CN106451537A - 基于卡尔曼滤波算法的微型逆变器同步并网方法 - Google Patents

基于卡尔曼滤波算法的微型逆变器同步并网方法 Download PDF

Info

Publication number
CN106451537A
CN106451537A CN201610879157.5A CN201610879157A CN106451537A CN 106451537 A CN106451537 A CN 106451537A CN 201610879157 A CN201610879157 A CN 201610879157A CN 106451537 A CN106451537 A CN 106451537A
Authority
CN
China
Prior art keywords
difference
phase
voltage
grid
miniature inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610879157.5A
Other languages
English (en)
Other versions
CN106451537B (zh
Inventor
郑成强
李前进
王钦
王建平
张道远
徐晓冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU TONGLIN ELECTRIC CO Ltd
Hefei University of Technology
Original Assignee
JIANGSU TONGLIN ELECTRIC CO Ltd
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU TONGLIN ELECTRIC CO Ltd, Hefei University of Technology filed Critical JIANGSU TONGLIN ELECTRIC CO Ltd
Priority to CN201610879157.5A priority Critical patent/CN106451537B/zh
Publication of CN106451537A publication Critical patent/CN106451537A/zh
Application granted granted Critical
Publication of CN106451537B publication Critical patent/CN106451537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种用于微型逆变器同步并网方法,包括实时检测并网点的电网侧的三相电压和微型逆变器侧的三相电压;检测的电压通过LC滤波和信号调节器处理后,得到对称的电网三相电压和对称的微型逆变器三相电压;通过DQ坐标变换计算对称的三相电压在D轴上分量和Q轴上分量;计算电网与微型逆变器之间的电压差、相位差和频率差;通过卡尔曼滤波算法预测下一时刻的电压差、相位差和频率差,并判断是否满足并网的要求,若满足则微型逆变器并网运行,否则通过柴油机调节并重复以上步骤,直到并网。本发明可在微型逆变器的并网中实现快速、平滑的并网,且能够很好的抑制谐波干扰。

Description

基于卡尔曼滤波算法的微型逆变器同步并网方法
技术领域
本发明涉及电气工程领域的光伏发电技术,尤其涉及一种基于卡尔曼滤波算法的微型逆变器同步并网方法。
背景技术
太阳能作为一种可再生清洁能源,已经成为人类研究和利用的热点。微型逆变器能够很好地利用可再生能源太阳能,把太阳能转为电能,能源利用率高,环境污染小。通常为了高效的利用太阳能,可以把微型逆变器与大电网并网运行,当大电网出现故障时,微型逆变器需要断开联系,转为孤岛运行,而当大电网故障解除,恢复正常运行后,微型逆变器则需重新同步并网。因此,在微型逆变器与大电网同步并网过程中,如何协调微型逆变器的控制以及如何实现快速平滑的并网控制非常关键。
传统技术上,微型逆变器并网采用PI的控制方法进行并网电流的控制,这容易造成并网电流中具有较高的谐波含量,也造成对电网的谐波污染,抗干扰能力差。
刘卫亮等人在《反激式光伏微型逆变器并网电流逆控制方法》(太阳能学报,2016,Vol,37(7):1780-2787,)中提出一种支持向量机(SVM)的逆控制并网方法,虽然此方法有效的降低了并网电流的谐波含量,但是支持向量机(SVM)是一种机器学习方法,需要对小样本的数据进行学习,才能很好的得出控制方法,因此这就使得并网的时间较长,无法实现快速并网的要求。
张丽等人在《包含同步发电机及电压源逆变器接口的微电网控制策略》(电网技术,2011,(3):170-176)一文中研究了含同步发电机及电压源逆变器接口的微型逆变器控制策略,采用了无联络线的下垂控制方式,可实现微型逆变器从联网模式到孤岛模式的平滑转换,并配置电力系统稳定器以提高稳定性,但文中没有考虑微型逆变器从孤岛到并网的运行模式变化时间,导致断路器延时较长,而且由于高精度自适应控制器的使用,导致微型逆变器整体控制结构较为复杂,实现较困难。
发明内容
本发明主要针对上面所述的一些问题,提供一种基于卡尔曼滤波算法的微型逆变器同步并网方法,能够减少并网谐波,又能够减少并网时间,实现快速,平滑的并网。
为解决本发明的技术问题,本发明所采用了如下技术方案:
一种基于卡尔曼滤波算法的微型逆变器同步并网方法,包括检测并网点两侧的电网三相电压和微型逆变器三相电压,主要步骤如下:
步骤1,先检测得到并网点的电网侧输出的三相电压UA,UB,UC和并网点的微型逆变器侧输出的三相电压Ua,Ub,Uc,再通过LC滤波器分别对UA,UB,UC和Ua,Ub,Uc进行滤波,得到滤波后的电网侧输出的三相电压U'A,U'B,U'C和滤波后的微型逆变器侧输出的三相电压U'a,Ub',U'c
步骤2,对步骤1中得到的滤波后的电网侧输出的三相电压U'A,U'B,U'C和滤波后的微型逆变器侧输出的三相电压U'a,Ub',U'c通过信号调节器进行调节,求出两个虚拟的三相对称电压来代替原电网侧输出的三相电压UA,UB,UC和原微型逆变器侧输出的三相电压Ua,Ub,Uc
步骤2.1,按照下式计算电网电压的正序相量U1和微型逆变器电压的正序相量U2
其中,a=1∠120°=ej(2/3)π
步骤2.2,根据电网电压的正序相量U1和微型逆变器电压的正序相量U2的幅值和相位,分别按照下式计算出虚拟的电网对称三相电压VA,VB,VC和虚拟的微型逆变器三相对称电压Va,Vb,Vc
[VA VB VC]=[1 a a2]TU1
[Va Vb Vc]=[1 a a2]TU2
步骤2.3,用虚拟的电网三相对称电压VA,VB,VC来代替原电网侧输出的三相电压UA,UB,UC,用虚拟的微型逆变器三相对称电压Va,Vb,Vc来代替原微型逆变器三相电压Ua,Ub,Uc
步骤3,先利用DQ坐标变换把虚拟的电网三相对称电压VA,VB,VC转变为电网侧D轴电压分量VD和Q轴电压分量VQ,把虚拟的微型逆变器三相对称电压Va,Vb,Vc转变为微型逆变器侧的D轴电压分量Vd和Q轴电压分量Vq,然后利用下式分别计算电网侧与微型逆变器侧的电压差△V,相位差△θ和频率差△f:
其中,t是时间,θ是相位;
步骤4,根据步骤3所得到的幅值差△V、相位差△θ和频率差△f,已知k-1时刻的幅值差△Vk-1、相位差△θk-1和频率差△fk-1,分别通过卡尔曼滤波算法预测k时刻的幅值差△Vk、相位差△θk和频率差△fk
步骤4.1,通过卡尔曼滤波算法预测的过程如下:
建立卡尔曼滤波算法的状态方程和测量方程:
xk+1=Axk+Γλk
vk=Cxkk
其中,
A为状态矩阵,T为采样时间;
Γ为误差系数矩阵,
C为测量矩阵,C=[1 0];
为二维状态向量,其中Dik为k时刻的幅值差△Vk、相位差△θk和频率差△fk中的任意一个,为Dik的一阶导数;
λk为系统噪声,是一个高斯白噪声序列,协方差矩阵为Qk
vk为一维测量向量;
μk为k时刻的测量误差,为零均值高斯噪声,协方差矩阵为Rk
按照下式得出测量噪声的协方差在k时刻的预测值Pk,k-1
Pk,k-1=APk-1,k-1AT+ΓQkΓT
其中,Pk-1,k-1是k-1时刻的估计误差协方差矩阵;
按照下式计算k时刻的卡尔曼增益Gk
Gk=Pk,k-1CT(CPk,k-1CT+Rk)-1
其中,Pk,k为k时刻的估计误差协方差矩阵;
按照下式计算估计误差协方差矩阵:
Pk,k=(I-GkC)Pk,k-1
其中,I为单位阵;
k时刻的状态预测值的计算式如下:
其中,是k时刻的幅值差△Vk、相位差△θk和频率差△fk的任意一个,是k-1时刻的幅值差△Vk-1、相位差△θk-1和频率差△fk-1的任意一个,且在计算式中代表同一个参数;
4.2,将k-1时刻幅值差△Vk-1,相位差△θk-1和频率差△fk-1分别代入步骤4.1所得到的状态预测值的计算式,预测得到k时刻的幅值差△Vk、相位差△θk和频率差△fk
步骤5,判断根据步骤4中卡尔曼滤波算法预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk是否满足并网要求,满足时则转入步骤6,否则转入步骤7;
步骤6,卡尔曼滤波算法预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk满足并网要求,电网与微型逆变器之间的转换开关闭合,微型逆变器与电网并网运行;
步骤7,把步骤4中所预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk发送给柴油机进行调节,并重复步骤1至步骤5。
与现有技术相比,本发明公开的基于卡尔曼滤波算法的微型逆变器同步并网方法,其有效益处体现在:
1、只需检测电网和微型逆变器的输出电压,不需要检测电流,不存在电流谐波的问题,提高抗谐波干扰能力和电能质量。
2、采用卡尔曼滤波算法预测并网,减少了并网的时间,实现快速并网。
附图说明
图1为本发明的同步并网方法流程图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整的描述。
本发明的提供了一种基于卡尔曼滤波算法的微型逆变器同步并网方法,以解决现有技术中的并网电流谐波含量高、并网时间慢和抗干扰能力差的问题。
本发明的总体流程图如图1所示。包括以下步骤:
步骤1,先通过检测得到并网点的电网侧输出的三相电压UA,UB,UC和并网点的微型逆变器侧输出的三相电压Ua,Ub,Uc,再通过LC滤波器分别对UA,UB,UC和Ua,Ub,Uc进行滤波,得到滤波后的电网侧输出的三相电压U'A,U'B,U'C和滤波后的微型逆变器侧输出的三相电压U'a,Ub',U'c
步骤2,对步骤1中得到的滤波后的电网侧输出的三相电压U'A,U'B,U'C和滤波后的微型逆变器侧输出的三相电压U'a,Ub',U'c通过信号调节器进行调节,求出两个虚拟的三相对称电压来代替原电网侧输出的三相电压UA,UB,UC和原微型逆变器侧输出的三相电压Ua,Ub,Uc
步骤2.1,按照下式计算电网电压的正序相量U1和微型逆变器电压的正序相量U2
其中,a=1∠120°=ej(2/3)π
步骤2.2,根据电网电压的正序相量U1和微型逆变器电压的正序相量U2的幅值和相位,分别按照下式计算出虚拟的电网对称三相电压VA,VB,VC和虚拟的微型逆变器三相对称电压Va,Vb,Vc
[VA VB VC]=[1 a a2]TU1
[Va Vb Vc]=[1 a a2]TU2
步骤2.3,用虚拟的电网三相对称电压VA,VB,VC来代替原电网侧输出的三相电压UA,UB,UC,用虚拟的微型逆变器三相对称电压Va,Vb,Vc来代替原微型逆变器三相电压Ua,Ub,Uc
步骤3,先利用DQ坐标变换把虚拟的电网三相对称电压VA,VB,VC转变为电网侧D轴电压分量VD和Q轴电压分量VQ,把虚拟的微型逆变器三相对称电压Va,Vb,Vc转变为微型逆变器侧的D轴电压分量Vd和Q轴电压分量Vq,然后利用下式分别计算电网侧与微型逆变器侧的电压差△V,相位差△θ和频率差△f:
其中,t是时间,θ是相位。
步骤4,根据步骤3所得到的幅值差△V、相位差△θ和频率差△f,已知k-1时刻的幅值差△Vk-1、相位差△θk-1和频率差△fk-1,分别通过卡尔曼滤波算法预测k时刻的幅值差△Vk、相位差△θk和频率差△fk
步骤4.1,通过卡尔曼滤波算法预测的过程如下:
建立卡尔曼滤波算法的状态方程和测量方程
xk+1=Axk+Γλk
vk=Cxkk
其中,
A为状态矩阵,T为采样时间;
Γ为误差系数矩阵,
C为测量矩阵,C=[1 0];
为二维状态向量,其中Dik为k时刻的幅值差△Vk、相位差△θk和频率差△fk中的任意一个,为Dik的一阶导数;
λk为系统噪声,是一个高斯白噪声序列,协方差矩阵为Qk
vk为一维测量向量;
μk为k时刻的测量误差,为零均值高斯噪声,协方差矩阵为Rk
按照下式得出测量噪声的协方差在k时刻的预测值Pk,k-1
Pk,k-1=APk-1,k-1AT+ΓQkΓT
其中,Pk-1,k-1是k-1时刻的估计误差协方差矩阵;
按照下式计算k时刻的卡尔曼增益Gk
Gk=Pk,k-1CT(CPk,k-1CT+Rk)-1
其中,Pk,k为k时刻的估计误差协方差矩阵;
按照下式计算估计误差协方差矩阵更新:
Pk,k=(I-GkC)Pk,k-1
其中,I为单位阵;
k时刻的状态预测值的计算式如下:
其中,是k时刻的幅值差△Vk、相位差△θk和频率差△fk的任意一个,是k-1时刻的幅值差△Vk-1、相位差△θk-1和频率差△fk-1的任意一个,且在计算式中代表同一个参数。
4.2,将k-1时刻幅值差△Vk-1,相位差△θk-1和频率差△fk-1分别代入步骤4.1所得到的状态预测值的计算式,预测得到k时刻的幅值差△Vk、相位差△θk和频率差△fk
步骤5,判断步骤4中卡尔曼滤波算法预测k时刻的幅值差△Vk、相位差△θk和频率差△fk是否满足并网要求?
并网要求如下表所示:
且只有在频率差、幅值差和相位差同时满足的情况下,才算满足并网要求满足时并转入步骤6,否则转入步骤7。
步骤6,卡尔曼滤波算法预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk满足并网要求,电网与微型逆变器之间的转换开关闭合,微型逆变器与电网并网运行。转化开关是连接在电网和微型逆变器两端的,当满足并网的要求是,转化开关就会收到触发信号而闭合,使得微型逆变器并网运行。
步骤7,把步骤4中所预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk发送给柴油机进行调节,并重复步骤1至步骤5。本发明中柴油机能够对接收到的幅值差、相位差和频率差进行分析,并调节微型逆变器的电压,协调控制微型逆变器的运行状态,使之尽快达到并网要求。

Claims (1)

1.一种基于卡尔曼滤波算法的微型逆变器同步并网方法,包括检测并网点两侧的电网三相电压和微型逆变器三相电压,其特征在于,主要步骤如下:
步骤1,先检测得到并网点的电网侧输出的三相电压UA,UB,UC和并网点的微型逆变器侧输出的三相电压Ua,Ub,Uc,再通过LC滤波器分别对UA,UB,UC和Ua,Ub,Uc进行滤波,得到滤波后的电网侧输出的三相电压U'A,U'B,U'C和滤波后的微型逆变器侧输出的三相电压U'a,U′b,U'c
步骤2,对步骤1中得到的滤波后的电网侧输出的三相电压U'A,U'B,U'C和滤波后的微型逆变器侧输出的三相电压U'a,U′b,U'c通过信号调节器进行调节,求出两个虚拟的三相对称电压来代替原电网侧输出的三相电压UA,UB,UC和原微型逆变器侧输出的三相电压Ua,Ub,Uc
步骤2.1,按照下式计算电网电压的正序相量U1和微型逆变器电压的正序相量U2
U 1 = 1 3 ( U A ′ + aU B ′ + a 2 U C ′ )
U 2 = 1 3 ( U a ′ + aU b ′ + a 2 U c ′ )
其中,a=1∠120°=ej(2/3)π
步骤2.2,根据电网电压的正序相量U1和微型逆变器电压的正序相量U2的幅值和相位,分别按照下式计算出虚拟的电网对称三相电压VA,VB,VC和虚拟的微型逆变器三相对称电压Va,Vb,Vc
[VA VB VC]=[1 a a2]TU1
[Va Vb Vc]=[1 a a2]TU2
步骤2.3,用虚拟的电网三相对称电压VA,VB,VC来代替原电网侧输出的三相电压UA,UB,UC,用虚拟的微型逆变器三相对称电压Va,Vb,Vc来代替原微型逆变器三相电压Ua,Ub,Uc
步骤3,先利用DQ坐标变换把虚拟的电网三相对称电压VA,VB,VC转变为电网侧D轴电压分量VD和Q轴电压分量VQ,把虚拟的微型逆变器三相对称电压Va,Vb,Vc转变为微型逆变器侧的D轴电压分量Vd和Q轴电压分量Vq,然后利用下式分别计算电网侧与微型逆变器侧的电压差△V,相位差△θ和频率差△f:
Δ V = V D 2 + V Q 2 - V d 2 + V q 2
Δ θ = tan - 1 V D V Q - tan - 1 V d V q
Δ f = 1 2 ∂ θ ∂ t
其中,t是时间,θ是相位;
步骤4,根据步骤3所得到的幅值差△V、相位差△θ和频率差△f,已知k-1时刻的幅值差△Vk-1、相位差△θk-1和频率差△fk-1,分别通过卡尔曼滤波算法预测k时刻的幅值差△Vk、相位差△θk和频率差△fk
步骤4.1,通过卡尔曼滤波算法预测的过程如下:
建立卡尔曼滤波算法的状态方程和测量方程:
xk+1=Axk+Γλk
vk=Cxkk
其中,
A为状态矩阵,T为采样时间;
Γ为误差系数矩阵,
C为测量矩阵,C=[1 0];
为二维状态向量,其中Dik为k时刻的幅值差△Vk、相位差△θk和频率差△fk中的任意一个,为Dik的一阶导数;
λk为系统噪声,是一个高斯白噪声序列,协方差矩阵为Qk
vk为一维测量向量;
μk为k时刻的测量误差,为零均值高斯噪声,协方差矩阵为Rk
按照下式得出测量噪声的协方差在k时刻的预测值Pk,k-1
Pk,k-1=APk-1,k-1AT+ΓQkΓT
其中,Pk-1,k-1是k-1时刻的估计误差协方差矩阵;
按照下式计算k时刻的卡尔曼增益Gk
Gk=Pk,k-1CT(CPk,k-1CT+Rk)-1
其中,Pk,k为k时刻的估计误差协方差矩阵;
按照下式计算估计误差协方差矩阵:
Pk,k=(I-GkC)Pk,k-1
其中,I为单位阵;
k时刻的状态预测值的计算式如下:
x ^ k | k = A x ^ k - 1 | k - 1 + G k ( v k - C A x ^ k - 1 | k - 1 )
其中,是k时刻的幅值差△Vk、相位差△θk和频率差△fk的任意一个,是k-1时刻的幅值差△Vk-1、相位差△θk-1和频率差△fk-1的任意一个,且在计算式中代表同一个参数;
4.2,将k-1时刻幅值差△Vk-1,相位差△θk-1和频率差△fk-1分别代入步骤4.1所得到的状态预测值的计算式,预测得到k时刻的幅值差△Vk、相位差△θk和频率差△fk
步骤5,判断根据步骤4中卡尔曼滤波算法预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk是否满足并网要求,满足时则转入步骤6,否则转入步骤7;
步骤6,卡尔曼滤波算法预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk满足并网要求,电网与微型逆变器之间的转换开关闭合,微型逆变器与电网并网运行;
步骤7,把步骤4中所预测得到的k时刻的幅值差△Vk、相位差△θk和频率差△fk发送给柴油机进行调节,并重复步骤1至步骤5。
CN201610879157.5A 2016-10-08 2016-10-08 基于卡尔曼滤波算法的微型逆变器同步并网方法 Active CN106451537B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610879157.5A CN106451537B (zh) 2016-10-08 2016-10-08 基于卡尔曼滤波算法的微型逆变器同步并网方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610879157.5A CN106451537B (zh) 2016-10-08 2016-10-08 基于卡尔曼滤波算法的微型逆变器同步并网方法

Publications (2)

Publication Number Publication Date
CN106451537A true CN106451537A (zh) 2017-02-22
CN106451537B CN106451537B (zh) 2019-02-19

Family

ID=58172024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610879157.5A Active CN106451537B (zh) 2016-10-08 2016-10-08 基于卡尔曼滤波算法的微型逆变器同步并网方法

Country Status (1)

Country Link
CN (1) CN106451537B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039706A (zh) * 2017-12-19 2018-05-15 电子科技大学 一种有源电力滤波器抗饱和频率自适应谐振控制方法
CN109946599A (zh) * 2019-03-28 2019-06-28 爱士惟新能源技术(江苏)有限公司 光伏三相逆变器并网前继电器检测方法及装置、存储介质
CN110110461A (zh) * 2019-05-15 2019-08-09 福州大学 基于卡尔曼滤波算法的mmc中igbt参数估计方法
CN112368902A (zh) * 2018-06-29 2021-02-12 乌本产权有限公司 具有直流电压源和控制单元的逆变器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223100A (zh) * 2011-06-17 2011-10-19 北京中能清源科技有限公司 基于修正比例谐振调节器的三相并网逆变器控制方法
JP2012085482A (ja) * 2010-10-14 2012-04-26 Fuji Electric Co Ltd 分散型電源システム
CN104834339A (zh) * 2015-04-13 2015-08-12 国家电网公司 一种用于分布式电源并网逆变器保护的电压频率跟踪方法
CN105449709A (zh) * 2015-12-02 2016-03-30 上海电力学院 一种光伏发电系统并网控制方法
CN105680482A (zh) * 2016-04-13 2016-06-15 安徽工业大学 一种具有补偿不对称无功负载功能的光伏并网发电系统电流形成及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085482A (ja) * 2010-10-14 2012-04-26 Fuji Electric Co Ltd 分散型電源システム
CN102223100A (zh) * 2011-06-17 2011-10-19 北京中能清源科技有限公司 基于修正比例谐振调节器的三相并网逆变器控制方法
CN104834339A (zh) * 2015-04-13 2015-08-12 国家电网公司 一种用于分布式电源并网逆变器保护的电压频率跟踪方法
CN105449709A (zh) * 2015-12-02 2016-03-30 上海电力学院 一种光伏发电系统并网控制方法
CN105680482A (zh) * 2016-04-13 2016-06-15 安徽工业大学 一种具有补偿不对称无功负载功能的光伏并网发电系统电流形成及控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039706A (zh) * 2017-12-19 2018-05-15 电子科技大学 一种有源电力滤波器抗饱和频率自适应谐振控制方法
CN112368902A (zh) * 2018-06-29 2021-02-12 乌本产权有限公司 具有直流电压源和控制单元的逆变器
CN109946599A (zh) * 2019-03-28 2019-06-28 爱士惟新能源技术(江苏)有限公司 光伏三相逆变器并网前继电器检测方法及装置、存储介质
CN110110461A (zh) * 2019-05-15 2019-08-09 福州大学 基于卡尔曼滤波算法的mmc中igbt参数估计方法

Also Published As

Publication number Publication date
CN106451537B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN106451537A (zh) 基于卡尔曼滤波算法的微型逆变器同步并网方法
CN108683216B (zh) 非线性负载下并联逆变器谐波功率均分控制方法
CN105375804A (zh) 一种不对称电压下基于npc拓扑并网逆变器的模型预测电流控制方法
Youssef et al. Sensors fault diagnosis and fault tolerant control for grid connected PV system
CN103078311B (zh) 一种抑制换相失败的直流电流预测整定方法
CN103558436A (zh) 基于单相锁相环算法的检测电网电压幅值、频率和相角的方法
CN103595069A (zh) 不平衡电压下光伏发电系统网侧变换器模型预测控制方法
EP3223023B1 (en) Method and apparatus for estimating capacitance of dc link
CN102629768A (zh) 一种基于正负序分量分离的光伏逆变器并网电流控制方法
CN102931902B (zh) 死区补偿系统及方法
CN106787874A (zh) 清洁能源发电并网逆变器有限状态模型预测控制方法
CN104300812A (zh) 一种三相电压型pwm整流器直接功率自抗扰控制方法
CN102307004A (zh) 一种基于lcl滤波的可控整流器参数辨识方法
CN105762789B (zh) 一种无电压传感器的三相变流器模型预测控制方法
CN104113078A (zh) 光伏直驱系统及其控制方法
CN110460089A (zh) 一种基于多变量预测的lcl并网逆变器fcs-mpc控制方法
CN109245640A (zh) 一种异步电机模型预测控制方法及装置
CN105743367A (zh) 一种不平衡电网电压下pwm整流器无差拍控制方法
CN103986381B (zh) 海浪发电系统的微网构建最优化功率因数复合控制方法
KR101380380B1 (ko) 전력계통의 상태에 따른 적응형 위상추종 방법 및 시스템
EP2958227B1 (en) Apparatus for delay angle compensation of flying start function
CN102969716A (zh) 船舶电网有源滤波控制方法
Jain et al. Comparative Analysis of DSOGI-PLL& Adaptive Frequency Loop-PLL for Voltage and Frequency Control of PMSG-BESS based Hybrid Standalone WECS
KR101946308B1 (ko) 주파수검출 정확도 개선을 위한 단상 태양광발전 시스템의 위상동기화 방법
Chowdhury et al. Feedback linearization based direct power control of a three-phase grid-connected inverter with online parameter update

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant