CN106446849B - 一种疲劳驾驶检测方法 - Google Patents
一种疲劳驾驶检测方法 Download PDFInfo
- Publication number
- CN106446849B CN106446849B CN201610869704.1A CN201610869704A CN106446849B CN 106446849 B CN106446849 B CN 106446849B CN 201610869704 A CN201610869704 A CN 201610869704A CN 106446849 B CN106446849 B CN 106446849B
- Authority
- CN
- China
- Prior art keywords
- image
- pulse
- time
- sample
- fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000004424 eye movement Effects 0.000 claims abstract description 16
- 230000016507 interphase Effects 0.000 claims abstract description 16
- 230000004927 fusion Effects 0.000 claims abstract description 6
- 238000004458 analytical method Methods 0.000 claims abstract description 4
- 230000001815 facial effect Effects 0.000 claims abstract description 3
- 238000010191 image analysis Methods 0.000 claims abstract 2
- 238000012360 testing method Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 8
- 238000012549 training Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 claims description 2
- 230000004399 eye closure Effects 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 230000000452 restraining effect Effects 0.000 claims description 2
- 210000001367 artery Anatomy 0.000 claims 1
- 210000003462 vein Anatomy 0.000 claims 1
- 238000002474 experimental method Methods 0.000 description 7
- 206010039203 Road traffic accident Diseases 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910017435 S2 In Inorganic materials 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/59—Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
- G06V20/597—Recognising the driver's state or behaviour, e.g. attention or drowsiness
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
特征种类 | 测试样本(个) | 正确结果数目 | 错误结果数目 | 识别率(%) |
脉搏特征 | 80 | 58 | 22 | 72.5 |
眼动特征 | 80 | 63 | 8 | 78.75 |
分类对象 | 测试样本(个) | 正确结果数目 | 错误结果数目 | 识别率(%) |
被试者1 | 10 | 9 | 1 | 90 |
被试者2 | 10 | 9 | 1 | 90 |
被试者3 | 10 | 8 | 2 | 80 |
被试者4 | 10 | 10 | 0 | 100 |
被试者5 | 10 | 9 | 1 | 90 |
被试者6 | 10 | 7 | 3 | 70 |
被试者7 | 10 | 9 | 1 | 90 |
被试者8 | 10 | 10 | 0 | 100 |
平均 | - | - | - | 88.75 |
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610869704.1A CN106446849B (zh) | 2016-09-30 | 2016-09-30 | 一种疲劳驾驶检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610869704.1A CN106446849B (zh) | 2016-09-30 | 2016-09-30 | 一种疲劳驾驶检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106446849A CN106446849A (zh) | 2017-02-22 |
CN106446849B true CN106446849B (zh) | 2019-08-23 |
Family
ID=58172469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610869704.1A Active CN106446849B (zh) | 2016-09-30 | 2016-09-30 | 一种疲劳驾驶检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106446849B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107067029A (zh) * | 2017-03-20 | 2017-08-18 | 新智认知数据服务有限公司 | 一种基于多通道特征的elm和de相结合的图像分类方法 |
CN109431681B (zh) * | 2018-09-25 | 2023-12-19 | 吉林大学 | 一种检测睡眠质量的智能眼罩及其检测方法 |
CN109389092B (zh) * | 2018-10-22 | 2023-05-02 | 北京工业大学 | 一种局部增强多任务深度迁移超限学习机及个体鲁棒的面部视频疲劳检测方法 |
CN109664894A (zh) * | 2018-12-03 | 2019-04-23 | 盐城工学院 | 基于多源异构数据感知的疲劳驾驶安全预警系统 |
CN113326733B (zh) * | 2021-04-26 | 2022-07-08 | 吉林大学 | 一种眼动点数据分类模型的构建方法及系统 |
CN114066297B (zh) * | 2021-11-24 | 2023-04-18 | 西南交通大学 | 一种高速铁路行车调度员工作状态识别方法 |
CN114170588B (zh) * | 2021-12-13 | 2023-09-12 | 西南交通大学 | 基于眼部特征的铁路调度员不良状态识别方法 |
CN114863403B (zh) * | 2022-05-18 | 2025-02-11 | 东北电力大学 | 一种基于图正则化极限学习机的疲劳驾驶监测方法 |
CN118507038A (zh) * | 2023-09-26 | 2024-08-16 | 南通理工学院 | 一种跨模态人体疲劳度检测方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0165479B1 (ko) * | 1995-11-20 | 1999-03-20 | 김광호 | 복합영상신호 생성을 위한 동기신호 생성장치 |
CN1830389A (zh) * | 2006-04-21 | 2006-09-13 | 太原理工大学 | 疲劳驾驶状态监控装置及方法 |
CN101375796B (zh) * | 2008-09-18 | 2010-06-02 | 浙江工业大学 | 疲劳驾驶实时检测系统 |
CN101692980B (zh) * | 2009-10-30 | 2011-06-08 | 深圳市汉华安道科技有限责任公司 | 疲劳驾驶检测方法及装置 |
CN103956028B (zh) * | 2014-04-23 | 2016-01-20 | 山东大学 | 一种汽车多元驾驶安全防护方法 |
CN104952210B (zh) * | 2015-05-15 | 2018-01-05 | 南京邮电大学 | 一种基于决策级数据融合的疲劳驾驶状态检测系统和方法 |
CN105354985B (zh) * | 2015-11-04 | 2018-01-12 | 中国科学院上海高等研究院 | 疲劳驾驶监控装置及方法 |
-
2016
- 2016-09-30 CN CN201610869704.1A patent/CN106446849B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN106446849A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106446849B (zh) | 一种疲劳驾驶检测方法 | |
Yan et al. | Real-time driver drowsiness detection system based on PERCLOS and grayscale image processing | |
CN107403142B (zh) | 一种微表情的检测方法 | |
CN106446811A (zh) | 基于深度学习的驾驶员疲劳检测方法及装置 | |
CN101604382A (zh) | 一种基于面部表情识别的学习疲劳识别干预方法 | |
KR20190105180A (ko) | 합성곱 신경망 기반의 병변 진단 장치 및 방법 | |
Popplewell et al. | Multispectral iris recognition utilizing hough transform and modified LBP | |
Usman et al. | Intelligent automated detection of microaneurysms in fundus images using feature-set tuning | |
CN109101949A (zh) | 一种基于彩色视频信号频域分析的人脸活体检测方法 | |
Tabrizi et al. | Open/closed eye analysis for drowsiness detection | |
CN112801066B (zh) | 一种基于多姿态面部静脉的身份识别方法及装置 | |
Alam et al. | Real-time distraction detection based on driver's visual features | |
CN106214166A (zh) | 一种戴眼镜驾驶员疲劳检测方法 | |
Zhao et al. | Deep convolutional neural network for drowsy student state detection | |
Ngo et al. | Quantitative analysis of facial paralysis based on limited-orientation modified circular Gabor filters | |
CN110097012A (zh) | 基于N-range图像处理算法的眼动参数监测的疲劳检测方法 | |
CN107153807A (zh) | 一种二维主成分分析的非贪婪人脸识别方法 | |
CN112307984A (zh) | 基于神经网络的安全帽检测方法和装置 | |
Prema et al. | A review: Face recognition techniques for differentiate similar faces and twin faces | |
CN107169434A (zh) | 一种具备排他性的脑电身份识别方法 | |
Chakraborty et al. | Implementation of computer vision to detect driver fatigue or drowsiness to reduce the chances of vehicle accident | |
Chen et al. | A fusion method for partial fingerprint recognition | |
Rongnian et al. | Improving iris segmentation performance via borders recognition | |
Umut et al. | Detection of driver sleepiness and warning the driver in real-time using image processing and machine learning techniques | |
Mu et al. | A sitting posture surveillance system based on image processing technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190726 Address after: 350000 Floor 15-16 of Technology Transfer Center Building of Strait No. 611 Industrial Road, Gulou District, Fuzhou City, Fujian Province Applicant after: FUJIAN FORTUNETONE NETWORK TECHNOLOGY CO., LTD. Address before: 538000 the Guangxi Zhuang Autonomous Region Shiqiao Fangchenggang Fangcheng District Street No. 2 Applicant before: FANGCHENGGANG PORT DISTRICT GAOCHUANG INFORMATION TECHNOLOGY CO., LTD. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 350000 Floor 15-16 of Technology Transfer Center Building of Strait No. 611 Industrial Road, Gulou District, Fuzhou City, Fujian Province Patentee after: Fuxin Futong Technology Co., Ltd Address before: 350000 Floor 15-16 of Technology Transfer Center Building of Strait No. 611 Industrial Road, Gulou District, Fuzhou City, Fujian Province Patentee before: FUJIAN FORTUNETONE NETWORK TECHNOLOGY Co.,Ltd. |