CN106449863B - 光伏器件的处理方法 - Google Patents

光伏器件的处理方法 Download PDF

Info

Publication number
CN106449863B
CN106449863B CN201610634815.4A CN201610634815A CN106449863B CN 106449863 B CN106449863 B CN 106449863B CN 201610634815 A CN201610634815 A CN 201610634815A CN 106449863 B CN106449863 B CN 106449863B
Authority
CN
China
Prior art keywords
type doped
doped layer
processing method
light
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610634815.4A
Other languages
English (en)
Other versions
CN106449863A (zh
Inventor
金光耀
沈培俊
王懿喆
洪俊华
陈炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kingstone Semiconductor Co Ltd
Original Assignee
Kingstone Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kingstone Semiconductor Co Ltd filed Critical Kingstone Semiconductor Co Ltd
Publication of CN106449863A publication Critical patent/CN106449863A/zh
Application granted granted Critical
Publication of CN106449863B publication Critical patent/CN106449863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种光伏器件的处理方法,该光伏器件包括N型掺杂的硅衬底,该处理方法包括以下步骤:在该硅衬底中形成PN结构,其中该PN结构中包括P型掺杂层;在该P型掺杂层的表面形成钝化层;使光线透过该钝化层照射至该P型掺杂层上,该光线的波长为200nm‑3000nm,照射时间为10秒‑10小时。与现有认知完全不同的是,本发明对P型掺杂层施以特定波长的光线照射,光电转化效率不仅没有下降,反而有平均0.4%的提升,而且步骤简单,容易操作。

Description

光伏器件的处理方法
技术领域
本发明涉及一种处理方法,特别是涉及一种硅衬底的光伏器件的处理方法。
背景技术
太阳能电池效率的提高一直是光伏领域研发的重中之重。目前BCBJ(背接触背结)硅电池的产业化平均效率已经达到了22.4%。然而在实验中研究人员发现了一个降低光电转换效率的重要因素,即BCBJ硅电池在紫外线的影响下效率会大打折扣(参见Granek等人于2009年在汉堡第24界欧洲光伏能源会展上的会议论文Stability of Front SurfacePassivation of Back-Contact Back-Junction Silicon Solar Cells under UVIllumination)。
Granek等人通过实验发现,在没有前表面场的情况下,将BCBJ硅电池暴露于紫外光(特别是波长在400nm以下的紫外光)下会急剧增加表面复合,从而使得光电转换效率下降5.5%。为此,Granek等人提出在硅衬底表面形成磷扩散的前表面场,以此来减少紫外光对电池效率的影响。通过磷扩散在硅衬底表面形成前表面场后,再将BCBJ硅电池置于同样条件的紫外光下照射,电池效率并没有受到很大影响。
由此可见,对于硅电池而言,紫外光对其效率有着比较大的影响。即使形成磷扩散的前表面场,也只能从一定程度上消除紫外光对电池效率的恶劣影响,并不能使其完全不受紫外光的影响。
再者,太阳光光谱中包含了红外光、可见光和紫外光,太阳能电池在使用时必然将暴露于紫外光的照射下,如此一来如何避免效率的降低就显得更为刻不容缓。
发明内容
本发明要解决的技术问题是为了克服现有技术中不含前表面场的BCBJ硅电池在紫外光照射下效率急剧降低的缺陷,提供一种光伏器件的处理方法,通过在P型掺杂层的表面施以特定波长的光线来提高光伏器件的光电转换效率。
本发明是通过下述技术方案来解决上述技术问题的:
一种光伏器件的处理方法,其特点在于,该光伏器件包括N型掺杂的硅衬底,该处理方法包括以下步骤:
S1、在该硅衬底中形成PN结构,其中该PN结构中包括P型掺杂层;
S2、在该P型掺杂层的表面形成钝化层,并在该钝化层上形成与该P型掺杂层相连的栅状电极;
S3、使光线透过该钝化层照射至该P型掺杂层上,该光线的波长为200-3000nm,照射时间为10秒-10小时。
经过实验发现,通过使特定波长的光线照射至P型掺杂层上能够改善硅衬底光伏器件的光电转换效率,效率能够平均提高0.4%。
优选地,该P型掺杂层为硼掺杂层。
优选地,该PN结构通过以下步骤形成:通过离子注入的方式在该硅衬底的整个表面中形成P型掺杂层,该P型掺杂层和N型掺杂的硅衬底形成PN结构。
优选地,该PN结构通过以下步骤形成:通过热扩散的方式在该硅衬底的整个表面中形成P型掺杂层。
在该硅衬底的整个表面中形成P型掺杂层的情况中,PN结构的PN结的方向是硅衬底的法线方向,这种光伏器件可以为双面电池或者正负极分别位于硅衬底两个不同表面的单面受光电池。
优选地,该PN结构通过以下步骤形成:在该硅衬底中形成相互间隔的P型掺杂层和N型掺杂层。在这种情况下,PN结构的PN结的方向平行于硅衬底的所在平面,这种光伏器件为背接触电池。
也就是说,通过光照P型掺杂层的方式来提高光电转换效率的方案既适用于PN结垂直于硅衬底平面的电池(例如双面电池)又适用于PN结平行于硅衬底平面的电池(例如背接触电池)。
优选地,该P型掺杂层中P型元素的掺杂浓度大于该硅衬底的掺杂浓度。
优选地,该光线的波长为200nm-1000nm;更优选地,该光线的波长为200nm-500nm。
优选地,照射时间为10秒-30分钟。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:
与现有认知完全不同的是,本发明对P型掺杂层施以特定波长的光线照射,光电转化效率不仅没有下降,反而有平均0.4%的提升,少子寿命也有提升,开路电压平均提升3mV-5mV,而且步骤简单,容易操作。
附图说明
图1为本发明实施例1的工艺流程图。
图2为本发明实施例1的光伏器件的截面示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
参考图1和图2,在本实施例所述的光伏器件的处理方法中,该光伏器件包括N型掺杂的硅衬底,该处理方法包括以下步骤:
S1、在该硅衬底10中形成PN结构,其中该PN结构中包括P型掺杂层20;
S2、在该P型掺杂层20的表面形成钝化层30,并在该钝化层30上形成与该P型掺杂层相连的栅状电极40;
S3、使光线透过该钝化层照射至该P型掺杂层上(图2中以箭头表示光线的照射),该光线的波长为200-500nm,照射时间为5分钟。其中,该P型掺杂层中P型元素的掺杂浓度大于该硅衬底的掺杂浓度。
在本实施例中,该PN结构通过以下步骤形成:通过离子注入的方式在该硅衬底的整个表面中形成P型掺杂层,即本实施例中的光伏器件为PN结垂直于硅衬底平面的电池。之后使光照射至该P型掺杂层上,若光强比较强,则照射时间可以适当缩短,例如照射几分钟。若光强较弱,那么需要照射数小时。
实施例2
实施例2的基本原理与实施例1相同,不同之处仅在于:
该PN结构通过以下步骤形成:在该硅衬底中形成相互间隔的P型掺杂层和N型掺杂层。在这种情况下,PN结构的PN结的方向平行于硅衬底的所在平面,这种光伏器件为背接触电池。
由于P型掺杂层和N型掺杂层位于硅衬底的同一表面,那么光线在照射时既照射了P型掺杂层,也照射到N型掺杂层。但是只要P型掺杂层受到了特定波长光线的照射,电池的效率均能提高。
其余未提及之处参照实施例1。
效果实施例
1、电池效率测试
选用双面N型电池,先在未光照的情况下测试电池效率,接着分别测试光照1小时-4小时后电池效率和开压(开路电压),发现平均有0.4%的效率提升,开压也有显著提升(平均5mV),光照面为硼面,光源采用TRM-PD型人工太阳模拟发射器,光强为0.8sun(1sun的强度为1000W/m2),波长范围为280-3000nm,测试结果见表1,结果可重复,层压加热后效率提升依然可保持。
表1光照前后电池效率、开压对照表
2、少子寿命测试
为了进一步确定光照对电池的积极影响,采用完成掺杂的硅片进行测试,第一组测试包括以下内容:对完成镀膜的掺杂硅片测试少子寿命和开压;光照之后测试掺杂硅片的少子寿命和开压;接着金属化掺杂硅片,并在烧结电极之后测试少子寿命和开压。第二组测试包括:对完成镀膜的掺杂硅片测试少子寿命和开压;接着金属化掺杂硅片,并在烧结电极之后测试少子寿命和开压;光照之后测试烧结后的掺杂硅片的少子寿命和开压。
因为电极烧结之后少子寿命和开压会有所提升,因此通过在烧结前光照和烧结后光照的对比实验来验证光照是否对少子寿命和开压的提高有积极作用。光照时间2小时,模拟光源参数同电池效率测试的光源参数,测试结果见表2和表3,发现无论是后烧结还是先烧结,光照确实有助于提高少子寿命及开压。
先来看表2的数据,一共9片硅片,分别在掺杂完成并镀膜后、光照2小时后以及电极烧结后测试其少子寿命和开压,得到表2的数据,可以看出光照之后少子寿命和开压均得到了提高。
表2掺杂-光照-烧结流程的少子寿命和开压对照
因为烧结本身就有助于少子寿命和开压的提高,因此继续调节光照和烧结的顺序从而判断少子寿命和开压的提高究竟是哪道工序所带来的,来看表3的数据,一共12片硅片,在硅片掺杂完成并镀膜后,先测试少子寿命和开压;之后烧结电极,并测试少子寿命和开压;最后再光照2小时,并测试少子寿命和开压,得到表3的测试结果。
表3掺杂-烧结-光照流程的少子寿命和开压对照
可以看出,即使在烧结之后光照,少子寿命和开压依然有一定程度提高。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (9)

1.一种光伏器件的处理方法,其特征在于,该光伏器件包括N型掺杂的硅衬底,该处理方法包括以下步骤:
S1、在该硅衬底中形成PN结构,其中该PN结构中包括P型掺杂层;
S2、在该P型掺杂层的表面形成钝化层;
S3、使光线透过该钝化层照射至该P型掺杂层上,该光线的波长为280nm-3000nm,照射时间为1小时-4小时,光强800W/m2
2.如权利要求1所述的处理方法,其特征在于,步骤S2中形成钝化层之后在该钝化层上形成与该P型掺杂层相连的栅状电极。
3.如权利要求1所述的处理方法,其特征在于,该P型掺杂层为硼掺杂层。
4.如权利要求1所述的处理方法,其特征在于,该PN结构通过以下步骤形成:通过离子注入的方式在该硅衬底的整个表面中形成P型掺杂层。
5.如权利要求1所述的处理方法,其特征在于,该PN结构通过以下步骤形成:通过热扩散的方式在该硅衬底的整个表面中形成P型掺杂层。
6.如权利要求1所述的处理方法,其特征在于,该PN结构通过以下步骤形成:在该硅衬底中形成相互间隔的P型掺杂层和N型掺杂层。
7.如权利要求1-6中任意一项所述的处理方法,其特征在于,该P型掺杂层中P型元素的掺杂浓度大于该硅衬底的掺杂浓度。
8.如权利要求1-6中任意一项所述的处理方法,其特征在于,该光线的波长为280nm-1000nm。
9.如权利要求8所述的处理方法,其特征在于,该光线的波长为280nm-500nm。
CN201610634815.4A 2015-08-06 2016-08-04 光伏器件的处理方法 Active CN106449863B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510477491 2015-08-06
CN2015104774913 2015-08-06

Publications (2)

Publication Number Publication Date
CN106449863A CN106449863A (zh) 2017-02-22
CN106449863B true CN106449863B (zh) 2018-08-14

Family

ID=58184539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610634815.4A Active CN106449863B (zh) 2015-08-06 2016-08-04 光伏器件的处理方法

Country Status (1)

Country Link
CN (1) CN106449863B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723015B2 (ja) * 2009-06-19 2011-07-13 シャープ株式会社 光源装置およびそれを備えた擬似太陽光照射装置
FR2966980B1 (fr) * 2010-11-02 2013-07-12 Commissariat Energie Atomique Procédé de fabrication de cellules solaires, atténuant les phénomènes de lid
CN102280526A (zh) * 2011-02-21 2011-12-14 中国科学院半导体研究所 提高太阳能电池效率及制备高效率太阳能电池的方法
CN102738265A (zh) * 2011-04-15 2012-10-17 上海凯世通半导体有限公司 掺杂单元、掺杂晶片、掺杂方法、太阳能电池及制作方法
FR2977079B1 (fr) * 2011-06-27 2013-07-26 Commissariat Energie Atomique Procede de traitement de cellules photovoltaiques a heterojonction pour ameliorer et stabiliser leur rendement
CN104425633B (zh) * 2013-08-30 2016-11-16 中国科学院宁波材料技术与工程研究所 一种介质钝化膜和太阳能电池及其制备方法
CN104868010B (zh) * 2015-03-03 2017-06-13 晶澳(扬州)太阳能科技有限公司 一种利用强光辐照降低p型晶体硅太阳能电池及其组件光致衰减的方法

Also Published As

Publication number Publication date
CN106449863A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Khan et al. Intensity dependency of photovoltaic cell parameters under high illumination conditions: An analysis
CN101789462B (zh) 一种广谱吸收的黑硅太阳能电池结构及其制作方法
Bunea et al. Low light performance of mono-crystalline silicon solar cells
KR100964153B1 (ko) 태양전지의 제조방법 및 그에 의해 제조되는 태양전지
CN102148284A (zh) 一种制备多晶硅太阳能电池发射极的扩散方法
CN106847943B (zh) 打孔perc双面太阳能电池及其组件、系统和制备方法
CN106098851A (zh) 一种晶体硅太阳能电池的分档方法
Zaraket et al. The Effect of Electrical stress under temperature in the characteristics of PV Solar Modules
Stückelberger et al. Internal electric field and fill factor of amorphous silicon solar cells
CN106449863B (zh) 光伏器件的处理方法
CN203349166U (zh) 太阳光模拟器
CN105225841A (zh) 一种染料敏化太阳能电池NiO光阴极的制备方法
Zhao et al. High efficiency rear emitter pert cells on CZ and FZ n-type silicon substrates
KR101088383B1 (ko) 프린팅 기법을 이용한 양면 수광형 태양전지 제조 방법 및 양면 수광형 태양전지
Xi et al. Investigation of fast light-induced degradation of crystal silicon solar cells under the irradiation of a high-intensity monochromatic LED light source
Steiner et al. Radiation effects on luminescent coupling in III–V solar cells
Witteck et al. Reducing UV induced degradation losses of solar modules with c-Si solar cells featuring dielectric passivation layers
CN107924956B (zh) 太阳能电池的制造方法
CN104251465A (zh) 太阳光模拟器及光谱调整方法
KR20080064545A (ko) 태양전지의 전면전극 형성방법, 태양전지의 제조방법 및태양전지
CN114613882A (zh) 一种异质结电池的处理方法
CN103334155A (zh) 一种含有钛杂质中间带的晶体硅材料及其制备方法
CN108511563A (zh) 一种pn结的制作方法
CN104638051B (zh) 一种加速稳定碲化镉薄膜太阳能模块最大功率的方法
JPH0936402A (ja) 変換効率向上処理を施した薄膜太陽電池および変換 効率向上手段を付加した薄膜太陽電池アレイ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant