CN106443519A - 一种利用磁光隔离器探测磁场强度的测量系统与方法 - Google Patents

一种利用磁光隔离器探测磁场强度的测量系统与方法 Download PDF

Info

Publication number
CN106443519A
CN106443519A CN201610856075.9A CN201610856075A CN106443519A CN 106443519 A CN106443519 A CN 106443519A CN 201610856075 A CN201610856075 A CN 201610856075A CN 106443519 A CN106443519 A CN 106443519A
Authority
CN
China
Prior art keywords
magnetic field
signal
measurement
intensity
magneto optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610856075.9A
Other languages
English (en)
Other versions
CN106443519B (zh
Inventor
刘世明
国宇
董梁
刘瑞圣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201610856075.9A priority Critical patent/CN106443519B/zh
Publication of CN106443519A publication Critical patent/CN106443519A/zh
Application granted granted Critical
Publication of CN106443519B publication Critical patent/CN106443519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect

Abstract

本发明公开了一种利用磁光隔离器探测磁场强度的测量系统及方法,激光驱动及发射单元发射功率恒定的光信号,通过磁场探测及传输单元感应空间磁场,并将测量的空间磁场信号输入到信号解调单元,所述信号解调单元对输入的磁场信号进行偏置、放大,然后根据所需要测量的空间磁场的频率范围计算通带频率和带宽,之后对放大后的信号进行带通滤波,最后经过AD采样及转换单元进行优化并转换为数字信号,传输给处理器,所述处理器利用测量到的温度对费尔德系数进行校正,再利用校正后的菲尔德系数代入理论公式,继而计算得到测量点处磁场强度。本发明可对空间任意一点进行精确测量,很好的适应了磁场测量的发展趋势,有利于测量设备的升级和改造。

Description

一种利用磁光隔离器探测磁场强度的测量系统与方法
技术领域
本发明涉及一种利用磁光隔离器探测磁场强度的测量系统与方法。
背景技术
磁场测量技术的发展和应用有着悠久的历史,近年来,随着电磁感应、磁调制、电磁效应和超导效应等物理现象和物理原理的相继发现及有效利用,磁场测量技术有了很大发展,目前已经广泛应用于地球物理、空间技术、军事工程、工业、生物学、医学、考古学等许多领域。现在比较成熟的磁场测量方法有:磁力法、电磁感应法、磁饱和法、电磁效应法、磁共振法、超导效应法和磁光效应法等,依据这些方法,相继实现了不同原理的各种磁场测量仪器。
磁场测量是建立在电磁理论和电工技术基础之上的一种技术方法,也是诸多物理量测量的前提与基础,比如电力系统中电气量的测量,通过测量输电线路表面磁场的大小即可得到电流的大小。随着磁场应用范围的不断拓展,磁场测量的要求和需求也在不断提高,寻求和应用新效应、新现象、新材料、新工艺,进一步提高磁场测量仪器的水平,更新磁场探测的方法成为了磁场测量的主要发展方向。
当磁场测量技术向着高准确度、高稳定度、高分辨率、微小型化、数字化和智能化方向发展的同时,其测量成本也在逐渐增加,以电力系统中互感器为例,一台纯光纤电流互感器的价格在10万以上,十分昂贵,所以到目前为止,并没有一种大批量的商业化产品应用于市场。除了价格因素外,它的工作性能还存在一些缺陷,如制作工艺、外界应力造成的误差。传感元件是光学互感器的核心部分,其工作特性会对互感器的性能产生很大影响。随着科学技术的不断发展,越来越多的传感元件被研发出来,并成功应用在通信领域、计算机领域和国防工业等领域。
磁光隔离器就是一款应用在通信领域的光学元器件,又称光单向器,是一种光非互易传输光无源器件,即沿正向传输方向具有较低插入损耗,而对反向传输光有很大衰减作用的无源器件。目前它的制作工艺成熟,产品价格低廉并且体积微小,便于装设。经研究发现,偏振相关型磁光隔离器经过改造、加工后,可以用于磁场的测量。
发明内容
本发明为了解决上述问题,提出了一种利用磁光隔离器探测磁场强度的测量系统与方法,本发明简单、灵活、稳定性高、可靠性强,并且价格低廉、易于装设,可对大电流、强磁场等环境中的空间点进行精确测量,具有广阔的应用前景。
为了实现上述目的,本发明采用如下技术方案:
一种利用磁光隔离器探测磁场强度的测量系统,包括激光驱动及发射单元、磁场探测及传输单元、信号解调单元、AD采样及转换单元和处理器,其中:
所述激光驱动及发射单元发射功率恒定的光信号,通过磁场探测及传输单元感应空间磁场,并将测量的空间磁场信号输入到信号解调单元,所述信号解调单元对输入的磁场信号进行偏置、放大,然后根据所需要测量的空间磁场的频率范围计算通带频率和带宽,之后对放大后的信号进行带通滤波,最后经过AD采样及转换单元进行优化并转换为数字信号,传输给处理器,所述处理器利用测量到的温度对费尔德系数进行校正,再利用校正后的费尔德系数进行计算,得到测量点处磁场强度。
优选的,所述处理器通过以太网连接客户端,进行数据的显示及互联。
所述磁场探测及传输单元,包括磁光隔离器和连接在磁光隔离器两端的光纤,所述磁光隔离器包括依次相连的起偏器、法拉第旋转器和检偏器,且起偏器与检偏器分别位于法拉第旋转器两侧,彼此透光方向呈45度角,对磁光隔离器施加大小可变的不饱和磁场。
所述磁场方向与法拉第旋转器轴向方向一致。
所述磁光隔离器与光纤熔接,构成闭合式的光学回路。
所述磁光隔离器设置于需要测量的磁场或需要测量的空间点上。
一种基于上述测量系统的测量方法,其步骤包括:
(1)连接测量系统,采集光强信号,并进行数据转换;
(2)对空间点的温度进行测量,根据测量温度对费尔德系数进行校正;
(3)根据输入光强、输出光强、外加磁场与转换电压之间的理论关系,得到测量点处磁场强度的大小。
所述步骤(3)中,利用输入光强、输出光强、外加磁场与转换电压之间的理论关系,得到测量点处磁场强度的大小:
Im=I0e-αlcos2(β+θ) (1-1)
其中,Im是输入光强,I0是输出光强,α是磁光介质的光吸收系数,l是光透过磁光介质的长度,β是起偏器与检偏器的透光轴之间的夹角,θ是光通过介质的法拉第旋转角度。
本发明的有益效果为:
(1)本发明可以测量空间任意一点磁场、电流的大小,并且该方法简单、灵活、稳定性高、测量速度快、可靠性强;
(2)本发明价格低廉、易于装设,很好地适应了测量技术的发展趋势,有利于变磁场测量装置的升级和改造;
(3)本发明由于磁光隔离器制造设计严谨、工艺成熟、体积微小,有效地提高了磁场的测量精度,降低了温度、应力、振动等因素对光路的影响,保证了该测量方法良好的稳定性和实用性。
附图说明
图1偏振相关型磁光隔离结构图;
图2实施例结构示意图;
图3磁场探测及传输系统结构示意图;
图4实施例磁场与电压信号函数拟合图。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
图2所示为本发明实时例的结构示意图,包括依次连接的激光驱动及发射单元1、磁场探测及传输单元2、信号调理单元3、AD采样及转换单元4、数据存储及处理单元5、PC接收及显示单元6。激光驱动及发射单元1发出功率恒定的光信号,通过磁场探测及传输单元2感应空间磁场,并将测量的空间磁场信号输入到信号调理单元3,对磁场输入信号进行偏置、放大,然后根据所需要测量的空间磁场的频率范围计算通带频率和带宽,之后对放大后的信号进行带通滤波,最后经过AD采样及转换单元4优化数据并转换为数字信号,传输给处理器进行数据处理、存储,最终通过以太网实现数据互联。
图3所示是磁场探测及传输单元结构示意图,实施例中,激光的波长为1550nm,出射光强1.8mW,被探测磁场由电磁铁提供,其磁场强度范围约-40mT—40mT,光信号进入偏振型磁光隔离器后,被起偏器转变成线偏振光,然后经过法拉第旋转器使光偏振面旋转θ角,因为起偏器与检偏器之间的夹角成β度,因此,只有部分线偏振光透过检偏器,从而输出光强较输入光强发生一定变化,变化幅度与θ角有关,又因所以θ与B存在线性关系,通过改变磁场强度即可改变偏转角度,从而改变输出光强。输出光强经过信号调理单元3、AD采样及转换单元4、数据存储及处理单元5、PC接收及显示单元6后,输出与光强有关的电压信号,进而由公式得到磁场强度与电压信号的一一对应关系。
具体的测量方法步骤如下:
步骤一:对偏振相关型磁光隔离器进行改造,去掉用于提供饱和磁场的永久磁铁。
进一步说,仅使用偏振相关型磁光隔离器的核心元件,该元件生产工艺成熟、设计精密、体积微小、价格低廉。
步骤二:将磁光隔离器与单模光纤熔接,构成闭合式的光学回路。
步骤三:把磁光隔离器放置在需要测量的磁场中或需要测量的空间点上。
进一步说,闭合光学回路由图2所示的几个部分构成,光纤长度为2米,磁光隔离器被光学固定架固定,置于被测磁场环境中,其轴向方向与磁场方向相同。
步骤四:向光纤一端射入稳定的光源,经磁光隔离器偏转加工后输出相应的光强信号。
步骤五:接收磁光隔离器发出的光强信号,进行数据转换和处理。
步骤六:对探测点进行温度测量。
步骤七:对费尔德系数进行校正。
进一步说,由于磁光隔离器属于点状光学器件,所以很容易测量该点温度,因此使用光纤光栅法对空间点的温度进行测量,然后再利用测量到的温度对费尔德系数进行校正,从而使测量结果更加可靠、精确。
步骤八:利用输入光强、输出光强、外加磁场与转换电压之间的理论关系,得到测量点处磁场强度的大小。
Im=I0e-αlcos2(β+θ) (1-1)
其中,Im是输入光强,I0是输出光强,α是磁光介质的光吸收系数,l是光透过磁光介质的长度,β是起偏器与检偏器的透光轴之间的夹角,θ是光通过介质的法拉第旋转角度。
其中,B是被测磁场强度,V是转换电压,H是被测电场强度,μ0是真空磁导率4π*10- 7N/A,K为模数转换系数。
将式(1-2)带入(1-1)整理得到电压V与磁场B的关系表达式:
进一步整理得:
V=A1cos(A2B+A3)+A1 (1-4)
其中A3=2β
下面利用实验提供的数据,对公式(1-4)采用非线性拟合得到系数矩阵:
对图4拟合结果进行分析,得和方差7.388*10-5,均方差8.235*10-7,均方根9.074*10-4,最大偏差2.1*10-3,最小偏差1.767*10-5,拟合情况较好,对预测数据进行计算,最大偏差不超过2.9*10-3,满足了电磁测量的精度要求。
进一步说,得到该测量点的电压幅值即可得到该测量点磁场强度的大小。
经过以上八个步骤便得到了测量点处磁场强度的大小,在实际测量时,也可以利用该方法测量相应的电流、电压等其他量的大小。例如当测量线路中电流时,利用式(1-4)即可得到所测电流的大小。
其中,i是被测电流,r是该处电场与电流之间的距离。
同时,基于此方法得到磁场强度大小进而完成其他参量测量的方法都包含在本发明的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (8)

1.一种利用磁光隔离器探测磁场强度的测量系统,其特征在于:包括激光驱动及发射单元、磁场探测及传输单元、信号解调单元、AD采样及转换单元和处理器,其中:
所述激光驱动及发射单元发射功率恒定的光信号,通过磁场探测及传输单元感应空间磁场,并将测量的空间磁场信号输入到信号解调单元,所述信号解调单元对输入的磁场信号进行偏置、放大,然后根据所需要测量的空间磁场的频率范围计算通带频率和带宽,之后对放大后的信号进行带通滤波,最后经过AD采样及转换单元进行优化并转换为数字信号,传输给处理器,所述处理器利用测量到的温度对费尔德系数进行校正,再利用校正后的菲尔德系数进行计算,得到测量点处磁场强度。
2.如权利要求1所述的一种利用磁光隔离器探测磁场强度的测量系统,其特征在于:所述处理器通过以太网连接客户端,进行数据的显示及互联。
3.如权利要求1所述的一种利用磁光隔离器探测磁场强度的测量系统,其特征在于:所述磁场探测及传输单元,包括磁光隔离器和连接在磁光隔离器两端的光纤,所述磁光隔离器包括依次相连的起偏器、法拉第旋转器和检偏器,且起偏器与检偏器分别位于法拉第旋转器两侧,彼此透光方向呈45度角,对磁光隔离器施加大小可变的不饱和磁场。
4.如权利要求1所述的一种利用磁光隔离器探测磁场强度的测量系统,其特征在于:所述磁场方向与法拉第旋转器轴向方向一致。
5.如权利要求1所述的一种利用磁光隔离器探测磁场强度的测量系统,其特征在于:所述磁光隔离器与光纤熔接,构成闭合式的光学回路。
6.如权利要求1所述的一种利用磁光隔离器探测磁场强度的测量系统,其特征在于:所述磁光隔离器设置于需要测量的磁场或需要测量的空间点上。
7.一种基于如权利要求1-6中任一项所述的测量系统的测量方法,其特征在于:具体包括:
(1)连接测量系统,采集光强信号,并进行数据转换;
(2)对空间点的温度进行测量,然后再利用测量到的温度对费尔德系数进行校正;
(3)根据输入光强、输出光强、外加磁场与转换电压之间的理论关系,得到测量点处磁场强度的大小。
8.如权利要求7所述的测量方法,其特征在于:所述步骤(3)中,利用输入光强、输出光强、外加磁场与转换电压之间的理论关系,得到测量点处磁场强度的大小:
Im=I0e-αlcos2(β+θ) (1-1)
其中,Im是输入光强,I0是输出光强,α是磁光介质的光吸收系数,l是光透过磁光介质的长度,β是起偏器与检偏器的透光轴之间的夹角,θ是光通过介质的法拉第旋转角度。
CN201610856075.9A 2016-09-27 2016-09-27 一种利用磁光隔离器探测磁场强度的测量系统与方法 Active CN106443519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610856075.9A CN106443519B (zh) 2016-09-27 2016-09-27 一种利用磁光隔离器探测磁场强度的测量系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610856075.9A CN106443519B (zh) 2016-09-27 2016-09-27 一种利用磁光隔离器探测磁场强度的测量系统与方法

Publications (2)

Publication Number Publication Date
CN106443519A true CN106443519A (zh) 2017-02-22
CN106443519B CN106443519B (zh) 2019-02-22

Family

ID=58170592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610856075.9A Active CN106443519B (zh) 2016-09-27 2016-09-27 一种利用磁光隔离器探测磁场强度的测量系统与方法

Country Status (1)

Country Link
CN (1) CN106443519B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663649A (zh) * 2017-03-28 2018-10-16 上海润京能源科技有限公司 电流互感器柔性校验装置
CN111580030A (zh) * 2020-05-13 2020-08-25 山东省肿瘤防治研究院(山东省肿瘤医院) 用于核磁共振与放疗相融合的磁场制备结构、设备及系统
CN111721990A (zh) * 2020-06-01 2020-09-29 贵州江源电力建设有限公司 一种小型化光纤电流传感器及信息处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183735A (zh) * 2011-03-04 2011-09-14 北京交通大学 空间磁场探测器
CN102193074A (zh) * 2011-03-15 2011-09-21 中国科学技术大学 磁场测量装置及其制作方法、一种磁场测量方法
CN103984126A (zh) * 2014-05-23 2014-08-13 电子科技大学 一种平面磁光隔离器
CN204882722U (zh) * 2015-04-28 2015-12-16 国网上海市电力公司 基于光纤通信的工频电磁场智能监测系统
JP2016109743A (ja) * 2014-12-02 2016-06-20 信越化学工業株式会社 1μm帯光アイソレータ
CN105866617A (zh) * 2016-03-11 2016-08-17 国网江西省电力科学研究院 一种基于光纤传感技术的输电线路接地闪络故障定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183735A (zh) * 2011-03-04 2011-09-14 北京交通大学 空间磁场探测器
CN102193074A (zh) * 2011-03-15 2011-09-21 中国科学技术大学 磁场测量装置及其制作方法、一种磁场测量方法
CN103984126A (zh) * 2014-05-23 2014-08-13 电子科技大学 一种平面磁光隔离器
JP2016109743A (ja) * 2014-12-02 2016-06-20 信越化学工業株式会社 1μm帯光アイソレータ
CN204882722U (zh) * 2015-04-28 2015-12-16 国网上海市电力公司 基于光纤通信的工频电磁场智能监测系统
CN105866617A (zh) * 2016-03-11 2016-08-17 国网江西省电力科学研究院 一种基于光纤传感技术的输电线路接地闪络故障定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
艾延宝等: "法拉第磁致旋光效应及应用", 《物理与工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663649A (zh) * 2017-03-28 2018-10-16 上海润京能源科技有限公司 电流互感器柔性校验装置
CN108663649B (zh) * 2017-03-28 2023-12-29 上海润京能源科技有限公司 电流互感器柔性校验装置
CN111580030A (zh) * 2020-05-13 2020-08-25 山东省肿瘤防治研究院(山东省肿瘤医院) 用于核磁共振与放疗相融合的磁场制备结构、设备及系统
CN111580030B (zh) * 2020-05-13 2022-04-22 山东省肿瘤防治研究院(山东省肿瘤医院) 用于核磁共振与放疗相融合的磁场制备结构、设备及系统
CN111721990A (zh) * 2020-06-01 2020-09-29 贵州江源电力建设有限公司 一种小型化光纤电流传感器及信息处理系统

Also Published As

Publication number Publication date
CN106443519B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN103076155B (zh) 一种基于双光路的光纤Verdet常数测量系统
CN102788595A (zh) 基于Faraday效应的光纤陀螺频率特性评估方法与装置
CN104122423B (zh) 一种bgo晶体电光系数温度相关性的自补偿装置和方法
CN107643438A (zh) 基于法拉第磁光效应的光学电流传感器及其电流测量方法
CN102411130B (zh) 永磁体磁偏角测量装置及方法
CN106443519B (zh) 一种利用磁光隔离器探测磁场强度的测量系统与方法
CN103760504B (zh) 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器及其使用方法
JP2009229459A (ja) 微小電子機械電流検出装置
CN203704884U (zh) 一种基于偏振测定的内嵌式光纤扭曲传感器
CN106772133A (zh) 一种基于微纳光纤的空间磁场传感器及其制作方法
CN107656219A (zh) 一种铷原子磁力仪
CN103197118A (zh) 石榴石型电流传感装置以及石榴石模块的制备方法
CN106291039B (zh) 磁光电流互感器
CN102445586A (zh) 监测地铁杂散电流的光纤传感器及其方法
CN102628886B (zh) 无源偏置全光纤电流互感器非线性补偿电路
CN103196655B (zh) 一种保偏光纤Verdet常数测量装置及方法
CN102261978A (zh) 基于双芯双孔光纤实现液压传感的方法及装置
CN104049230A (zh) 一种光纤电流互感器频响特性测试系统及方法
CN106597061A (zh) 萨格奈克式光纤电流传感器及其电流检测方法
CN106291040A (zh) 磁光电流互感器
CN102590608A (zh) 基于光纤偏振态检测的环境温度补偿大电流测量系统
CN106404243B (zh) 一种基于光纤光栅偏振信息检测的高频动态信息解调系统以及方法
CN202522620U (zh) 基于光纤偏振态检测的环境温度补偿大电流测量系统
CN109946511B (zh) 一种集成光波导电功率传感芯片及其构建的测量系统
CN211453752U (zh) 一种光纤电流传感器反馈相移非线性校正装置及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant