严重,重载铁路钢轨波磨、高速铁路钢轨波磨分别向长波深和长波长方向恶化,特别是目前国内已开通运行的高速铁路线路,出现了大量钢轨波磨现象。波磨的存在导致车辆轨道结构激烈的振动,产生噪声,影响旅客乘坐舒适度,也增加了铁路养护部门的维修工作量和维修费用,不仅影响车辆和轨道结构的使用寿命,甚至会导致重大脱轨事故发生,这就需要我们及时检测了解钢轨波磨情况。
目前国外厂家大多是基于车载方式用激光摄像机对钢轨波磨进行连续在线检测,这种检测方法用摄像机在结构光照射下以一定角度摄取钢轨图像来进行检测,如Mermec的轨道检测装置就采用这种方法,但检测速度不高。国内尚无厂家能够批量提供钢轨波磨连续在线检测功能的检测装置,大多处于研发起步阶段,尚未提出成熟的波磨检测方法。
早期检查轨道波磨的波深、波长等的方法主要依靠人工对轨道波磨进行肉眼检查确认,效率低且耗费人力。目前主要利用轨检车对轨道波磨进行检测,但普遍检测速度低,而且波磨发展很快,必须经常检测波磨损耗情况,频繁使用检测车会影响铁路的正常运营,从而限制了检测车的应用领域,主要是应用在城市轨道检测,如地铁。
发明内容
本发明所要解决的技术问题是提供一种轨道波磨检测方法,快速、精确检测出钢轨波磨情况,如波长、波深等,方便铁路工人及时维修有波磨问题的轨道。
为解决上述技术问题,本发明采用的技术方案是:
一种轨道波磨检测方法,包括以下步骤:
步骤1:布置传感器组件,并用传感器组件对原始图像进行采集,所述传感器组件包括线激光器和摄像机,两组传感器分别安装在车体的两侧,两组传感器分别位于两条直线上,并且两条直线与轨道平行;设定快门频率为d mm/次,采样精度要求为mm/次,则第i个传感器组件坐标xi与最靠近车体的传感器组件坐标x1,应满足式中,ki=0,1,2,…,且ki>ki-1,i=1,2,…,n;
步骤2:对输入的原始数据进行计数,生成像素的列坐标x,在一行数据输入完成时输出数据准备好信号,使后续步骤开始处理下一行数据;
步骤3:根据像素的灰度值是否大于设定阈值判断该像素是否属于ROI,并计算该行中满足条件的像素的个数m,以及他们列坐标之和mx,计算的同时通过第一缓存器完成图像的行缓存;
步骤4:计算图像ROI的中心的坐标值mxn=[mx/m],计算的同时通过第二缓存器完成图像的行缓存;
步骤5:根据图像ROI的中心坐标mxn,提取出该行图像ROI中的所有像素的灰度值,并计算出相应的列坐标值;
步骤6:将图像的特征数据传输至上位机,上位机测量出其轮廓。
具体的,所述步骤1是传感器组件安装方法,步骤2至步骤5是基于FPGA的高速图像预处理系统。
与现有技术相比,本发明的有益效果是:本发明在轨检车上安装了基于激光摄像传感器的检测平台,多个传感器同步采样,提高了检测速度;对采样的数据用基于FPGA的高速图像预处理系统进行预处理,提高了数据的处理速度;轨检车高速运行时能快速、准确地检测出钢轨的波磨情况,不仅提高了检测速度,节省了人力物力,也最大情况下减少了对铁路系统运行的影响。
附图说明
图1是本发明中轨道波磨检测装置布置示意图。
图2是本发明中得到的钢轨轮廓光条图像。
图3是本发明中ROI提取处理器结构图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。如图1所示,本发明安装在检测梁上的钢轨轮廓采集系统,即传感器组件,它由n个由摄像机和线激光器组成,还含有基于FPGA的高速图像预处理系统,以及波磨识别系统(上位机)。由钢轨轮廓采集系统获取的图像数据通过高速总线传输至基于FPGA的高速图像预处理系统进行特征提取,提取获得的特征数据传输至上位机,供波磨识别系统调取。
1、钢轨轮廓图像采集系统
目前,波磨检车检测速度慢、精度不高,为了能够快速、准确检测出波磨情况,本发明在检测平台上主要采用了多个传感器组件来提高采样精度的方法,推理如下:
当每组1个传感器组件进行采样时,对轨道的采样精度为d mm/次,即快门频率为dmm/次。现在,通过快门同步,每组n个传感器组件同步进行采样,采样的快门频率、轨检车速度与每组1个传感器组件时相同。不妨设xi为第i个传感器组件的初始坐标值,最靠近车体的传感器组件坐标x1=0(i=1,2,…,n)。
第k次采样时,第i个传感器组件的采样位置为
xik=xi+k*d (1)
由式(1)可知,只要传感器组件的初始位置坐标xi只要满足
式中ki=0,1,2,…,且ki>ki-1,i=1,2,…,n,ki可以根据实际的传感器安装情况进行调整。
由式(1)和(2)可知
也即在整个轨道上,第i个传感器组件与第1个传感器组件的相对距离为这就相当于在长为d mm的轨道上进行了n次采样,也即是采样精度为mm/次,从而实现了用n个传感器组件将采样精度提高了n倍。
该方法的误差分析推理如下:
设第i个传感器组件的初始安装误差为Δxi,则有
由式(1)和(4)可知,
由式⑸可知,安装误差Δxi只影响轨道采样的均匀度,并不会累积。
设第j个采样间距由于车速波动造成误差为Δdj,则在第k次采样时,第i个传感器组件的采样位置为
由式(6)可知,若
(式中m=1,2,…,n)成立,则不同的传感器组件的之间的采样位置将会重合,从而影响到采样的精度,由此可知该方法对车速的平稳性有一定的要求。
该方法传感器组件数目推理如下:
假设轨检车的速度为V m/s,采样精度要求为D mm/次,激光摄像传感器组件的拍摄高质量图像的能力为N frames/s,则所需传感器组件个数
例如,当V=180km/h=50m/s,D=5mm/次,N=1000frames/s时
即要10个传感器组件才能满足要求。
当V=80km/h=23m/s,D=5mm/次,N=1000frames/s时
即要5个传感器组件就能满足要求。
提高了采样精度后,随之带来了巨大的数据流量,例如,当轨检车的速度为180km/s,采样精度要求为5mm/次,每帧图像大小为256kB时,每组传感器组件的总数据流量约为2.5GB/s。如此大的数据流量超过了上位机的处理能力,本发明采用基于FPGA的高速图像预处理系统对每个传感器组件的数据进行预处理,只将图像的特征数据传输至上位机,把数据量降低到了上位机处理能力范围内。
2、钢轨轮廓图像预处理系统
摄像机拍摄的钢轨轮廓光条图像如图2所示。图像的关键信息主要包含在亮带部分中,利用亮带部分的信息即可完成钢轨轮廓测量。这部分图像即是图像的ROI(region ofinterest),光条宽度一般不超过40个像素,只占整幅图像的很小一部分。钢轨轮廓预处理系统,实时提取ROI,然后只将ROI传送至上位机用于轮廓测量,这样能够极大地减少系统所要传输和处理的数据量。根据经验,图像中的亮带宽度不超过40个像素,当预处理前数据量为1.28×104MB时,提取ROI后数据量减少为500MB,这就将数据量降低到通信接口和上位机能够承受的范围内。
本系统利用设计的四级流水线ROI提取处理器结构如图3所示。
子处理器P1:对输入数据进行计数,生成像素的列坐标x,在一行数据输入完成时输出数据准备好信号,使后续的三个阶段开始处理下一行数据;
子处理器P2:根据像素的灰度值是否大于设定阈值判断该像素是否属于ROI,并计算该行中满足条件的像素的个数m以及他们列坐标之和mx,计算的同时通过缓存器1完成图像的行缓存;
子处理器P3:计算图像ROI的中心的坐标值mxn=[mx/m],计算的同时通过缓存器2完成图像的行缓存;
子处理器P4:根据图像ROI的中心坐标mxn,提取出该行图像ROI中的所有像素的灰度值,并计算出相应的列坐标值。
图像中的每一行经过流水线的四个阶段,即可提取出相应的ROI。

Claims (2)

1.一种轨道波磨检测方法,其特征在于,包括以下步骤:
步骤1:布置传感器组件,并用传感器组件对原始图像进行采集,所述传感器组件包括线激光器和摄像机,两组传感器分别安装在车体的两侧,两组传感器分别位于两条直线上,并且两条直线与轨道平行;设定快门频率为d mm/次,采样精度要求为mm/次,则第i个传感器组件坐标xi与最靠近车体的传感器组件坐标x1,应满足式中,ki=0,1,2,…,且ki>ki-1,i=1,2,…,n;
步骤2:对输入的原始数据进行计数,生成像素的列坐标x,在一行数据输入完成时输出数据准备好信号,使后续步骤开始处理下一行数据;
步骤3:根据像素的灰度值是否大于阈值判断该像素是否属于ROI,并计算该行中满足条件的像素的个数m,以及他们列坐标之和mx,计算的同时通过第一缓存器完成图像的行缓存;
步骤4:计算图像ROI的中心的坐标值mxn=[mx/m],计算的同时通过第二缓存器完成图像的行缓存;
步骤5:根据图像ROI的中心坐标mxn,提取出该行图像ROI中的所有像素的灰度值,并计算出相应的列坐标值;
步骤6:将图像的特征数据传输至上位机,上位机测量出其轮廓。
2.如权利要求1所述的一种轨道波磨检测方法,其特征在于,所述步骤1是传感器组件安装方法,步骤2至步骤5是基于FPGA的高速图像预处理系统。
CN201610858975.7A 2016-09-28 2016-09-28 一种轨道波磨检测方法 Pending CN106482645A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610858975.7A CN106482645A (zh) 2016-09-28 2016-09-28 一种轨道波磨检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610858975.7A CN106482645A (zh) 2016-09-28 2016-09-28 一种轨道波磨检测方法

Publications (1)

Publication Number Publication Date
CN106482645A true CN106482645A (zh) 2017-03-08

Family

ID=58268161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610858975.7A Pending CN106482645A (zh) 2016-09-28 2016-09-28 一种轨道波磨检测方法

Country Status (1)

Country Link
CN (1) CN106482645A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107839714A (zh) * 2017-10-24 2018-03-27 中南大学 一种钢轨廓形及波磨的二维激光动态检测装置和方法
CN110030960A (zh) * 2019-05-07 2019-07-19 中国铁道科学研究院集团有限公司 钢铝复合接触轨磨损检测系统及方法
CN114368411A (zh) * 2022-03-22 2022-04-19 西南交通大学 一种列车脱轨安全的监测预警方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850772A (zh) * 2010-05-17 2010-10-06 唐德尧 一种钢轨波磨车载监测装置及其监测方法
CN103264712A (zh) * 2013-06-03 2013-08-28 北京绿创声学工程股份有限公司 一种钢轨波磨检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850772A (zh) * 2010-05-17 2010-10-06 唐德尧 一种钢轨波磨车载监测装置及其监测方法
CN103264712A (zh) * 2013-06-03 2013-08-28 北京绿创声学工程股份有限公司 一种钢轨波磨检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
康高强: "基于结构光视觉的钢轨轮廓高速测量系统研究", 《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》 *
马俊 等: "基于FPGA 的实时钢轨图像采集与预处理", 《仪表技术与传感器》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107839714A (zh) * 2017-10-24 2018-03-27 中南大学 一种钢轨廓形及波磨的二维激光动态检测装置和方法
CN110030960A (zh) * 2019-05-07 2019-07-19 中国铁道科学研究院集团有限公司 钢铝复合接触轨磨损检测系统及方法
CN114368411A (zh) * 2022-03-22 2022-04-19 西南交通大学 一种列车脱轨安全的监测预警方法与装置
CN114368411B (zh) * 2022-03-22 2022-06-10 西南交通大学 一种列车脱轨安全的监测预警方法

Similar Documents

Publication Publication Date Title
CN101893580B (zh) 基于数字图像的钢轨表面缺陷检测方法
CN113362285B (zh) 一种钢轨表面伤损细粒度图像分类与检测方法
CN102759347B (zh) 一种高铁接触网在线巡检装置、巡检方法以及其检测系统
CN105203552A (zh) 一种360°踏面图像检测系统及其检测方法
CN102902974B (zh) 一种基于图像的铁路接触网杆柱标识信息的识别方法
CN108198417B (zh) 一种基于无人机的道路巡检系统
WO2017113805A1 (zh) 列车车号和车型识别方法和系统及安全检查方法和系统
CN109489584B (zh) 一种基于3d技术的隧道限界检测系统及隧道限界识别方法
CN104029680A (zh) 基于单目摄像头的车道偏离预警系统及方法
CN106482645A (zh) 一种轨道波磨检测方法
CN113947731B (zh) 一种基于接触网安全巡检的异物识别方法及系统
CN110954968B (zh) 一种机场跑道异物检测装置及方法
CN111899288A (zh) 基于红外和可见光图像融合的隧道渗漏水区域检测与识别方法
CN109375177A (zh) 一种用于机场场面监视雷达系统的运动目标检测方法
CN111768417B (zh) 基于单目视觉3d重建技术的铁路货车超限检测方法
CN112061171B (zh) 一种基于嵌入式gpu的轨道缺陷在线巡检方法与巡检装置
Wang et al. FarNet: An attention-aggregation network for long-range rail track point cloud segmentation
CN103236158A (zh) 一种基于视频的交通事故实时预警方法
CN113591643A (zh) 一种基于计算机视觉的地下交通工具进出站检测系统及方法
CN109993741B (zh) 一种基于k均值聚类的钢轨焊缝轮廓自动定位方法
CN114882452B (zh) 轨道线路安全监测方法、列车运行控制方法及控制系统
Song et al. Modeling and optimization of semantic segmentation for track bed foreign object based on attention mechanism
CN115857040A (zh) 一种机车车顶异物动态视觉检测装置及方法
CN103236157B (zh) 一种基于图像块的状态演变过程分析的停车事件检测方法
CN115035087A (zh) 一种新型铁路线路图像检测方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170308

WD01 Invention patent application deemed withdrawn after publication