CN1064746C - Thermoacoustic engine - Google Patents
Thermoacoustic engine Download PDFInfo
- Publication number
- CN1064746C CN1064746C CN95105966A CN95105966A CN1064746C CN 1064746 C CN1064746 C CN 1064746C CN 95105966 A CN95105966 A CN 95105966A CN 95105966 A CN95105966 A CN 95105966A CN 1064746 C CN1064746 C CN 1064746C
- Authority
- CN
- China
- Prior art keywords
- thermoacoustic
- acoustic
- energy
- tube
- sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000694 effects Effects 0.000 claims abstract description 70
- 239000007787 solid Substances 0.000 claims description 45
- 239000012530 fluid Substances 0.000 claims description 27
- 239000006096 absorbing agent Substances 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 18
- 230000009123 feedback regulation Effects 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims description 3
- 238000003303 reheating Methods 0.000 claims description 3
- 239000011343 solid material Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 14
- 230000035515 penetration Effects 0.000 description 9
- 230000010355 oscillation Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000005243 fluidization Methods 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
一种新型热声发动机装置,它利用半波谐振或近谐振声场产生的热致声作用将高温热源的热能部分转换为声能,声能被直接利用,或再转换为机械能,电能,压力能等供利用。新型热声发动机由换热器1、3,回热器2,声波导管4、6,谐振管5,传声器7、带声阻抗调节器的声波导管或导管组8、9组成。热声发动机的长度约为声波的半波长或大于四分之一波长和小于半波长。在热声回热器中,声场的行波部分和驻波部分产生的热声效应均是热致声效应。
A new type of thermoacoustic engine device, which uses the thermoacoustic effect generated by the half-wave resonance or near-resonance sound field to partially convert the thermal energy of the high-temperature heat source into sound energy, and the sound energy is directly used or converted into mechanical energy, electrical energy, and pressure energy Waiting for use. The novel thermoacoustic engine consists of heat exchangers 1, 3, regenerator 2, acoustic wave guides 4, 6, resonance tube 5, microphone 7, acoustic wave guides or guide sets 8, 9 with acoustic impedance regulators. The length of the thermoacoustic engine is about half the wavelength of the sound wave or more than a quarter wavelength and less than half the wavelength. In a thermoacoustic regenerator, the thermoacoustic effects produced by the traveling wave part and the standing wave part of the sound field are both thermoacoustic effects.
Description
本发明涉及一种发动机装置,特别涉及一种利用热声效应中的热致声作用将热能转换为声能的热声发动机。热声发动机消耗由高温热源提供的热能,通过振荡的可压缩流体工作介质(声)与固体工作介质的热相互作用,将热能转换为声能,声能被直接利用,或再被转换为机械能,电能,压力能等供利用。The invention relates to an engine device, in particular to a thermoacoustic engine which converts heat energy into sound energy by using thermoacoustic effect in thermoacoustic effect. The thermoacoustic engine consumes heat energy provided by a high-temperature heat source, and converts heat energy into sound energy through the thermal interaction between the oscillating compressible fluid working medium (sound) and the solid working medium, and the sound energy is directly utilized or converted into mechanical energy , Electric energy, pressure energy, etc. are available for use.
目前,已知的热声发动机如美国专利4,489,553(Whealley 12/1984)所描述。这是一种半波长的热声发动机(L~1/2λ,λ为声波长),但它们仅利用工作介质的不可逆性和驻波产生热声效应工作,因而其产生的热声效应的强度和有效能量的转换和利用率较低。又如美国专利4,114,380(Ceperley 9/1978),4,355,517(Ceperley 10/1982)所描述,它们利用行波产生的热声效应工作,但这是一种全波长的热声发动机(L~λ),其声路的阻抗不易匹配而实现困难,至今并未见到实施应用的报道。Currently, known thermoacoustic engines are described in US Patent 4,489,553 (Whealley 12/1984). This is a half-wavelength thermoacoustic engine (L ~ 1/2λ, λ is the acoustic wavelength), but they only use the irreversibility of the working medium and the standing wave to produce the thermoacoustic effect, so the intensity of the thermoacoustic effect it produces And the conversion and utilization rate of effective energy is low. Also as described in U.S. Patent 4,114,380 (Ceperley 9/1978), 4,355,517 (Ceperley 10/1982), they use the thermoacoustic effect produced by traveling waves to work, but this is a full-wavelength thermal Acoustic engine (L~λ), the impedance of its acoustic path is not easy to match and it is difficult to realize, so far there is no report of implementation and application.
本发明目的是在系统研究热声效应的基础上,根据热声效应中能量(声能和热能)转换和输运的特点,提出的一种将热能转换为声能的热声发动机,该热声发动机能克服或减少以往热声发动机的缺点,提高热声效应的强度和有效能量的转换和利用率。The object of the invention is to propose a thermoacoustic engine that converts heat energy into sound energy according to the characteristics of energy (sound energy and heat energy) conversion and transportation in thermoacoustic effect on the basis of systematic research on thermoacoustic effect. Acoustic engines can overcome or reduce the shortcomings of previous thermoacoustic engines, and improve the intensity of thermoacoustic effects and the conversion and utilization of effective energy.
本发明实施方案如下:Embodiments of the present invention are as follows:
本发明提供的热声发动机,包括环境温度热声放热器、热声回热器、高温热声吸热器、高温声波导管、热声谐振管、环境温度声波导管、传声器,其特征在于:还包括带声阻抗调节器的声波导管或声波导管组组成的声波主反馈调节回路和声波次反馈调节回路,环境温度热声放热器和高温热声吸热器分别位于热声回热器的低温和高温端,高温声波导管两端分别连接高温热声吸热器和热声谐振管,热声谐振管的另一端通过环境温度声波导管连接传声器,带声阻抗调节器的声波导管或声波导管组组成的声波主反馈调节回路的一端连接环境温度热声放热器,另一端连接在热声谐振管和传声器之间的环境温度声波导管上,声波次反馈调节回路连接热声回热器和热声谐振管;热声发动机中的声场是半波谐振声场或半波近谐振声场,其长度约为声波的半波长或在四分之一波长和半波长之间;在热声回热器中,工作流体速度波动的相位超前于压力波动的相位,声场的行波部分和驻波部分产生的热声效应均是热致声效应;热声谐振管的两端分别处于高温和环境温度,由热声回热器产生的声能流的一部分由声波的主反馈调节回路反馈给热声回热器,形成一个贯穿整个热声回热器的行波声能流;The thermoacoustic engine provided by the present invention includes an ambient temperature thermoacoustic radiator, a thermoacoustic regenerator, a high temperature thermoacoustic heat absorber, a high temperature acoustic waveguide, a thermoacoustic resonant tube, an ambient temperature acoustic waveguide, and a microphone, and is characterized in that: It also includes the acoustic wave main feedback adjustment loop and the acoustic wave secondary feedback adjustment loop composed of acoustic wave guides or acoustic wave guide groups with acoustic impedance regulators. The ambient temperature thermoacoustic radiator and high temperature thermoacoustic heat absorber are respectively located Low-temperature and high-temperature ends, the two ends of the high-temperature acoustic waveguide are respectively connected to the high-temperature thermoacoustic heat absorber and the thermoacoustic resonance tube, and the other end of the thermoacoustic resonance tube is connected to the microphone through the ambient temperature acoustic waveguide, the acoustic waveguide or the acoustic waveguide with the acoustic impedance adjuster One end of the sound wave main feedback regulation loop composed of a group is connected to the ambient temperature thermoacoustic radiator, the other end is connected to the ambient temperature acoustic waveguide between the thermoacoustic resonance tube and the microphone, and the sound wave secondary feedback regulation loop is connected to the thermoacoustic regenerator and Thermoacoustic resonant tube; the sound field in a thermoacoustic engine is a half-wave resonant sound field or a half-wave near-resonant sound field, the length of which is about half the wavelength of the sound wave or between a quarter wavelength and a half wavelength; in a thermoacoustic regenerator In this method, the phase of the velocity fluctuation of the working fluid is ahead of the phase of the pressure fluctuation, and the thermoacoustic effects generated by the traveling wave part and the standing wave part of the sound field are all thermoacoustic effects; the two ends of the thermoacoustic resonance tube are at high temperature and ambient temperature respectively, Part of the acoustic energy flow generated by the thermoacoustic regenerator is fed back to the thermoacoustic regenerator by the main feedback regulation loop of the sound wave, forming a traveling wave acoustic energy flow that runs through the entire thermoacoustic regenerator;
所述的传声器是将声能转换为电能的电磁振荡式传声器或发电机、将声能转换为机械能的往复活塞式传声器、将声能转换为压力能的压缩机阀片组或电磁阀组或旋转阀组;The microphone is an electromagnetic oscillation microphone or generator that converts sound energy into electrical energy, a reciprocating piston microphone that converts sound energy into mechanical energy, a compressor valve group or electromagnetic valve group that converts sound energy into pressure energy, or rotary valve group;
所述的高温声波导管、热声回热器、热声谐振管和环境温度声波导管由金属管或非金属管制作,其轴线的布置形状有直线形、U形、弯曲形、部分弯曲形;热声回热器和热声谐振管之间的相对位置为同轴或非同轴布置;The high-temperature acoustic waveguide, thermoacoustic regenerator, thermoacoustic resonator tube and ambient temperature acoustic waveguide are made of metal pipes or non-metallic pipes, and the layout shapes of their axes are linear, U-shaped, curved, and partially curved; The relative position between the thermoacoustic regenerator and the thermoacoustic resonance tube is arranged coaxially or non-coaxially;
所述的热声回热器内部的结构为板与板之间形成声流道的固体薄板叠层结构或为金属丝网堆叠形成的多孔性声流道或固体多孔材料、颗粒材料形成的多孔性声流道或以上三类结构的组合;热声回热器为直管或从低温端向高温端扩张的变截面管,其扩张形式为喇叭形连续扩张或梯形阶梯式扩张;热声回热器与外热源绝热;The internal structure of the thermoacoustic regenerator is a laminated structure of solid thin plates forming an acoustic flow channel between plates, or a porous acoustic flow channel formed by stacking wire mesh or a porous solid porous material or granular material. Acoustic channel or a combination of the above three types of structures; the thermoacoustic regenerator is a straight pipe or a variable cross-section pipe that expands from the low temperature end to the high temperature end, and its expansion form is a trumpet-shaped continuous expansion or a trapezoidal step expansion; the thermoacoustic regenerator The heater is insulated from the external heat source;
所述的热声谐振管为轴向导热性较差的管道,其两端设有或不设有维持两端温度恒定的高、低温热声换热器;热声谐振管的材料为薄壁金属管或非金属管或外壁面为金属内壁面为非金属的复合型薄壁管;热声谐振管的截面形状为直管或从高温端向低温端收缩的变截面管,其收缩形式为喇叭形连续收缩或梯形阶梯式收缩;热声谐振管的管内填充或部分填充或不填充热声回热材料;热声谐振管的两端设置或不设置层流化元件;The thermoacoustic resonant tube is a pipeline with poor axial thermal conductivity, with or without high and low temperature thermoacoustic heat exchangers at both ends to maintain a constant temperature at both ends; the material of the thermoacoustic resonant tube is thin-walled Metal tube or non-metallic tube or composite thin-walled tube whose outer wall is metal and inner wall is non-metallic; the cross-sectional shape of the thermoacoustic resonance tube is a straight tube or a variable-section tube that shrinks from the high temperature end to the low temperature end, and its shrinkage form is Trumpet-shaped continuous shrinkage or trapezoidal stepped shrinkage; the tube of the thermoacoustic resonant tube is filled or partially filled with or not filled with thermoacoustic regenerating materials; both ends of the thermoacoustic resonant tube are provided with or without laminar fluidization elements;
所述的环境温度热声放热器和高温热声吸热器的内部结构为采用导热性良好的固体平板的叠层结构,板与板之间形成声流道或采用固体圆管组或整块固体中加工出声通道的结构或采用金属丝网、固体多孔材料堆叠形成多孔性声流道;环境温度热声放热器和高温热声吸热器的声流道形状为矩形、圆或椭圆性、三角形、菱形和六角形;环境温度热声放热器和高温热声吸热器的固体介质为良导热性的固体材料;The internal structure of the ambient temperature thermoacoustic heat radiator and high temperature thermoacoustic heat absorber is a laminated structure of solid flat plates with good thermal conductivity, and acoustic flow channels are formed between the plates or solid circular tube groups or integral The sound channel is processed in a solid block or the porous acoustic channel is formed by stacking metal mesh and solid porous materials; the shape of the acoustic channel of the ambient temperature thermoacoustic heat radiator and high temperature thermoacoustic heat absorber is rectangular, circular or Ellipse, triangle, rhombus and hexagon; the solid medium of ambient temperature thermoacoustic heat radiator and high temperature thermoacoustic heat absorber is a solid material with good thermal conductivity;
所述的带声阻抗调节器的声波导管或声波导管组组成的声波主反馈调节回路和声波次反馈调节回路中的声阻抗调节器为声阻调节器、声容调节器或声感调节器或其组合,声阻调节器是一小段细孔管或一小段多孔介质或一个小孔调节阀或其组合;声容调节器为位于声通道上的一个空腔;声感抗调节器为在声通道上连接的一段细长管道;The acoustic impedance adjuster in the acoustic wave main feedback adjustment loop and the acoustic wave secondary feedback adjustment loop composed of the acoustic waveguide or the acoustic waveguide group with the acoustic impedance adjuster is an acoustic resistance adjuster, an acoustic capacity adjuster or an acoustic sense adjuster or Its combination, the acoustic resistance adjuster is a small section of fine hole tube or a small section of porous medium or a small hole regulating valve or a combination thereof; the sound volume adjuster is a cavity located on the acoustic channel; the acoustic inductance adjuster is A length of slender pipe connected to the channel;
所述的声波次反馈调节回路由带声阻抗调节器的声波导管构成,为一路、两路或多路;The sound wave sub-feedback adjustment loop is composed of an acoustic waveguide with an acoustic impedance regulator, which is one, two or multiple;
当热声回热器和热声谐振管之间的相对位置为同轴布置时,声波次反馈调节回路中的声阻抗调节器为热声回热器与热声谐振管的共同壁面上的一个、两个或多个小孔,或将这个共同壁面采用或制作成多孔壁面;When the relative position between the thermoacoustic regenerator and the thermoacoustic resonant tube is arranged coaxially, the acoustic impedance adjuster in the acoustic wave sub-feedback adjustment loop is one on the common wall of the thermoacoustic regenerator and the thermoacoustic resonant tube , two or more small holes, or adopt or make the common wall into a porous wall;
所述的声波主反馈调节回路由一个扬声器替代,其扬声器为将电能、机械能、压力能转换为声能的部件,包括电机驱动或电磁驱动的活塞式、膜片式、气流式扬声器,驱动扬声器的能量由外界提供或由传声器将声能转换来的能量的一部分。The sound wave main feedback regulation loop is replaced by a loudspeaker, and its loudspeaker is a component that converts electrical energy, mechanical energy, and pressure energy into sound energy, including piston type, diaphragm type, and airflow type speakers driven by motors or electromagnetic drives. The energy provided by the outside or the part of the energy converted from the sound energy by the microphone.
本发明提供的热声发动机,其声场采用半波谐振声场(L~1/2λ)或近谐振声场(1/4λ<L<1/2λ)的设计,它合理地利用等温壁热声效应和绝热壁热声效应的特点,并同时利用声场的行波部分产生的热声效应和声场的驻波部分产生的热声效应中的热致声作用,将热能转换为声能。这种新型的热声发动机能克服以往热声发动机阻抗不易匹配、不能获得值得利用的足够的有用功,或能量转换效率较低的缺点,将热能转换成声能,或再转换为机械能、电能或压力能等输出供利用。The thermoacoustic engine that the present invention provides, its sound field adopts the design of half-wave resonant sound field (L~1/2λ) or near-resonant sound field (1/4λ<L<1/2λ), and it rationally utilizes isothermal wall thermoacoustic effect and The characteristics of the thermoacoustic effect of the adiabatic wall, and the thermoacoustic effect of the thermoacoustic effect produced by the traveling wave part of the sound field and the thermoacoustic effect produced by the standing wave part of the sound field, convert heat energy into sound energy. This new type of thermoacoustic engine can overcome the shortcomings of previous thermoacoustic engines that the impedance is not easy to match, cannot obtain enough useful work worth using, or has low energy conversion efficiency, and convert thermal energy into sound energy, or into mechanical energy and electrical energy. Or output such as pressure energy for utilization.
为了阐明本发明的思想,以下对热声效应进行必要的说明。In order to clarify the idea of the present invention, a necessary description of the thermoacoustic effect is given below.
热声效应是指可压缩的具有热膨胀性的流体工作介质,与具有较大热容量和导热系数的固体工作介质之间,由于流体相对固体的声振荡和产生热相互作用,而导致的时均热力学能量效应。The thermoacoustic effect refers to the time-average thermodynamics between the compressible fluid working medium with thermal expansion and the solid working medium with large heat capacity and thermal conductivity due to the acoustic oscillation and thermal interaction of the fluid relative to the solid. energy effect.
按固体外壁面与外热源的热接触方式来化分,热声效应可分为等温壁热声效应,绝热壁热声效应,和一般情形热声效应。According to the thermal contact mode between the solid outer wall and the external heat source, the thermoacoustic effect can be divided into isothermal wall thermoacoustic effect, adiabatic wall thermoacoustic effect, and general situation thermoacoustic effect.
等温壁热声效应是指固体工作介质的外壁面与外热源理想热接触时,由于理想热接触的结果固体和流体的平均温度在任一截而不变,且与外热源温度相同,这时出现工作介质和外部热源间的横向热量交换的时均能量效应。等温壁热声效应的特点是:1.在低声导率比(声导率比是当地流体密度、声速、速度波动振幅三项乘积与压力波动振幅的比值)的区域,工作介质向外热源放出热量,2.在高声导率比的区域,如果流体工作介质的普朗特数(粘性系数与导热系数的比值)足够小,工作介质由外热源吸取热量,3.在工作介质和声导率比一定时,等温壁热声效应的强度和效率与声流道宽度与流体热穿透深度的比值有关,当声流道当量尺度与流体热穿透深度相当时较好。The isothermal wall thermoacoustic effect means that when the outer wall of the solid working medium is in ideal thermal contact with the external heat source, the average temperature of the solid and the fluid does not change at any point due to the ideal thermal contact, and is the same as the temperature of the external heat source. Time-averaged energy effect of lateral heat exchange between working medium and external heat source. The characteristics of isothermal wall thermoacoustic effect are: 1. In the area of low acoustic conductivity ratio (acoustic conductivity ratio is the ratio of the product of the local fluid density, sound velocity, and velocity fluctuation amplitude to the pressure fluctuation amplitude), the working medium releases heat to the external heat source, 2. In the area of high acoustic conductivity ratio, if the Prandtl number (the ratio of viscosity coefficient to thermal conductivity) of the fluid working medium is small enough, the working medium will absorb heat from an external heat source, 3. When the working medium and the acoustic conductivity ratio are constant, the strength and efficiency of the thermoacoustic effect of the isothermal wall are related to the ratio of the acoustic channel width to the fluid thermal penetration depth. When the equivalent scale of the acoustic channel is equivalent to the fluid thermal penetration depth, it is relatively good.
绝热壁热声效应是指固体工作介质的外壁面与外热源理想热绝缘时,由于理想热绝缘的结果,总能量流(总能量流是焓流与热传导热流之和,也等于热与声功流之和)将维持不变,这时出现热能和声能的相互转换的时均能量效应。绝热壁热声效应产生热致声作用时,高温热能被消耗并转换为声能,同时热流由高温端输送到低温端并释放给环境。The thermoacoustic effect of the adiabatic wall refers to that when the outer wall surface of the solid working medium is insulated from the external heat source, due to the result of ideal thermal insulation, the total energy flow (the total energy flow is the sum of the enthalpy flow and the heat flow of heat conduction, which is also equal to the heat and sound work The sum of currents) will remain unchanged, and the time-averaged energy effect of the mutual conversion of heat energy and sound energy will appear. When the thermoacoustic effect of the adiabatic wall produces thermoacoustic effect, the high temperature heat energy is consumed and converted into acoustic energy, and the heat flow is transported from the high temperature end to the low temperature end and released to the environment.
当固体工作介质的外壁面与外热源处于有限热接触时发生一般情形的热声效应。等温壁热声效应和绝热壁热声效应是一般情形热声效应的两个极限情形。The thermoacoustic effect of the general case occurs when the outer wall surface of the solid working medium is in limited thermal contact with an external heat source. Isothermal wall thermoacoustic effect and adiabatic wall thermoacoustic effect are two limit cases of general case thermoacoustic effect.
任一声场可视为声场的驻波部分和行波部分之和,绝热壁热声效应产生热致声作用时,声场的驻波部分产生的效应有以下特点:1.产生的热声效应强度较低;2.热流方向总是由高声导率比的区域流向低声导率比的区域;3.当高温端在高声导率比的区域,低温端在低声导率比的区域,在承受较大的温度梯度时产生热致声效应。这时热流方向由高温端流向低温端;4.在温度梯度一定时,声场的驻波部分的热致声效应的强度和效率在声流道当量尺度约为流体的热穿透深度时最大。这时流体工作介质与固体工作介质有中等程度的热接触,热声效应依靠工作介质的有限热力学不可逆性工作。对完全可逆或完全不可逆的工作介质,驻波均不能产生的热致声效应。Any sound field can be regarded as the sum of the standing wave part and the traveling wave part of the sound field. When thermoacoustic effect of adiabatic wall produces thermoacoustic effect, the effect produced by the standing wave part of the sound field has the following characteristics: 1. The resulting thermoacoustic effect is low in intensity; 2. The direction of heat flow is always from the area with high acoustic conductivity ratio to the area with low acoustic conductivity ratio; 3. When the high temperature end is in the area of high acoustic conductivity ratio and the low temperature end is in the area of low acoustic conductivity ratio, the thermoacoustic effect will be generated when a large temperature gradient is applied. At this time, the heat flow direction flows from the high temperature end to the low temperature end; 4. When the temperature gradient is constant, the strength and efficiency of the thermoacoustic effect of the standing wave part of the sound field is the largest when the equivalent scale of the acoustic channel is about the thermal penetration depth of the fluid. At this time, the fluid working medium has a moderate degree of thermal contact with the solid working medium, and the thermoacoustic effect relies on the limited thermodynamic irreversibility of the working medium. For completely reversible or completely irreversible working media, standing waves cannot produce thermoacoustic effects.
声场的行波部分产生的效应有以下特点:1.产生的热声效应强度较高(对同样的压力和速度振幅的声波,可达的能流密度约为驻波可达到的两倍);2.热流方向总是与声功流的方向(行波传播的方向)相反。且理想情况下当工作介质完全可逆时热流与功流大小相等,当工作介质存在热力学不可逆性时热流小于与功流;3.当高温端在高声导率比的区域,低温端在低声导率比的区域,在承较大的温度梯度和热流方向由高温端流向低温端时时产生热致声效应,这时声功流方向由低温端流向高温端,部分热能被消耗转换为声能;4.在温度梯度一定时,声场的行波部分产生的热声效应的强度和效率在声流道的当量尺度与热穿透深度相比较小而又不引起较大的粘性耗散时最大。这时流体工作介质与固体工作介质有较好的热接触,热声效应依靠工作介质的热力学可逆性工作。对完全可逆的工作介质,行波产生的热致声效应的强度和能量转换利用的效率最高。The effects produced by the traveling wave part of the sound field have the following characteristics: 1. The thermoacoustic effect generated is high (for the same pressure and velocity amplitude sound wave, the energy flux density that can be achieved is about twice that of the standing wave); 2. The direction of heat flow is always opposite to the direction of acoustic work flow (direction of traveling wave propagation). And ideally, when the working medium is fully reversible, the heat flow and work flow are equal, and when the working medium is thermodynamically irreversible, the heat flow is smaller than the work flow; 3. When the high-temperature end is in the area of high acoustic conductivity ratio, and the low-temperature end is in the area of low acoustic conductivity ratio, the thermoacoustic effect is generated when the large temperature gradient and heat flow direction flow from the high-temperature end to the low-temperature end. The flow direction flows from the low temperature end to the high temperature end, and part of the heat energy is consumed and converted into sound energy; 4. When the temperature gradient is constant, the intensity and efficiency of the thermoacoustic effect produced by the traveling wave part of the sound field is the largest when the equivalent scale of the acoustic flow channel is small compared with the thermal penetration depth without causing large viscous dissipation. At this time, the fluid working medium has good thermal contact with the solid working medium, and the thermoacoustic effect relies on the thermodynamic reversibility of the working medium. For a fully reversible working medium, the intensity of the thermoacoustic effect generated by traveling waves and the efficiency of energy conversion and utilization are the highest.
产生热声效应的工作介质应是具有较高热膨胀度、较低普朗特数的可压缩的流体介质和与流体介质相比具有较大热容量的固体介质。特别对流体介质,在高、低温温差较大,而对能量流密度要求又较低的场合(如高温热源的温度较高和较小功率的热声发动机),可采用分子式简单、分子量较小的气体(如氦气、氢气、氮气等);在高、低温温差较小,而又对能量流密度要求较大的场合(如高温热源的温度较低和要求较大功率的热声发动机),可用较高工作压力的分子式较简单的气体(如氦气、氮气、二氧化碳等气体)或采用临界温度在环境温度附近的简单分子式的近临界流体(如可采用二氧化碳,丙烯,水等,但工作压力应在临界压力附近)。The working medium that produces the thermoacoustic effect should be a compressible fluid medium with a higher degree of thermal expansion and a lower Prandtl number, and a solid medium with a larger heat capacity than the fluid medium. Especially for fluid media, where the temperature difference between high and low temperatures is large and the energy flow density is low (such as high temperature heat source and low power thermoacoustic engine), simple molecular formula and small molecular weight can be used. Gases (such as helium, hydrogen, nitrogen, etc.); in occasions where the temperature difference between high and low temperatures is small and the energy flow density is relatively large (such as the temperature of the high-temperature heat source is low and the thermoacoustic engine that requires high power) , gas with relatively simple molecular formula at higher working pressure (such as helium, nitrogen, carbon dioxide, etc.) or a near-critical fluid with simple molecular formula whose critical temperature is near the ambient temperature (such as carbon dioxide, propylene, water, etc. can be used, but The working pressure should be near the critical pressure).
本发明是采用以下几种基本的声学和热声部件来实现的。这些部件各具有不同的功能,在热声发动机中完成声能、热能的提供、转换、输运等功能。这些基本部件是:The present invention is realized using the following basic acoustic and thermoacoustic components. Each of these components has different functions, and completes the functions of providing, converting, and transporting sound energy and heat energy in the thermoacoustic engine. These basic components are:
1.声换能器。声换能器是实现电能、机械能、压力能等有功能量与声能的相互转换的部件。如电磁式、活塞式、气流式扬声器等能实现有功能量与声能的转换;电磁振荡式、往复活塞式传声器或发电机可实现声能与电能的转换,往复运动活塞可实现声能与机械能的转换,压缩机阀片组、电磁阀组或旋转阀组等可实现声能与压力能的相互转换等,它们可将热声发动机中的声能量输出。以下将实现其它有功能量转换为声能换能器统称为扬声器,而将声转换为其它有功能量换能器统称为传声器。1. sound transducer. The acoustic transducer is a component that realizes the mutual conversion between active energy such as electrical energy, mechanical energy, and pressure energy, and acoustic energy. For example, electromagnetic, piston, and airflow speakers can realize the conversion of active energy and sound energy; electromagnetic oscillation type, reciprocating piston microphone or generator can realize the conversion of sound energy and electric energy, and the reciprocating piston can realize the conversion of sound energy and sound energy. The conversion of mechanical energy, compressor valve group, solenoid valve group or rotary valve group can realize the mutual conversion of sound energy and pressure energy, etc., and they can output the sound energy in the thermoacoustic engine. In the following, transducers that convert other active energy into sound energy are collectively referred to as loudspeakers, and transducers that convert sound into other active energy are collectively referred to as microphones.
2.热声换热器。热声换热器是利用等温壁热声效应实现热声发动机与外热源的热量交换的部件。放置于热声发动机声场中高声导率比区域的热声换热器由外热源吸热,称热声吸热器,放置于热声发动机声场中低声导率比区域的热声换热器向外热源放热,称热声放热器。热声换热器的结构可以是采用导热性良好的固体平板(如金属板)的叠层结构,板与板之间形成流道;也可以采用固体圆管组或整块中加工出声通道的结构,还可以采用金属丝网的堆叠形成多孔性声流道或使用其它类型的固体多孔材料。热声换热器中,声流道的形状可以是多种多样,如矩形、圆或椭圆性、三角形、菱形、六角形等,但声流道当量尺度应与流体热穿透深度相当。热声换热器的固体介质应有良好的导热性,而固体介质的外壁应与外热源有良好的热接触,以使整个换热器的温度尽量处于等温状态。换热器的长度与声波长相比应较小,以避免同一换热器越出高声导率比区域或低声导率比的区域,使得吸热或放热效应被削减或抵消。2. Thermoacoustic heat exchanger. The thermoacoustic heat exchanger is a component that uses the thermoacoustic effect of the isothermal wall to realize the heat exchange between the thermoacoustic engine and the external heat source. A thermoacoustic heat exchanger placed in a region with a high acoustic conductivity ratio in the sound field of a thermoacoustic engine absorbs heat from an external heat source, called a thermoacoustic heat absorber, and a thermoacoustic heat exchanger placed in a region with a low acoustic conductivity ratio in the sound field of a thermoacoustic engine Heat release to an external heat source is called a thermoacoustic radiator. The structure of the thermoacoustic heat exchanger can be a laminated structure of solid flat plates (such as metal plates) with good thermal conductivity, and flow channels are formed between the plates; solid circular tube groups or sound channels can also be processed in the whole block The structure can also be stacked with wire mesh to form a porous acoustic flow channel or use other types of solid porous materials. In a thermoacoustic heat exchanger, the shape of the acoustic flow channel can be various, such as rectangle, circle or ellipse, triangle, rhombus, hexagon, etc., but the equivalent scale of the acoustic flow channel should be equivalent to the fluid heat penetration depth. The solid medium of the thermoacoustic heat exchanger should have good thermal conductivity, and the outer wall of the solid medium should have good thermal contact with the external heat source, so that the temperature of the entire heat exchanger should be in an isothermal state as much as possible. The length of the heat exchanger should be small compared to the acoustic wavelength, so as to avoid the same heat exchanger going beyond the area of high or low acoustic conductivity ratio, so that the heat absorption or heat release effect is reduced or counteracted.
3.热声回热器。热声回热器是利用绝热壁热声效应实现热声发动机的热致声作用和热能与声能的转换的关键部件。热声回热器的设计应使其两端的声导率比适当,以便能量的输运和转换得以顺利进行,且与热声换热器能协调工作。热声回热器的结构可以是固体薄板(如金属板)的叠层结构,板与板之间形成声流道;也可以采用金属丝网的堆叠形成多孔性声流道或其它类型的固体多孔材料。热声回热器中,声流道的形状可以是多种多样或同一回热器中采用多种形状的组合。但声流道的当量尺度应约为当地流体的热穿透深度(在驻波声场占主要部分的区域),或远小于流体的热穿透深度(在行波声场占主要部分的区域),或为一小于流体穿透深度的适当值(在驻波和行波声场均占相当份额的区域)。热声回热器可以是直管,也可以采用从高温端向低温端收缩的变截面管,如喇叭形连续收缩,或梯形阶梯式收缩。热声回热器的固体介质应有较好的横向(垂直于声传播方向)导热性纵向(沿声传播方向)导热性(这可用纵向布置的叠层结构实现),以使整个回热器在同一截面的温度尽量相同,而又不会由于热传导造成较大的由回热器高温端到低温端的纵向热流损失。回热器在同一截面上固体介质的热容应远大于流体介质的热容,固体介质与流体介质的热接触面积应较大以避免不完善的热接触而使热声效应不充分和导致不必要的热力学不可逆损失。热声回热器与外热源应有良好的热绝缘,以避免向环境的漏热和热声效应产生由高温端向低温端的热输运损失。3. Thermoacoustic regenerator. The thermoacoustic regenerator is a key component to realize the thermoacoustic effect of the thermoacoustic engine and the conversion of heat energy and sound energy by using the thermoacoustic effect of the adiabatic wall. The design of the thermoacoustic regenerator should make the ratio of acoustic conductivity at both ends appropriate, so that the energy transport and conversion can be carried out smoothly, and it can work in harmony with the thermoacoustic heat exchanger. The structure of the thermoacoustic regenerator can be a laminated structure of solid thin plates (such as metal plates), and the acoustic flow channel is formed between the plates; it can also be stacked with metal wire mesh to form a porous acoustic flow channel or other types of solid porous material. In the thermoacoustic regenerator, the shape of the acoustic runner can be various or a combination of various shapes can be used in the same regenerator. However, the equivalent scale of the acoustic channel should be about the thermal penetration depth of the local fluid (in the area where the standing wave sound field accounts for the main part), or much smaller than the thermal penetration depth of the fluid (in the area where the traveling wave sound field accounts for the main part), Or an appropriate value smaller than the fluid penetration depth (in the region where both the standing wave and the traveling wave sound field account for a considerable share). The thermoacoustic regenerator can be a straight pipe, or a variable-section pipe that shrinks from the high temperature end to the low temperature end, such as a trumpet-shaped continuous shrinkage, or a trapezoidal stepped shrinkage. The solid medium of the thermoacoustic regenerator should have better transverse (perpendicular to the direction of sound propagation) thermal conductivity and longitudinal (along the direction of sound propagation) thermal conductivity (this can be achieved with a longitudinally arranged laminated structure), so that the entire regenerator The temperature in the same cross-section should be the same as possible without large longitudinal heat flow loss from the high temperature end to the low temperature end of the regenerator due to heat conduction. The heat capacity of the solid medium on the same cross-section of the regenerator should be much larger than that of the fluid medium, and the thermal contact area between the solid medium and the fluid medium should be large to avoid imperfect thermal contact, which will cause insufficient thermoacoustic effect and lead to incomplete Necessary thermodynamically irreversible losses. The thermoacoustic regenerator and the external heat source should have good thermal insulation to avoid heat leakage to the environment and heat transport loss from the high temperature end to the low temperature end due to the thermoacoustic effect.
4.热声谐振管。热声谐振管是一段外壁面绝热的两端分别与高、低温端相连的固体管道,它的两端视情形可设有高、低温热声换热器,以维持两端温度恒定。它的主要作用是通过管道长度在系统中的匹配,在整个系统中产生半波谐振或近谐振声场,并连接工作于高温段和低温段的任意两个热声部件,而又不会导致较大的由高温端到低温端的热流损失和声功流的衰减。热声谐振管的两端声导率比最好跨越高声导率比和低声导率比的区域。热声谐振管应采用导热性较差的管道,如薄壁金属管或非金属管,或外壁面为金属内壁面为非金属的复合型薄壁管道。热声谐振管的截面形状可以是多种多样,但其声流道当量尺度应大于或远大于当地流体的热穿透深度,以避免由于固体热传导和热声效应产生从高温端向低温端的热流损失,但也不能太大以使得整个系统的工作容积太大,能量密度太低。热声谐振管沿纵向方向可采用直管,也可以采用从低温端向高温端扩张的变截面管,如喇叭形连续扩张,或梯形阶梯式扩张。热声谐振管的外壁面与外热源应尽量热绝缘,以避免漏热损失。热声谐振管的两端可设置(也可不设置)层流化元件,使热声谐振管管内的流动尽量接近于层流,降低或消除紊流混合损失。4. Thermoacoustic resonance tube. The thermoacoustic resonant tube is a solid pipe whose outer wall is insulated and its two ends are respectively connected to the high and low temperature ends. Its two ends can be equipped with high and low temperature thermoacoustic heat exchangers to maintain a constant temperature at both ends. Its main function is to generate a half-wave resonance or near-resonance sound field in the entire system through the matching of the pipe length in the system, and to connect any two thermoacoustic components working in the high temperature section and the low temperature section without causing relatively Large heat flow loss from high temperature end to low temperature end and attenuation of sound work flow. The acoustic conductivity ratio at both ends of the thermoacoustic resonant tube preferably spans regions of high and low acoustic conductivity ratios. The thermoacoustic resonant tube should adopt a tube with poor thermal conductivity, such as a thin-walled metal tube or a non-metallic tube, or a composite thin-walled tube with a metal outer wall and a non-metallic inner wall. The cross-sectional shape of the thermoacoustic resonance tube can be various, but the equivalent scale of the acoustic flow path should be greater than or much greater than the heat penetration depth of the local fluid to avoid heat flow from the high temperature end to the low temperature end due to solid heat conduction and thermoacoustic effects The loss, but it can't be too large so that the working volume of the whole system is too large and the energy density is too low. The thermoacoustic resonant tube can be a straight tube along the longitudinal direction, or a variable-section tube expanding from the low temperature end to the high temperature end, such as a trumpet-shaped continuous expansion, or a trapezoidal step expansion. The outer wall of the thermoacoustic resonant tube should be thermally insulated from the external heat source as much as possible to avoid heat leakage loss. Both ends of the thermoacoustic resonant tube can be provided with (or not provided with) laminar fluidization elements, so that the flow in the thermoacoustic resonant tube can be as close to laminar flow as possible, and the turbulent mixing loss can be reduced or eliminated.
5.声波导管。声波导管是一段或一组工作于相同或相近温度的固体管道。它的作用主要是用于连接热声发动机中处于同样温度区域的两端以形成声回路(声反馈回路),或用于调节系统的固有频率。5. acoustic waveguide. An acoustic waveguide is a section or a group of solid pipes operating at the same or similar temperature. Its function is mainly to connect the two ends of the thermoacoustic engine in the same temperature region to form an acoustic loop (acoustic feedback loop), or to adjust the natural frequency of the system.
6.声阻抗调节器。声阻抗调节器是调节和匹配声阻抗的部件,用它可在热声发动机中适当位置调节和匹配当地的声振荡(速度与压力波动)的大小和相位。在声学中有三种阻抗类型,声阻、声容和声感,所以声阻抗调节器也有三种基本的类型。声阻调节器(或声阻尼调节器)可以是一小段细(微)孔管或一小段多孔介质或一个小孔调节阀门或其组合。声容抗调节器是在声通道上连接一个较大的空腔。而声感抗调节一般是声通道上连接一段细长的管道。实际使用时可将这三种基本的调节器单独或通过并联、串联等方式组合使用,以在声路中特定位置获得所需的声振荡,调节一定位置声场的振幅和相位。6. Acoustic impedance adjuster. The acoustic impedance adjuster is a component that adjusts and matches the acoustic impedance. It can be used to adjust and match the magnitude and phase of the local acoustic oscillation (velocity and pressure fluctuations) in the appropriate position in the thermoacoustic engine. There are three types of impedance in acoustics, acoustic resistance, acoustic capacitance, and acoustic perception, so there are three basic types of acoustic impedance regulators. The acoustic resistance adjuster (or acoustic damping adjuster) can be a small section of fine (micro) hole tube or a small section of porous medium or a small hole regulating valve or a combination thereof. The acoustic capacitive reactance regulator is connected to a larger cavity on the acoustic channel. The acoustic inductance adjustment is generally connected to a long and thin pipe on the acoustic channel. In actual use, these three basic regulators can be used alone or in combination in parallel or in series to obtain the desired acoustic oscillation at a specific position in the sound path and adjust the amplitude and phase of the sound field at a certain position.
本发明所指的热声发动机是由以上几种基本的声学和热声部件构成。这几种部件不同的选择和组合,形成不同结构特点的热声发动机。在这里所指的不同的选择和组合,都需要满足这样的条件,即一个热声发动机至少包括以上几种基本部件;在高温端,热声热器是从外界的高温端输送到低温端;在热声回热器中,声场的行波部分和驻波部分产生的热声效应均是产生热致声作用,即将热能转换为声能,这时声功流由低温端输送到高温端,热流则从高温端输送到低温端;在低温端,热声换热器是向外界的低温热源放热的;整个热声发动机中的声场是半波谐振声场或近谐振声场,声场的谐振靠热声谐振管和声波导管来匹配;声场的行波分量的产生靠扬声器或靠带有声阻抗调节的器的声反馈回路来实现。The thermoacoustic engine referred to in the present invention is composed of the above several basic acoustic and thermoacoustic components. Different selections and combinations of these components form thermoacoustic engines with different structural characteristics. The different options and combinations referred to here all need to meet the condition that a thermoacoustic engine includes at least the above basic components; at the high temperature end, the thermoacoustic heater is transported from the high temperature end of the outside to the low temperature end; In the thermoacoustic regenerator, the thermoacoustic effect produced by the traveling wave part and the standing wave part of the sound field is the thermoacoustic effect, that is, the heat energy is converted into sound energy. At this time, the acoustic work flow is transported from the low temperature end to the high temperature end. The heat flow is transported from the high-temperature end to the low-temperature end; at the low-temperature end, the thermoacoustic heat exchanger releases heat to the external low-temperature heat source; the sound field in the entire thermoacoustic engine is a half-wave resonant sound field or a near-resonant sound field, and the resonance of the sound field depends on The thermoacoustic resonance tube is matched with the acoustic waveguide; the traveling wave component of the sound field is generated by a speaker or an acoustic feedback loop with an acoustic impedance regulator.
采用上述设计,可以较大地提高热声发动机的性能,降低有用能的损耗,提高热声发动机的效率。更由于采用了灵活的设计,根据情形我们可以选择不同形式的换能器等不同特点的部件的组合,这样可以满足不同场合的需要。By adopting the above design, the performance of the thermoacoustic engine can be greatly improved, the loss of useful energy can be reduced, and the efficiency of the thermoacoustic engine can be improved. Furthermore, due to the flexible design, we can choose the combination of different types of transducers and other parts with different characteristics according to the situation, so as to meet the needs of different occasions.
下面结合附图及实施例进一步描述本发明:Further describe the present invention below in conjunction with accompanying drawing and embodiment:
附图1是仅采用一个换能器(传声器)的本发明的热声发动机的结构示意图,图中箭头所指是声功流的方向;Accompanying drawing 1 is the structural representation of the thermoacoustic engine of the present invention that only adopts a transducer (microphone), and arrow point among the figure is the direction of sound work flow;
附图2是采用扬声器替代图1结构中声波的主反馈回路的热声发动机的结构示意图,它采用两个换能器(双驱动),即一个传声器和一个扬声器。图中箭头所指是声功流的方向;Accompanying drawing 2 is the structure schematic diagram of the thermoacoustic engine that adopts loudspeaker to replace the main feedback loop of sound wave in the structure of Fig. 1, and it adopts two transducers (dual drive), namely a microphone and a loudspeaker. The arrows in the figure indicate the direction of the sound work flow;
环境温度热声放热器1 热声回热器2 高温热声吸热器3Ambient temperature thermoacoustic radiator 1
高温声波导管4 热声谐振管5 环境温度声波导管6High temperature
传声器7 声波主反馈调节回路8 声波次反馈调节回路9
由图可知,本发明提供的热声发动机,包括环境温度热声放热器1、热声回热器2、高温热声吸热器3、高温声波导管4、热声谐振管5、环境温度声波导管6、传声器7,其特征在于:还包括带声阻抗调节器的声波导管或声波导管组组成的声波主反馈调节回路8和声波次反馈调节回路9,环境温度热声放热器1和高温热声吸热器3分别位于热声回热器2的低温和高温端,高温声波导管4两端分别连接高温热声吸热器3和热声谐振管5,热声谐振管5的另一端通过环境温度声波导管6连接传声器7,带声阻抗调节器的声波导管或声波导管组组成的声波主反馈调节回路8的一端连接环境温度热声放热器1,另一端连接在热声谐振管5和传声器7之间的环境温度声波导管6上,声波次反馈调节回路9连接热声回热器2和热声谐振管5;热声发动机中的声场是半波谐振声场或半波近谐振声场,其长度约为声波的半波长或在四分之一波长和半波长之间;在热声回热器中,工作流体速度波动的相位超前于压力波动的相位,声场的行波部分和驻波部分产生的热声效应均是热致声效应;热声谐振管的两端分别处于高温和环境温度,由热声回热器产生的声能流的一部分由声波的主反馈调节回路反馈给热声回热器,形成一个贯穿整个热声回热器的形波声能流;As can be seen from the figure, the thermoacoustic engine provided by the present invention includes an ambient temperature thermoacoustic radiator 1, a thermoacoustic regenerator 2, a high-temperature thermoacoustic heat absorber 3, a high-temperature acoustic waveguide 4, a thermoacoustic resonance tube 5, and an ambient temperature The acoustic waveguide 6 and the microphone 7 are characterized in that: they also include an acoustic waveguide with an acoustic impedance regulator or an acoustic waveguide group composed of an acoustic wave main feedback adjustment loop 8 and an acoustic wave secondary feedback adjustment loop 9, an ambient temperature thermoacoustic radiator 1 and The high-temperature thermoacoustic heat absorber 3 is respectively located at the low-temperature and high-temperature ends of the thermoacoustic regenerator 2, and the two ends of the high-temperature acoustic waveguide 4 are respectively connected to the high-temperature thermoacoustic heat absorber 3 and the thermoacoustic resonance tube 5, and the other end of the thermoacoustic resonance tube 5 One end is connected to the microphone 7 through the ambient temperature acoustic waveguide 6, and one end of the acoustic wave main feedback regulation loop 8 composed of the acoustic waveguide with the acoustic impedance regulator or the acoustic waveguide group is connected to the ambient temperature thermoacoustic heat radiator 1, and the other end is connected to the thermoacoustic resonance On the ambient temperature acoustic waveguide 6 between the tube 5 and the microphone 7, the acoustic sub-feedback regulation loop 9 connects the thermoacoustic regenerator 2 and the thermoacoustic resonance tube 5; the sound field in the thermoacoustic engine is a half-wave resonant sound field or a half-wave near Resonant sound field, the length of which is about half the wavelength of the sound wave or between a quarter wavelength and a half wavelength; in a thermoacoustic regenerator, the phase of the working fluid velocity fluctuation is ahead of the phase of the pressure fluctuation, and the traveling wave part of the sound field The thermoacoustic effect produced by the standing wave part and the standing wave part are both thermoacoustic effects; the two ends of the thermoacoustic resonance tube are at high temperature and ambient temperature respectively, and a part of the acoustic energy flow generated by the thermoacoustic regenerator is controlled by the main feedback loop of the acoustic wave Feedback to the thermoacoustic regenerator to form a shape wave acoustic energy flow that runs through the entire thermoacoustic regenerator;
所述的传声器7是将声能转换为电能的电磁振荡式传声器或发电机、将声能转换为机械能的往复活塞式传声器、将声能转换为压力能的压缩机阀片组或电磁阀组或旋转阀组;The
所述的高温声波导管4、热声回热器2、热声谐振管5和环境温度声波导管6由金属管或非金属管制作,其轴线的布置形状有直线形、U形、弯曲形、部分弯曲形;热声回热器2和热声谐振管5之间的相对位置为同轴或非同轴布置;The high-temperature
所述的声发动机热声回热器2内部的结构为板与板之间形成声流道的固体薄板叠层结构或为金属丝网堆叠形成的多孔性声流道或固体多孔材料、颗粒材料形成的多孔性声流道或其组合;热声回热器为直管或从低温端向高温端扩张的变截面管,其扩张形式为喇叭形连续扩张或梯形阶梯式扩张;热声回热器与外热源绝热;The internal structure of the acoustic
所述的热声谐振管5为轴向导热性较差的管道,其两端视情形设有维持两端温度恒定的高、低温热声换热器;热声谐振管的材料为薄壁金属管或非金属管或外壁面为金属内壁面为非金属的复合型薄壁管;热声谐振管的截面形状为直管或从高温端向低温端收缩的变截面管,其收缩形式为喇叭形连续收缩或梯形阶梯式收缩;热声谐振管的管内填充或部分填充或不填充热声回热材料;热声谐振管的两端设置或不设置层流化元件;The
所述的环境温度热声放热器1和高温热声吸热器3的内部结构为采用导热性良好的固体平板的叠层结构,板与板之间形成声流道或采用固体圆管组或整块固体中加工出声通道的结构或采用金属丝网、固体多孔材料堆叠形成多孔性声流道;环境温度热声放热器和高温热声吸热器的声流道形状为矩形、圆或椭圆性、三角形、菱形和六角形;环境温度热声放热器和高温热声吸热器的固体介质为良导热性的固体材料;The internal structure of the ambient temperature thermoacoustic heat radiator 1 and the high temperature
所述的带声阻抗调节器的声波导管或声波导管组组成的声波主反馈调节回路8和声波次反馈调节回路9中的声阻抗调节器为声阻调节器、声容调节器或声感调节器或其组合,声阻调节器是一小段细孔管或一小段多孔介质或一个小孔调节阀或其组合;声容调节器为位于声通道上的一个空腔;声感抗调节器为在声通道上连接的一段细长管道;The acoustic impedance adjuster in the acoustic wave main
所述的声波次反馈调节回路9由带声阻抗调节器的声波导管构成,为一路、两路或多路;The acoustic wave
当热声回热器2和热声谐振管5之间的相对位置为同轴布置时,声波次反馈调节回路9中的声阻抗调节器为热声回热器与热声谐振管的共同壁面上的一个、两个或多个小孔,或将这个共同壁面采用或制作成多孔壁面;When the relative position between the
所述的声波主反馈调节回路8由一个扬声器替代;其扬声器为将电能、机械能、压力能转换为声能的部件,包括电机驱动或电磁驱动的活塞式、膜片式、气流式扬声器,驱动扬声器的能量由外界提供或由传声器将声能转换来的能量的一部分。The sound wave main
图1中的热声发动机,同时利用声场的行波和驻波部分产生的热致声效应工作的热声热器2,将由高温热声吸热器3从外部的高温热源吸收的热部分转化为声能,另一部分由热声放热器1向环境低温热源放出。工作于高温端的声波导管4实现高温热声吸热器3与热声谐振管5的连接,热声谐振管5用于将声波能量由高温传播到环境温度端,再通过声波导管6由传声器7将声能转换为电能、机械能、压力能等有功能量输出供利用(也可直接输出声能作热声扬声器使用)。带声阻抗调节器的声波导管8用于形成声波的主反馈调节回路,以调节热声回热器2中的声场和匹配声阻抗,使得各个热声部件工作在良好状态。整个主反馈回路的长度和阻抗的选择应使得其中行波的方向是流向热声回热器一端,并使系统工作在最佳状态。带声阻抗调节器的声波导管或导管组9用于热声回热器2与热声谐振管5中间位置的连接,形成一路或多路的声波的次反馈调节回路,以使得热声回热器的工作效率得到最佳的发挥。声波导管6用于匹配末端声阻抗与传声器7的阻抗,并使热声谐振管5的低温端工作于低声导率比的区域,以便声能得以顺利转换和系统正常工作。整个热声发动机的长度应约等于声波的半波长或大于声波的四分之一波长和小于声波的半波长,以保证在热声回热器中,声场速度波动的相位超前于压力波动的相位,声场的行波部分和驻波部分产生的热声效应均是产生热致声效应,即将热能转换为声能。The thermoacoustic engine in Fig. 1, the
图2中的热声发动机,是以扬声器10替代图1中声波主反馈回路8的结构,声波导管11用于匹配热声放热器的声阻抗与扬声器10的阻抗,使得在扬声器10中机械能等得以顺利转换为声能,并使得低温热声放热器1工作于低声导率比的区域。扬声器10中流体的运动相位与传声器7中流体的运动相位应协调,这个相位的选择应保证声功流在系统中是由扬声器10穿越热器2和热声谐振管5到传声器7,并使整个系统工作在最佳状态。图中其它部件的作用与图1结构中相应部件的作用相同。这个结构中,驱动扬声器10工作的能量传声器7提供。这里,整个热声发动机从扬声器声源到的声吸收器的长度等于或约小于声波的半波长,以保证在热声回热器中,声场的行波部分和驻波部分产生的热声效应均产生热致声效应,将热能转换为声能。The thermoacoustic engine in Fig. 2 replaces the structure of the sound wave
以上所指的热声发动机中在同样温区工作的热声回热器和热声谐振管可以制作成同轴结构,以增加装置的紧凑性。The thermoacoustic regenerator and thermoacoustic resonant tube working in the same temperature range in the above-mentioned thermoacoustic engine can be made into a coaxial structure to increase the compactness of the device.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN95105966A CN1064746C (en) | 1995-06-05 | 1995-06-05 | Thermoacoustic engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN95105966A CN1064746C (en) | 1995-06-05 | 1995-06-05 | Thermoacoustic engine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1137609A CN1137609A (en) | 1996-12-11 |
CN1064746C true CN1064746C (en) | 2001-04-18 |
Family
ID=5075694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN95105966A Expired - Fee Related CN1064746C (en) | 1995-06-05 | 1995-06-05 | Thermoacoustic engine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1064746C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1328507C (en) * | 2004-09-10 | 2007-07-25 | 中国科学院理化技术研究所 | Coaxial thermoacoustic driving power generation system |
CN101230471B (en) * | 2007-01-23 | 2010-07-14 | 中南大学 | Thermoacoustic module device for waste heat utilization of aluminum electrolytic cell |
CN101619714B (en) * | 2009-08-14 | 2011-01-05 | 深圳市中科力函热声技术工程研究中心有限公司 | Biomass thermal noise generating system |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293303C (en) * | 2004-02-26 | 2007-01-03 | 浙江大学 | Engine of mixing line wave thermal sound with bypass structure |
CN100402844C (en) * | 2004-02-26 | 2008-07-16 | 浙江大学 | Double feedback loop hybrid traveling wave thermoacoustic engine with bypass structure |
CN100458148C (en) * | 2004-12-10 | 2009-02-04 | 中国科学院理化技术研究所 | A thermoacoustic engine with a resonant cavity with expanding cross-section |
CN1821048B (en) * | 2005-02-18 | 2014-01-15 | 中国科学院理化技术研究所 | Micro/nano thermoacoustic vibration exciter based on thermoacoustic conversion |
CN100593678C (en) * | 2006-12-31 | 2010-03-10 | 中国科学院理化技术研究所 | Tandem type thermoacoustic system |
CN101726137B (en) * | 2008-10-16 | 2012-06-27 | 中科力函(深圳)热声技术有限公司 | Heat regenerator and manufacturing method thereof |
CN102080637B (en) * | 2010-12-01 | 2013-03-27 | 沈阳工业大学 | Electric bidirectional resonant permanent magnet linear generating set special for thermoacoustic system |
CN103147947B (en) * | 2011-12-06 | 2015-04-01 | 中国科学院理化技术研究所 | thermoacoustic generator |
CN103837356B (en) * | 2012-11-23 | 2016-03-02 | 中国科学院理化技术研究所 | Testing arrangement of regenerator performance |
CN104848586A (en) * | 2015-05-28 | 2015-08-19 | 武汉化院科技有限公司 | Sound-wave driving type temperature control device |
CN105840443B (en) * | 2016-05-05 | 2018-08-07 | 中国科学院理化技术研究所 | Thermoacoustic turbine generator and power generation system |
CN110341924B (en) * | 2018-04-03 | 2020-09-01 | 中国科学院理化技术研究所 | a ship propulsion system |
CN108932987B (en) * | 2018-06-12 | 2021-02-09 | 中国船舶重工集团公司第七一九研究所 | Space nuclear power supply device based on thermoacoustic and thermoelectric effects |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4114380A (en) * | 1977-03-03 | 1978-09-19 | Peter Hutson Ceperley | Traveling wave heat engine |
US4355517A (en) * | 1980-11-04 | 1982-10-26 | Ceperley Peter H | Resonant travelling wave heat engine |
US4489553A (en) * | 1981-08-14 | 1984-12-25 | The United States Of America As Represented By The United States Department Of Energy | Intrinsically irreversible heat engine |
-
1995
- 1995-06-05 CN CN95105966A patent/CN1064746C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4114380A (en) * | 1977-03-03 | 1978-09-19 | Peter Hutson Ceperley | Traveling wave heat engine |
US4355517A (en) * | 1980-11-04 | 1982-10-26 | Ceperley Peter H | Resonant travelling wave heat engine |
US4489553A (en) * | 1981-08-14 | 1984-12-25 | The United States Of America As Represented By The United States Department Of Energy | Intrinsically irreversible heat engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1328507C (en) * | 2004-09-10 | 2007-07-25 | 中国科学院理化技术研究所 | Coaxial thermoacoustic driving power generation system |
CN101230471B (en) * | 2007-01-23 | 2010-07-14 | 中南大学 | Thermoacoustic module device for waste heat utilization of aluminum electrolytic cell |
CN101619714B (en) * | 2009-08-14 | 2011-01-05 | 深圳市中科力函热声技术工程研究中心有限公司 | Biomass thermal noise generating system |
Also Published As
Publication number | Publication date |
---|---|
CN1137609A (en) | 1996-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1064746C (en) | Thermoacoustic engine | |
JP3990108B2 (en) | Thermoacoustic system equipment | |
US4355517A (en) | Resonant travelling wave heat engine | |
US5996345A (en) | Heat driven acoustic power source coupled to an electric generator | |
US7404296B2 (en) | Cooling device | |
WO2018028367A1 (en) | Multi-stage thermoacoustic generator unit and multi-stage heat regenerative refrigeration system having same | |
JP5570899B2 (en) | Thermoelectric acoustic engine and method of use | |
CN105485956B (en) | Cascade regenerative refrigerator | |
JP5711907B2 (en) | Thermoelectric acoustic refrigerator and method of using the same | |
CN101210749A (en) | A tandem thermoacoustic system | |
CN104912690B (en) | Acoustic resonance multistage traveling wave thermoacoustic engine coupling piezoelectric ceramic power generation device | |
CN1137630A (en) | Heat driven thermoacoustic refrigerator without motion component | |
JP2006214406A (en) | Thermoacoustic device | |
CN1768238A (en) | Pulse Tube Refrigerator | |
Garrett | Reinventing the engine | |
CN1086801C (en) | Thermoacoustic refrigerator | |
Backhaus et al. | New varieties of thermoacoustic engines | |
CN101566405B (en) | Heat-driven thermoacoustic refrigerator device with traveling and standing wave type sound field | |
CN105823255A (en) | Pulse tube refrigerator | |
Ali et al. | Harnessing sound waves for sustainable energy: advancements and challenges in thermoacoustic technology | |
Prashantha et al. | Design optimization and analysis of thermoacoustic refrigerators | |
JP2011002153A (en) | Thermoacoustic engine | |
Mahmood et al. | Miniaturized traveling-wave thermoacoustic refrigerator driven by loudspeaker: Numerical design | |
CN1215298C (en) | Method and device for reducing resonance frequency of thermoacoustic system | |
Zolpakar et al. | Comparison of a thermoacoustic refrigerator stack performance: Mylar spiral, celcor substrates and 3D printed stacks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |