CN106446517B - 一种激光冲击强化合金塑性变形深度的建模和判别方法 - Google Patents

一种激光冲击强化合金塑性变形深度的建模和判别方法 Download PDF

Info

Publication number
CN106446517B
CN106446517B CN201610785814.XA CN201610785814A CN106446517B CN 106446517 B CN106446517 B CN 106446517B CN 201610785814 A CN201610785814 A CN 201610785814A CN 106446517 B CN106446517 B CN 106446517B
Authority
CN
China
Prior art keywords
alloy
laser
depth
plastic deformation
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610785814.XA
Other languages
English (en)
Other versions
CN106446517A (zh
Inventor
吴刘军
鲁金忠
顾永玉
罗开玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610785814.XA priority Critical patent/CN106446517B/zh
Publication of CN106446517A publication Critical patent/CN106446517A/zh
Application granted granted Critical
Publication of CN106446517B publication Critical patent/CN106446517B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种激光冲击强化合金表层塑性变形的建模和计算方法。其主要利用应变波控制方程、弹粘塑性本构关系以及应力波运动速度与材料运动速度之间的关系,对激光冲击合金表面形成的塑性变形深度进行计算和推导,获得激光冲击金属合金塑性变形深度的解析表达式,从而得到激光冲击强化合金过程中的动态屈服强度、冲击波峰值压力、粘度系数、弹性模量与塑性变形深度之间的关系。本发明可通过计算合金表层塑性变形的深度,然后实测塑性变形深度与计算值对比可获得冲击强化效果,本发明方法也可用于机械喷丸强化效果的计算和检测。

Description

一种激光冲击强化合金塑性变形深度的建模和判别方法
技术领域
本发明涉及激光加工领域,特指激光冲击金属合金后,其塑性变形的理论模型及计算方法,特别适合于激光冲击强化效果的无损检测。
背景技术
激光冲击强化(LSP:Laser shock peening)是利用强激光束产生的等离子冲击波,提高金属材料的抗疲劳、耐磨损和抗腐蚀能力的一种高新技术。当短脉冲(几十纳秒内)的高峰值功率密度的激光辐射金属表面时,金属表面吸收层(涂覆层)吸收激光能量发生爆炸性汽化蒸发,产生高压等离子体,该等离子体收到约束层的约束爆炸时产生高压冲击波,作用于金属表面并向内部传播。在材料表层形成密集、稳定的位错结构的同时,使材料表层产生应变硬化,残留高幅压应力,显著地提高材料的抗疲劳和抗应力腐蚀等性能。
由于激光冲击强化处理后的实际零件不可能进行破坏性疲劳试验,因而,激光冲击强化技术要在实际生产中应用及推广,必须具备激光冲击强化效果的无损检验手段。金属材料在冲击波高压作用下发生塑性变形而形成冲击强化区。其表面宏观特征为表面产生较大的残余应力和较高的表面硬度,若冲击区的表面粗糙度越低,则冲击效果越好,其内部显微特征是密集的位错及细化的晶粒。这几个因素共同作用使金属材料的疲劳寿命获得大幅度的提高。激光冲击区的表面质量是这几个因素的综合反映,因此,可通过表面质量的优劣直观地判别或检验激光冲击强化效果。
激光冲击金属合金会在其表面产生一定的深度的压缩区,这在激光强化加工中经常出现,因而塑性变形深度可以作为激光冲击强化效果的判别依据之一,并且可以通过数值计算得到。B.S.Yilbas等人采用数值模拟预测激光冲击铝合金塑性变形的深度,并用试验进行了简单的验证【Laser shock processing of aluminium:model and experimentalstudy.Journal of Physics D:Applied Physics,2007,40:6740】,P.Peyre等人获得了激光冲击铝合金的塑性变形深度和残余应力数值的计算公式,但是没有考虑到激光冲击在铝合金表面形成材料表面压缩【Laser shock processing of aluminiumalloys.Application to high cycle fatigue behaviour.Materials Science andEngineering A,1996,210:102】。
发明内容
本发明提供了一种激光冲击金属合金塑性变形的理论模型及计算方法,为激光冲击强化效果提供了一种无损检验手段。
为解决以上问题,本发明主要利用应变波控制方程、弹粘塑性本构关系以及应力波运动速度与材料运动速度之间的关系,对激光冲击铝合金表面形成的塑性变形深度进行理论计算和推导,得出激光冲击金属合金塑性变形深度的近似解析表达式,以及激光冲击强化金属合金过程中的动态屈服强度、冲击波峰值压力、粘度系数、弹性模量与塑性变形深度之间的关系,采用的具体方案如下:
步骤一,根据激光诱导冲击波的参数,为简化分析,可以认为合金板材激光冲击强化诱导是一维应变波,冲击波作用下合金靶材无限厚以及是弹性卸载过程。
步骤二,根据合金靶材的参数和激光冲击强化参数,通过以下公式计算合金靶材经激光冲击强化后表面塑性变形深度hI
其中,
X为合金靶材距冲击表面的深度;
τm为应力最大值的临界的时间;
t0为合金靶材开始屈服的时间;
c0为弹性波速;
σY为合金材料的动态屈服强度;
E为合金材料的弹性模量;
η为合金材料的粘性系数;
Xm由σ(X,τm)=σY确定,
其中,参数参数
步骤三,测量激光冲击强化塑性变形的实际深度。
步骤四,通过比较实际测量值和理论计算值,当其 时,可判断合金在具体的冲击条件下达到预计的强化效果。
附图说明
图1是激光冲击金属合金塑性变形的理论模型及计算方法的步骤流程图。
图2是具体实施案例冲击波峰值压力对塑性变形深度影响曲线图。
图3是具体实施案例靶材粘性系数对塑性变形深度影响曲线图。
图4是具体实施案例靶材粘动态屈服强度对塑性变形深度影响曲线图。
具体实施方式
下面结合附图和具体实施案例对本发明的具体实施方式做详细的说明,但本发明不应仅限于此实施案例:
本实施案例所采用的靶材为LY2铝合金,其基本参数为E=70GPa,c0=5.09km/s,ρ0=2.7×103kg/m3,粘性系数η=6.25×105kgs/m,冲击波峰值压力为3GPa,脉宽为34.5ns的三角压力脉冲作为加载条件。
将上述参数代入步骤二中的公式得到塑性变形深度的理论计算值hI=8μm。
塑性变形深度的实际测量值h=10~12μm。
由于数学建模过程中的提出的假设是为了简化分析的近似假设,存在一定误差,所以根据大量实验证明,误差小于50%时,达到激光冲击强化效果。
图3为靶材粘性系数对塑性变形深度的影响。从图中可以看出,塑性变形深度随粘性系数的增加而减小,而减小速度随深度的增加逐步减小。说明粘性系数越大,材料的粘滞作用消耗的能量越多,而作用于材料塑性变形的能量则相应减少。
动态屈服强度对塑性变形深度影响的关系曲线如图4所示。由该曲线可知,塑性变形深度随着屈服强度的增加而逐步减小,在屈服强度较小时,这种影响更为明显。
因此,可得出结论:激光冲击强化能够在结构金属合金表面形成微米量级的塑性变形,其深度可以作为激光冲击强化结构金属合金效果的有效判断依据,实验和理论模型计算结果误差不大,验证了理论模型。

Claims (1)

1.一种激光冲击强化合金塑性变形深度的建模和判别方法,利用应变波控制方程、弹粘塑性本构关系以及应力波运动速度与材料运动速度之间的关系,对激光冲击铝合金表面形成的塑性变形深度进行理论计算和推导,得出激光冲击金属合金塑性变形深度的近似解析表达式,以及激光冲击强化金属合金过程中的动态屈服强度、冲击波峰值压力、粘度系数、弹性模量与塑性变形深度之间的关系;其特征在于,包括如下步骤:
步骤一,根据激光诱导冲击波的参数,为简化分析,认为合金板材激光冲击强化诱导是一维应变波,冲击波作用下合金靶材无限厚以及是弹性卸载过程;
步骤二,根据合金靶材的参数和激光冲击强化参数,通过以下公式计算合金靶材经激光冲击强化后表面塑性变形深度hI
其中,
X为合金靶材距冲击表面的深度;
τm为应力最大值的临界的时间;
t0为合金靶材开始屈服的时间;
c0为弹性波速;
σY为合金材料的动态屈服强度;
E为合金材料的弹性模量;
η为合金材料的粘性系数;
Xm由σ(X,τm)=σY确定,
其中,参数参数
步骤三,测量激光冲击强化塑性变形的实际深度;
步骤四,通过比较实际测量值和理论计算值,当其 可判断合金在具体的冲击条件下达到预计的强化效果。
CN201610785814.XA 2016-08-30 2016-08-30 一种激光冲击强化合金塑性变形深度的建模和判别方法 Expired - Fee Related CN106446517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610785814.XA CN106446517B (zh) 2016-08-30 2016-08-30 一种激光冲击强化合金塑性变形深度的建模和判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610785814.XA CN106446517B (zh) 2016-08-30 2016-08-30 一种激光冲击强化合金塑性变形深度的建模和判别方法

Publications (2)

Publication Number Publication Date
CN106446517A CN106446517A (zh) 2017-02-22
CN106446517B true CN106446517B (zh) 2019-04-30

Family

ID=58091352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610785814.XA Expired - Fee Related CN106446517B (zh) 2016-08-30 2016-08-30 一种激光冲击强化合金塑性变形深度的建模和判别方法

Country Status (1)

Country Link
CN (1) CN106446517B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236859B (zh) * 2017-04-28 2018-11-09 江苏大学 一种获得最佳表面质量激光喷丸参数的建模和计算方法
CN107180131B (zh) * 2017-05-15 2020-10-16 广东工业大学 用于确定多点激光冲击强化薄壁件变形曲率半径的方法
CN107389241B (zh) * 2017-06-15 2019-06-28 江苏大学 一种用激光冲击强化孔壁的应力峰值检测方法
CN108595848B (zh) * 2018-04-27 2022-02-01 中国工程物理研究院电子工程研究所 一种侵彻过程中弹靶作用模型建模方法及装置
CN112100885B (zh) * 2020-08-28 2022-08-16 北京航空航天大学 一种高能喷丸表面硬度数值模拟方法
CN114662346B (zh) * 2022-05-24 2022-08-09 山东大学 一种半导体激光器中位错扩展特性的模拟预测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846156B (zh) * 2015-04-17 2017-06-27 江苏大学 一种方形光斑激光多层交错冲击均匀强化方法
CN105136593A (zh) * 2015-08-20 2015-12-09 江苏大学 一种激光冲击强化后金属表层显微硬度的无损检测方法
CN105177273B (zh) * 2015-09-30 2017-07-18 江苏大学 一种提高关键重要构件疲劳强度的激光冲击强化方法

Also Published As

Publication number Publication date
CN106446517A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106446517B (zh) 一种激光冲击强化合金塑性变形深度的建模和判别方法
Shayegan et al. Residual stress induced by cold spray coating of magnesium AZ31B extrusion
Ding et al. Laser shock peening: performance and process simulation
JP2009510256A (ja) 超音波衝撃による、金属性能の改善ならびに劣化からの保護およびその抑制の方法
Luo et al. High cycle fatigue performance in laser shock peened TC4 titanium alloys subjected to foreign object damage
Fang et al. Numerical simulation of residual stresses fields of DD6 blade during laser shock processing
Chen et al. Analysis for post-impact tensile-tensile fatigue damage of 2024-T3 sheets based on tests, digital image correlation (DIC) technique and finite element simulation
Kanou et al. Effect of the impact energy of various peening techniques on the induced plastic deformation region
CN103255268A (zh) 一种优化双面激光同时冲击合金厚度的方法
Ren et al. Comparison of the simulation and experimental fatigue crack behaviors in the nanoseconds laser shocked aluminum alloy
Yadav et al. Laser shock processing: process physics, parameters, and applications
Liu et al. Healing fatigue damage by laser shock peening for copper film
Sakhvadze et al. Two-sided laser shock processing
Blažić et al. Determination of fatigue crack growth trajectory and residual life under mixed modes
Ahmadi et al. Finite element simulation of shot peening of an aluminum alloy considering hardening models
CN110749300A (zh) 激光冲击强化金属材料表面的凹坑质量评估方法
Manchoul et al. A predictive approach to investigate the effect of ultrasonic shot peening on a high-cycle fatigue performance of an AISI 316L target
Yang et al. Laser shock forming of SUS304 stainless steel sheet with elliptical spot
Zhang et al. Influence of impact dents on the fatigue strength of aluminium alloy friction stir welds
Chahine et al. Coupling bubble and material dynamics to model cavitation peening and pitting
Liu et al. Forming quality and residual stress analysis of Al2024-T351 perforated sheets with laser annulus and strip peening
Seddik et al. Predictive design approach of high-cycle fatigue limit of shot-peened parts
Krella et al. Degradation of Armco iron caused by cavitation: Part II–Correlation with stress analysis
HAN et al. Fatigue life improvement for cruciform welded joint by mechanical surface treatment using hammer peening and ultrasonic nanocrystal surface modification
Nicholas et al. Comparison of fatigue limit strength of Ti–6Al–4V in tension and torsion after real and simulated foreign object damage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190430

Termination date: 20200830