CN106467543B - It is a kind of using dimethylanthracene as the organic compound of core and its application - Google Patents

It is a kind of using dimethylanthracene as the organic compound of core and its application Download PDF

Info

Publication number
CN106467543B
CN106467543B CN201610738755.0A CN201610738755A CN106467543B CN 106467543 B CN106467543 B CN 106467543B CN 201610738755 A CN201610738755 A CN 201610738755A CN 106467543 B CN106467543 B CN 106467543B
Authority
CN
China
Prior art keywords
general formula
dimethylanthracene
expressed
organic compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610738755.0A
Other languages
Chinese (zh)
Other versions
CN106467543A (en
Inventor
王立春
张兆超
李崇
叶中华
张小庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Sunera Technology Co Ltd
Original Assignee
Jiangsu Sanyue Optoelectronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Sanyue Optoelectronic Technology Co Ltd filed Critical Jiangsu Sanyue Optoelectronic Technology Co Ltd
Priority to CN201610738755.0A priority Critical patent/CN106467543B/en
Publication of CN106467543A publication Critical patent/CN106467543A/en
Application granted granted Critical
Publication of CN106467543B publication Critical patent/CN106467543B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Abstract

The invention discloses a kind of using dimethylanthracene as the organic compound of core and its application, shown in the structural formula general formula such as general formula (1) of the organic compound.The compounds of this invention glass transition temperature with higher and molecule thermal stability, suitable HOMO and lumo energy, higher Eg are optimized by device architecture, can effectively promote the photoelectric properties of OLED device and the service life of OLED device.

Description

It is a kind of using dimethylanthracene as the organic compound of core and its application
Technical field
The present invention relates to organic photoelectrical material technical fields, and containing dimethylanthracene structure more particularly, to one kind is center bone The compound-material of frame and its application in the field OLED.
Background technique
Organic electroluminescent (OLED:Organic Light Emission Diodes) device technology can both be used to make New display product is made, production novel illumination product is can be used for, is expected to substitute existing liquid crystal display and fluorescent lighting, Application prospect is very extensive.
Structure of the OLED luminescent device like sandwich, including electrode material film layer, and be clipped in Different electrodes film layer it Between organic functional material, various different function materials are overlapped mutually depending on the application collectively constitutes OLED luminescent device together. As current device, when the two end electrodes application voltage to OLED luminescent device, and pass through electric field action organic layer functional material Positive and negative charge in film layer, positive and negative charge is further compound in luminescent layer, i.e. generation OLED electroluminescent.
Currently, OLED display technology in smart phone, applied by the fields such as tablet computer, further will also be to electricity Depending on etc. large scales application field extension, still with actual products application require compare, the luminous efficiency of OLED device, use The performances such as service life also need further to be promoted.
Proposing high performance research for OLED luminescent device includes: the driving voltage for reducing device, improves shining for device Efficiency improves the service life etc. of device.In order to realize OLED device performance continuous promotion, not only need from OLED device The innovation of structure and manufacture craft is constantly studied and is innovated with greater need for oled light sulfate ferroelectric functional material, formulates out higher performance OLED Functional material.
Oled light sulfate ferroelectric functional material applied to OLED device can be divided into two major classes, i.e. charge injection transmission from purposes Material and luminescent material further can also inject charge into transmission material and be divided into electron injection transmission material, electronic blocking material Luminescent material, can also be divided into main body luminescent material and dopant material by material, hole injection transmission material and hole barrier materials.
In order to make high performance OLED luminescent device, it is desirable that various organic functional materials have good photoelectric characteristic, For example, as charge transport materials, it is desirable that have good carrier mobility, high-vitrification conversion temperature etc., as luminous The material of main part of layer requires material to have good bipolarity, HOMO/LUMO energy rank appropriate etc..
The oled light sulfate ferroelectric functional material film layer for constituting OLED device includes at least two layers or more structure, applies in industry OLED device structure then includes hole injection layer, hole transmission layer, electronic barrier layer, luminescent layer, hole blocking layer, electronics biography A variety of film layers such as defeated layer, electron injecting layer, that is to say, that the photoelectric functional material applied to OLED device is infused including at least hole Enter material, hole mobile material, luminescent material, electron transport material etc., material type and collocation form with rich and more The characteristics of sample.In addition, used photoelectric functional material has stronger for the collocation of the OLED device of different structure Selectivity, performance of the identical material in different structure device, it is also possible to completely totally different.
Therefore, for the industry application requirement of current OLED device and the different function film layer of OLED device, device Photoelectric characteristic demand, it is necessary to which selection is more suitable for, and OLED functional material or combination of materials with high performance are just able to achieve device High efficiency, the overall characteristic of long-life and low-voltage.For current OLED shows the actual demand of Lighting Industry, OLED at present The development of material is also far from enough, lags behind the requirement of panel manufacturing enterprise, as the organic of material enterprise development higher performance Functional material is particularly important.
Summary of the invention
In view of the above-mentioned problems existing in the prior art, the applicant provides a kind of organic compound containing dimethylanthracene And its it is applied on organic electroluminescence device.The compounds of this invention contains dimethylanthracene structure, vitrifying temperature with higher Degree and molecule thermal stability, suitable HOMO and lumo energy, higher Eg are optimized by device architecture, can effectively promote OLED The photoelectric properties of device and the service life of OLED device.
Technical scheme is as follows:
The applicant provides a kind of organic compound containing dimethylanthracene, the general structure of the compound such as general formula (1) shown in:
Wherein, Ar1、Ar2Independently be expressed as phenyl, xenyl or naphthalene;
R1、R2Independently be expressed as structure shown in general formula (2) or general formula (3);R1With R2It can be identical or different;R1Also It can be expressed as hydrogen atom;
Wherein,
R3It is expressed as structure shown in hydrogen atom, general formula (4) or general formula (5);
In general formula (4), a is selected fromX1、X2、X3Independently be expressed as oxygen original Son, sulphur atom, C1-10The uncle that alkylidene, the alkyl or aryl of alkylidene, aryl substitution that linear or branched alkyl group replaces replace One of amido;
Structure shown in general formula (4), general formula (5) passes through CL1-CL2Key, CL2-CL3Key or CL3-CL4Key is connected with general formula (2);
R4、R5Independently be expressed as C1-10Linear or branched alkyl group, phenyl, naphthalene, xenyl, general formula (6), general formula (7), structure shown in general formula (8) or general formula (9);R5It is also denoted as hydrogen atom or halogen atom;
Wherein,
X is oxygen atom, sulphur atom, C1-10Alkylidene, the alkyl of alkylidene, aryl substitution that linear or branched alkyl group replaces Or one of the tertiary amine groups that aryl replaces;
R7、R8Independently be expressed as phenyl, naphthalene, dibiphenylyl, terphenyl, dibenzofurans, dibenzo thiophene Pheno or 9,9- dimethyl fluorene or carbazole.
Preferably, the R1、R2Expression independently are as follows:
In any one.
Preferably, the concrete structure formula of the organic compound containing dimethylanthracene are as follows:
In any one.
The applicant additionally provides a kind of method for preparing the organic compound, the reactional equation occurred in preparation process Formula is:
R1When being expressed as hydrogen atom,
R1When being expressed as the structure of general formula (2) or general formula (3),
Specific preparation process are as follows:
Weigh dimethylanthracene bromo-derivative and H-R2Or H-R1With H-R2Mixture, dissolved with toluene;Add Pd2 (dba)3, tri-tert-butylphosphine, sodium tert-butoxide;Under an inert atmosphere, by the mixed solution of above-mentioned reactant in reaction temperature 95~ It 110 DEG C, reacts 10~24 hours, cooling and filtering reacting solution, filtrate revolving crosses silicagel column, obtains target product;
The dimethylanthracene bromo-derivative and H-R1And H-R2Molar ratio be respectively 1:1.2~3.0, Pd2(dba)3With diformazan The molar ratio of base anthracene bromo-derivative is 0.006~0.02:1, the molar ratio of tri-tert-butylphosphine and dimethylanthracene bromo-derivative is 0.006~ The molar ratio of 0.02:1, sodium tert-butoxide and dimethylanthracene bromo-derivative is 2.0~5.0:1.
The applicant additionally provides a kind of organic electroluminescence device, and the organic electroluminescence device includes at least one layer Functional layer contains the organic compound containing dimethylanthracene.
The present invention is beneficial to be had the technical effect that
For the compounds of this invention using dimethylanthracene as parent nucleus, connected symmetrical dendrimer or asymmetrical rigid radical destroy the knot of molecule Crystalline substance avoids intermolecular aggtegation, has high glass transition temperature, material is in OLED device in application, can keep high Membranous layer stability improves OLED device service life.
The compounds of this invention structure balances electrons and holes more in the distribution of luminescent layer, in appropriate HOMO energy level Under, improve hole injection/transmission performance;Under suitable lumo energy, and play the role of electronic blocking, promotes exciton Combined efficiency in luminescent layer;When light emitting functional layer materials'use as OLED luminescent device, dimethyl that aryl replaces Branch in the anthracene collocation scope of the invention can effectively improve exciton utilization rate and high fluorescent radiation efficiency, reduce under high current density Efficiency roll-off, reduce device voltage, improve current efficiency and the service life of device.
The special construction of compound of the present invention designs, so that material also has while with high decomposition temperature Low sublimation temperature or vacuum evaporation temperature, temperature difference window with higher between sublimation temperature or vapor deposition temperature and decomposition temperature Mouthful, so that material operation controllability with higher in industrial application, is conducive to the application of material volume production.
Compound of the present invention has good application effect in OLED luminescent device, before having good industrialization Scape.
Detailed description of the invention
Fig. 1 is the structural schematic diagram that material cited by the present invention is applied to OLED device;
Wherein, 1 is transparent substrate layer, and 2 be ito anode layer, and 3 be hole injection layer, and 4 be hole transport/electronic barrier layer, 5 be luminescent layer, and 6 be electron-transport/hole blocking layer, and 7 be electron injecting layer, and 8 be cathode reflection electrode layer.
Specific embodiment
With reference to the accompanying drawings and examples, the present invention is specifically described.
Embodiment 1: the synthesis of compound 1:
Synthetic route:
In the there-necked flask of 250ml, lead under nitrogen protection, addition 0.01mol raw material A 1,0.012mol raw material B1, 0.03mol sodium tert-butoxide, 5 × 10-5molpd2(dba)3, 5 × 10-5It is small to be heated to reflux 24 for mol tri-tert phosphorus, 150ml toluene When, sample contact plate, fully reacting;Natural cooling, filtering, filtrate revolving, column chromatograph to obtain target product, HPLC purity 98.9%, yield 64.7%;
Elemental analysis structure (molecular formula C64H45N3): theoretical value C, 89.79;H,5.30;N,4.91;Test value: C, 89.79;H,5.31;N,4.90.
HPLC-MS: material molecule amount 856.06 surveys molecular weight 856.45.
Embodiment 2: the synthesis of compound 3:
Synthetic route:
In the there-necked flask of 250ml, lead under nitrogen protection, addition 0.01mol raw material A 1,0.012mol raw material B2, 0.03mol sodium tert-butoxide, 5 × 10-5mol pd2(dba)3, 5 × 10-5Mol tri-tert phosphorus, 150ml toluene are heated to reflux 24 Hour, sample contact plate, fully reacting;Natural cooling, filtering, filtrate revolving, column chromatograph to obtain target product, HPLC purity 99.5%, yield 67.3%;
Elemental analysis structure (molecular formula C61H48N2): theoretical value C, 90.56;H,5.98;N,3.46;Test value: C, 90.59;H,5.96;N,3.45.
HPLC-MS: material molecule amount 809.05 surveys molecular weight 809.48.
Embodiment 3: the synthesis of compound 11:
Synthetic route:
In the there-necked flask of 250ml, lead under nitrogen protection, addition 0.01mol raw material A 1,0.012mol raw material C1, 0.03mol sodium tert-butoxide, 5 × 10-5mol pd2(dba)3, 5 × 10-5Mol tri-tert phosphorus, 150ml toluene are heated to reflux 24 Hour, sample contact plate, fully reacting;Natural cooling, filtering, filtrate revolving, column chromatograph to obtain target product, HPLC purity 99.4%, yield 70.2%;
Elemental analysis structure (molecular formula C56H40N2): theoretical value C, 90.78;H,5.44;N,3.78;Test value: C, 90.78;H,5.45;N,3.77.
HPLC-MS: material molecule amount 740.93 surveys molecular weight 741.25.
Embodiment 4: the synthesis of compound 16:
Synthetic route:
In the there-necked flask of 250ml, lead under nitrogen protection, addition 0.01mol raw material A 2,0.012mol raw material B3, 0.03mol sodium tert-butoxide, 5 × 10-5mol pd2(dba)3, 5 × 10-5Mol tri-tert phosphorus, 150ml toluene are heated to reflux 24 Hour, sample contact plate, fully reacting;Natural cooling, filtering, filtrate revolving, column chromatograph to obtain target product, HPLC purity 99.1%, yield 68.5%;
Elemental analysis structure (molecular formula C56H39NS): theoretical value C, 88.74;H,5.19;N,1.85;S,4.23;Test Value: C, 88.73;H,5.20;N,1.86;S,4.21.
HPLC-MS: material molecule amount 757.98 surveys molecular weight 758.36.
Embodiment 5: the synthesis of compound 17:
Synthetic route:
By the synthetic method preparation of compound 1 in embodiment 1, difference is to replace raw material B1 with raw material B4;
Elemental analysis structure (molecular formula C64H52N2): theoretical value C, 90.53;H,6.17;N,3.30;Test value: C, 90.54;H,6.15;N,3.31.
HPLC-MS: material molecule amount 849.11 surveys molecular weight 849.52.
Embodiment 6: the synthesis of compound 24:
Synthetic route:
By the synthetic method preparation of compound 1 in embodiment 1, difference is to replace raw material B1 with raw material C2;
Elemental analysis structure (molecular formula C59H46N2): theoretical value C, 90.50;H,5.92;N,3.58;Test value: C, 90.52;H,5.91;N,3.57.
HPLC-MS: material molecule amount 783.01 surveys molecular weight 783.39.
Embodiment 7: the synthesis of compound 35:
Synthetic route:
By the synthetic method preparation of compound 1 in embodiment 1, difference is to replace raw material B1 with raw material D1;
Elemental analysis structure (molecular formula C67H53N3): theoretical value C, 89.40;H,5.93;N,4.67;Test value: C, 89.43;H,5.92;N,4.65.
HPLC-MS: material molecule amount 900.16 surveys molecular weight 900.59.
Embodiment 8: the synthesis of compound 37:
Synthetic route:
By the synthetic method preparation of compound 1 in embodiment 1, difference is to replace raw material B1 with raw material D2;
Elemental analysis structure (molecular formula C64H52N2O): theoretical value C, 88.85;H,6.06;N,3.24;O,1.85;Test Value: C, 88.86;H,6.05;N,3.25;O,1.84.
HPLC-MS: material molecule amount 865.11 surveys molecular weight 865.48.
Embodiment 9: the synthesis of compound 42:
Synthetic route:
In the there-necked flask of 250ml, lead under nitrogen protection, addition 0.01mol raw material A 3,0.024mol raw material E1, 0.04mol sodium tert-butoxide, 1 × 10-4mol pd2(dba)3, 1 × 10-4Mol tri-tert phosphorus, 250ml toluene are heated to reflux 24 Hour, sample contact plate, fully reacting;Natural cooling, filtering, filtrate revolving, column chromatograph to obtain target product, HPLC purity 99.5%, yield 68.9%;
Elemental analysis structure (molecular formula C68H70N2): theoretical value C, 89.23;H,7.71;N,3.06;Test value: C, 89.25;H,7.70;N,3.05.
HPLC-MS: material molecule amount 915.30 surveys molecular weight 915.78.
Embodiment 10: the synthesis of compound 48:
Synthetic route:
In the there-necked flask of 250ml, lead under nitrogen protection, addition 0.01mol raw material A 4,0.012mol raw material E2, 0.03mol sodium tert-butoxide, 5 × 10-5mol pd2(dba)3, 5 × 10-5Mol tri-tert phosphorus, 250ml toluene are heated to reflux 24 Hour, sample contact plate, fully reacting;Natural cooling, filtering, filtrate revolving, column chromatograph to obtain target product, HPLC purity 99.1%, yield 72.7%;
Elemental analysis structure (molecular formula C58H44N2): theoretical value C, 90.59;H,5.77;N,3.64;Test value: C, 90.60;H,5.75;N,3.65.
HPLC-MS: material molecule amount 768.98 surveys molecular weight 769.31.
Embodiment 11: the synthesis of compound 61:
Synthetic route:
By the synthetic method preparation of compound 1 in embodiment 1, difference is to replace raw material B1 with raw material E3;
Elemental analysis structure (molecular formula C64H45N3): theoretical value C, 89.79;H,5.30;N,4.91;Test value: C, 89.80;H,5.30;N,4.90.
HPLC-MS: material molecule amount 856.06 surveys molecular weight 856.42.
Embodiment 12: the synthesis of compound 69:
Synthetic route:
By the synthetic method preparation of compound 1 in embodiment 1, difference is to replace raw material B1 with raw material E4;
Elemental analysis structure (molecular formula C70H57N3): theoretical value C, 89.42;H,6.11;N,4.47;Test value: C, 89.43;H,6.12;N,4.45.
HPLC-MS: material molecule amount 940.22 surveys molecular weight 940.69.
Embodiment 13: the synthesis of compound 72:
Synthetic route:
By the synthetic method preparation of compound 1 in embodiment 1, difference is to replace raw material B1 with raw material E5;
Elemental analysis structure (molecular formula C64H49N3): theoretical value C, 89.37;H,5.74;N,4.89;Test value: C, 89.35;H,5.75;N,4.90.
HPLC-MS: material molecule amount 860.09 surveys molecular weight 860.51.
The compounds of this invention uses in luminescent device, can be used as hole transport/electronic blocking layer material, can also make For luminescent layer Subjective and Objective materials'use.The compounds of this invention is in application with high operability and practicability, major embodiment For with high glass transition temperature, low sublimation temperature, high decomposition temperature and film forming stability.
Hot property is carried out respectively to the compounds of this invention 17, compound 44, compound 60 and current material CBP, shine light The test of spectrum, HOMO energy level, testing result are as shown in table 1.
Table 1
Note: glass transition temperature Tg is by differential scanning calorimetry (DSC, German Nai Chi company DSC204F1 differential scanning calorimetry Instrument) measurement, 10 DEG C/min of heating rate;It is using SUNIC evaporated device, vacuum degree < 1E-5Pa, material rate that temperature, which is deposited, ForWhen vapor deposition temperature;Thermal weight loss temperature Td is the temperature of the weightlessness 1% in nitrogen atmosphere, in Japanese Shimadzu Corporation It is measured on TGA-50H thermogravimetric analyzer, nitrogen flow 20mL/min;Film forming stability refers to, utilizes SUNIC evaporator Platform, material be deposited on glass substrate at 100nm thickness thin film, the envelope in glove box environment (the equal < 1PPm of water oxygen content) Dress, glass sample (humidity 80%, 80 DEG C of temperature) under the conditions of double 80 places test 240 hours after encapsulation, with micro- sem observation The crystal property of sample film;Highest occupied molecular orbital HOMO energy level and minimum occupied molecular orbital lumo energy are by photoelectron Emit spectrometer (AC-2 type PESA) test, tests as atmospheric environment.
By upper table data it is found that the compounds of this invention has adjustable HOMO energy level, it is suitable as different function layer material It uses;Low vapor deposition temperature can make material in industrial application, reduce heat radiation to vapor deposition board in Fine-mask influence of crust deformation, OLED device PPI grade is improved, producing line yield is improved;High film forming stability energy can guarantee that material is being applied to OLED device In use process after part, film morphology is kept, is not formed local-crystalized, causes device electrode short-circuit, improving OLED device makes Use the service life.
In the devices below by way of device embodiments 1~10 and comparative example 1 OLED material that the present invention will be described in detail synthesizes Application effect.The production work of device embodiments 2~10 of the present invention, the device compared with device embodiments 1 of comparative example 1 Skill is identical, and uses identical baseplate material and electrode material, and the film thickness of electrode material is also consistent, and institute is not Same is replaced to the material of main part or hole transport/electronic barrier layer of the luminescent layer 5 in device.Device obtained by each embodiment The performance test results of part are as shown in table 2.
Device embodiments 1
A kind of electroluminescent device, preparation step include:
A) the ito anode layer 2 on transparent substrate layer 1 is cleaned, cleans each 15 with deionized water, acetone, EtOH Sonicate respectively Minute, then handled 2 minutes in plasma cleaner;
B) on ito anode layer 2, hole injection layer material HAT-CN is deposited by vacuum evaporation mode, with a thickness of 10nm, This layer is as hole injection layer 3;
C) on hole injection layer 3, hole mobile material NPB is deposited by vacuum evaporation mode, with a thickness of 80nm, the layer For hole transmission layer/electronic barrier layer 4;
D) luminescent layer 5 is deposited on hole transport/electronic barrier layer 4, uses the compounds of this invention 1 as main body Material, Ir (ppy)3As dopant material, material doped mass ratio is 10%, with a thickness of 30nm;
E) on luminescent layer 5, electron transport material TPBI is deposited by vacuum evaporation mode, with a thickness of 40nm, this layer Organic material is used as hole barrier/electron transfer layer 6;
F) on hole barrier/electron transfer layer 6, vacuum evaporation electron injecting layer LiF, with a thickness of 1nm, which is electricity Sub- implanted layer 7;
G) on electron injecting layer 7, Mg:Ag/Ag layers of vacuum evaporation cathode, Mg:Ag doping ratio is 9:1, thickness 15nm, Ag thickness 3nm, the layer are cathode reflection electrode layer 8;
After the production for completing electroluminescent device according to above-mentioned steps, the current efficiency of measurement device and service life, result It is shown in Table 2.
The molecular machinery formula of associated materials is as follows:
Device embodiments 2
The present embodiment and device embodiments 1 the difference is that: the luminescent layer material of main part of electroluminescent device becomes The compounds of this invention 13, dopant material are Ir (ppy)3, doping mass ratio is 10%, the detection data of gained electroluminescent device It is shown in Table 2.
Device embodiments 3
The present embodiment and device embodiments 1 the difference is that: the luminescent layer material of main part of electroluminescent device becomes The compounds of this invention 17, dopant material are Ir (ppy)3, doping mass ratio is 10%, the detection data of gained electroluminescent device It is shown in Table 2.
Device embodiments 4
The present embodiment and device embodiments 1 the difference is that: hole transport/electronic barrier layer of electroluminescent device 4 material becomes the compounds of this invention 35, and the material of main part of luminescent layer 5 is known compound CBP, dopant material Ir (ppy)3, doping mass ratio is 10%, and the detection data of gained electroluminescent device is shown in Table 2.
Device embodiments 5
The present embodiment and device embodiments 1 the difference is that: hole transport/electronic barrier layer of electroluminescent device 4 material becomes the compounds of this invention 44, and the material of main part of luminescent layer 5 is known compound CBP, dopant material Ir (ppy)3, doping mass ratio is 10%, and the detection data of gained electroluminescent device is shown in Table 2.
Device embodiments 6
The present embodiment and device embodiments 1 the difference is that: hole transport/electronic barrier layer of electroluminescent device 4 material becomes the compounds of this invention 48, and the material of main part of luminescent layer 5 is known compound CBP, dopant material Ir (ppy)3, doping mass ratio is 10%, and the detection data of gained electroluminescent device is shown in Table 2.
Device embodiments 7
The present embodiment and device embodiments 1 the difference is that: hole transport/electronic barrier layer of electroluminescent device 4 material becomes the compounds of this invention 60, and the material of main part of luminescent layer 5 is known compound CBP, dopant material Ir (ppy)3, doping mass ratio is 10%, and the detection data of gained electroluminescent device is shown in Table 2.
Device embodiments 8
The present embodiment and device embodiments 1 the difference is that: hole transport/electronic barrier layer of electroluminescent device 4 material becomes the compounds of this invention 65, and the material of main part of luminescent layer 5 is known compound CBP, dopant material Ir (ppy)3, doping mass ratio is 10%, and the detection data of gained electroluminescent device is shown in Table 2.
Device embodiments 9
The present embodiment and device embodiments 1 the difference is that: the luminescent layer material of main part of electroluminescent device becomes The compounds of this invention 61 and compound GHN, dopant material are Ir (ppy)3, the blending mass ratio of three kinds of materials is 60:30:10, The detection data of gained electroluminescent device is shown in Table 2.
Device embodiments 10
The present embodiment and device embodiments 1 the difference is that: the luminescent layer material of main part of electroluminescent device becomes The compounds of this invention 69 and compound GHN, dopant material are Ir (ppy)3, the blending mass ratio of three kinds of materials is 60:30:10, The detection data of gained electroluminescent device is shown in Table 2.
Device comparative example 1
The present embodiment and device embodiments 1 the difference is that: the luminescent layer material of main part of electroluminescent device becomes The detection data of known compound CBP, gained electroluminescent device are shown in Table 2.
Table 2
Note: for device detection performance using device comparative example 1 as reference, 1 device performance indexes of comparative example is set as 1.0. The current efficiency of comparative example 1 is 28cd/A (@10mA/cm2);CIE chromaticity coordinates is (0.33,0.63);The LT95 longevity under 5000 brightness Life decays to 2.5Hr.
It can be seen that the machine compound of the present invention containing dimethylanthracene structure can be applied to OLED hair by the result of table 2 Optical device production, and compared with comparative example, either efficiency or service life obtain larger change than known OLED material, special It is not the biggish promotion of life time decay acquisition of device.
To sum up, the foregoing is merely presently preferred embodiments of the present invention, is not intended to limit the invention, all in essence of the invention Within mind and principle, any modification, equivalent replacement, improvement and so on be should all be included in the protection scope of the present invention.

Claims (5)

1. a kind of organic compound containing dimethylanthracene, it is characterised in that the general structure of the compound such as general formula (1) institute Show:
Wherein, Ar1、Ar2Independently be expressed as phenyl, xenyl or naphthalene;
R1It is expressed as hydrogen atom, R2It is expressed as structure shown in general formula (2) or general formula (3);
Wherein, R3It is expressed as structure shown in hydrogen atom, general formula (4) or general formula (5);
In general formula (4), a is selected fromX1、X2、X3Independently be expressed as oxygen atom, sulphur One of the tertiary amine groups that atom, methyl substituted methylene, phenyl replace;
Structure shown in general formula (4), general formula (5) passes through CL1-CL2Key, CL2-CL3Key or CL3-CL4Key is connected with general formula (2);
R4、R5Independently be expressed as C1-10Linear or branched alkyl group, phenyl, naphthalene, xenyl, general formula (6), general formula (7), Structure shown in general formula (8) or general formula (9);R5It is also denoted as hydrogen atom or halogen atom;
Wherein,
X is one of oxygen atom, sulphur atom, methyl substituted methylene, the tertiary amine groups of phenyl substitution;
R7、R8Independently be expressed as phenyl, naphthalene, dibiphenylyl, terphenyl, dibenzofurans, dibenzothiophenes or 9,9- dimethyl fluorene or carbazole.
2. organic compound according to claim 1, it is characterised in that the R2It indicates are as follows:
In any one.
3. organic compound according to claim 1, it is characterised in that the organic compound containing dimethylanthracene Concrete structure formula are as follows:
In any one.
4. a kind of method for preparing organic compound described in claim 1, it is characterised in that the reaction side occurred in preparation process Formula is:
R1When being expressed as hydrogen atom,
Specific preparation process are as follows:
Weigh dimethylanthracene bromo-derivative and H-R2, dissolved with toluene;Add Pd2(dba)3, tri-tert-butylphosphine, sodium tert-butoxide;? Under inert atmosphere, by the mixed solution of above-mentioned reactant in 95~110 DEG C of reaction temperature, react 10~24 hours, cooling and mistake Reaction solution is filtered, filtrate revolving crosses silicagel column, obtains target product;
The dimethylanthracene bromo-derivative and H-R2Molar ratio be respectively 1:1.2~3.0, Pd2(dba)3With dimethylanthracene bromo-derivative Molar ratio be 0.006~0.02:1, the molar ratio of tri-tert-butylphosphine and dimethylanthracene bromo-derivative is 0.006~0.02:1, uncle The molar ratio of sodium butoxide and dimethylanthracene bromo-derivative is 2.0~5.0:1.
5. a kind of organic electroluminescence device, which is characterized in that the organic electroluminescence device includes at least one layer of functional layer Contain the organic compound according to any one of claims 1 to 3 containing dimethylanthracene.
CN201610738755.0A 2016-08-26 2016-08-26 It is a kind of using dimethylanthracene as the organic compound of core and its application Active CN106467543B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610738755.0A CN106467543B (en) 2016-08-26 2016-08-26 It is a kind of using dimethylanthracene as the organic compound of core and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610738755.0A CN106467543B (en) 2016-08-26 2016-08-26 It is a kind of using dimethylanthracene as the organic compound of core and its application

Publications (2)

Publication Number Publication Date
CN106467543A CN106467543A (en) 2017-03-01
CN106467543B true CN106467543B (en) 2019-02-22

Family

ID=58230040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610738755.0A Active CN106467543B (en) 2016-08-26 2016-08-26 It is a kind of using dimethylanthracene as the organic compound of core and its application

Country Status (1)

Country Link
CN (1) CN106467543B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513034B (en) * 2017-09-29 2020-11-03 中节能万润股份有限公司 Dimethyl anthracene organic compound and application thereof
CN107686487B (en) * 2017-09-29 2020-12-11 中节能万润股份有限公司 Dimethyl anthracene organic compound and application thereof in organic electroluminescent device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693105A (en) * 2013-12-05 2015-06-10 乐金显示有限公司 Organic compound and organic light emitting diode using the same
CN105837498A (en) * 2016-04-25 2016-08-10 中节能万润股份有限公司 Organic compound containing dimethylanthracene structure and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305046B2 (en) * 2003-05-14 2009-07-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693105A (en) * 2013-12-05 2015-06-10 乐金显示有限公司 Organic compound and organic light emitting diode using the same
CN105837498A (en) * 2016-04-25 2016-08-10 中节能万润股份有限公司 Organic compound containing dimethylanthracene structure and application thereof

Also Published As

Publication number Publication date
CN106467543A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
CN106478611B (en) It is a kind of using xanthene as the organic compound of core and its application
CN106467526B (en) A kind of organic compound containing xanthene and its application
CN106478610B (en) A kind of organic compound containing xanthene and its application in OLED device
CN106467542B (en) It is a kind of using anthrone as the compound of core and its application
CN106220619B (en) A kind of organic compound containing xanthene structure and its application
CN107586261B (en) Organic compound containing spiro dibenzosuberene fluorene and application thereof
CN110317184A (en) A kind of compound based on double dimethyl fluorenes, preparation method and applications
CN106467523B (en) A kind of organic aromatic compound and its application
CN106467486B (en) Organic compound containing dimethylanthracene and application thereof
CN105837498B (en) Organic compound containing dimethylanthracene structure and application thereof
CN112375053B (en) Compound and organic electroluminescent device
CN106543205B (en) A kind of compound containing benzimidazole and its application on OLED
CN107057681A (en) A kind of photoelectric material containing xanthene structure and its application in OLED fields
CN109956962A (en) It is a kind of fluorene structured for the compound of parent nucleus and its application on organic electroluminescence device with azaspiro
CN107056809B (en) It a kind of organic compound containing dimethylanthracene and its is applied on organic electroluminescence device
CN107056737B (en) Photoelectric material containing dimethyl anthracene structure and application thereof
CN107602397B (en) Compound with dibenzosuberene as core and application thereof
CN107056763A (en) A kind of electroluminescent organic material and its application using xanthene as core
CN110577488A (en) Compound with carbazole as core and application thereof in organic electroluminescent device
CN110835351A (en) Organic compound with pyrromethene boron complex as core and preparation and application thereof
CN106543071B (en) Compound with dibenzoheptenone as core and application of compound in OLED
CN110642732B (en) Organic compound containing spirofluorene anthrone structure and application thereof
CN110577523B (en) Compound containing triarylamine structure and organic electroluminescent device prepared from compound
CN109796450B (en) Compound with pyridoindole as core and application thereof in electroluminescent device
CN106467543B (en) It is a kind of using dimethylanthracene as the organic compound of core and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200212

Address after: 264006 No. 11 Wuzhishan Road, Yantai economic and Technological Development Zone, Shandong

Patentee after: VALIANT Co.,Ltd.

Address before: 214112 No. 210, Xinzhou Road, New District, Jiangsu, Wuxi

Patentee before: JIANGSU SUNERA TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211130

Address after: 214112 No.210 Xinzhou Road, Wuxi City, Jiangsu Province

Patentee after: Jiangsu March Technology Co., Ltd

Address before: 264006 No. 11 Wuzhishan Road, Yantai economic and Technological Development Zone, Shandong

Patentee before: VALIANT Co.,Ltd.