CN106442629B - 还原氧化石墨烯薄膜湿敏传感器的制备方法 - Google Patents

还原氧化石墨烯薄膜湿敏传感器的制备方法 Download PDF

Info

Publication number
CN106442629B
CN106442629B CN201610813060.4A CN201610813060A CN106442629B CN 106442629 B CN106442629 B CN 106442629B CN 201610813060 A CN201610813060 A CN 201610813060A CN 106442629 B CN106442629 B CN 106442629B
Authority
CN
China
Prior art keywords
moisture sensor
redox graphene
film
sputtering
pdms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610813060.4A
Other languages
English (en)
Other versions
CN106442629A (zh
Inventor
刘爱萍
钱巍
王夏华
居乐乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201610813060.4A priority Critical patent/CN106442629B/zh
Publication of CN106442629A publication Critical patent/CN106442629A/zh
Application granted granted Critical
Publication of CN106442629B publication Critical patent/CN106442629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供了一种还原氧化石墨烯湿敏传感器的制备方法,通过简单的将还原氧化石墨烯抽滤成膜再转印到柔性的聚甲基硅氧烷(PDMS)衬底上,然后经磁控溅射镀上叉指电极,组装到面包板上,连接内外引线,便得到简易的湿敏传感器。该湿敏传感器能将湿度信号转化成电信号,对人体呼吸行为也能做出快速响应,这对将来用于检测呼吸系统疾病具有重要意义。该还原氧化石墨烯湿敏传感器制备方法条件温和,简单易行,工艺参数可控,成本低廉,可重复性高,具有广阔的应用前景。

Description

还原氧化石墨烯薄膜湿敏传感器的制备方法
技术领域
本发明属于还原氧化石墨烯传感器领域,尤其涉及一种将抽滤技术,转印技术和磁控溅射技术相结合制备还原氧化石墨烯石墨传感器的方法。属于先进石墨烯传感器制备的技术领域。
背景技术
近年来,石墨烯由于其高机械强度,大的比表面积,高电子迁移率和低的制造成本,能作为传感敏感材料,受到广泛关注。但石墨烯一般通过繁琐、复杂且高成本的化学气相沉积法制备,不利于大规模推广应用。于是,大部分研究人员将氧化石墨烯通过简单、高效的氧化还原法移除大部分含氧官能团来制备还原氧化石墨烯替代石墨烯,在保证其基本特性的基础上,降低生产成本和技术难度。
湿敏传感器被广泛用于人体舒适度和许多工业过程的控制和测量,近年来,尤其是柔性传感器由于质量轻、具有耐用性、成本低和可弯曲拉伸性,使得它们适用于各种新的领域,已经引起人们的广泛兴趣。用聚合物制备的柔性湿度传感器,有两种类型,分别为电容式和阻抗式湿敏传感器。Zampetti等人通过在聚酰亚胺基片上涂覆双(苯并环丁烯)薄膜制成了柔性电容型湿度传感器;通过二氧化钛纳米颗粒与柔性高分子聚合物制成了柔性阻抗式湿敏传感器。但是,这些亲水湿敏材料的严重缺点之一是:当湿敏材料暴露于高湿度气氛中很长一段时间后,湿度传感层容易膨胀或收缩,导致易从基板上剥离下来。而且,对于柔性传感器发展的主要挑战,不仅是材料的制备,还关乎它们的机械性能,电导性能和反复弯曲拉伸情况下的稳定性。
在本发明中,我们充分利用还原氧化石墨烯的优势,与柔性PDMS相结合,制备了柔性的湿敏传感器,并将其组装到面包板中,能够有效克服还原氧化石墨烯敏感层长时间暴露在高湿度气氛中而从基板上剥离下来的问题。此外,该还原氧化石墨烯湿敏传感器制备方法条件温和,简单易行,工艺参数可控,成本低廉,可重复性高,具有广阔的应用前景。
发明内容
本发明的目的在于针对现有技术的不足,提供一种还原氧化石墨烯湿敏传感器的制备方法。
本发明的目的是通过以下技术方案实现的:一种还原氧化石墨烯湿敏传感器的制备方法,所述步骤如下:
(1)量取还原氧化石墨烯水溶液1-3mL,加入100mL的去离子水中,搅拌、超声,直至分散均匀,再用砂芯过滤装置进行抽滤,抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h。
(2)取已经固化好的PDMS,通过按压的方式将滤膜上的还原氧化石墨烯转印到已经固化好的PDMS上,随后将PDMS泡在丙酮中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥。
(3)将干燥好的还原氧化石墨烯膜剪出一个小长方形,用叉指图案做掩膜版,进行磁控溅射,在还原氧化石墨烯薄膜表面镀上金叉指电极。磁控溅射在氩气氛围中进行,具体参数如下:保持背底真空6.0-4.0×10-4Pa,溅射气压为1.0Pa,溅射功率为60W,溅射时间为7.5min,靶基距为50mm,气体流量为23sccm,室温条件下沉积。
(4)将镀上金叉指电极的还原氧化石墨烯柔性薄膜嵌入面包板上,用铂丝连接内外引线,便制得还原氧化石墨烯的湿敏传感器。
本发明的有益效果在于:通过磁控溅射,严格控制金薄膜电极中成膜速率和成膜质量,是指形成原子排布均匀与薄膜厚度均一的金薄膜电极,而薄膜的形成是靶材粒子经过吸附、凝结、表面扩散迁移、碰撞结合形成稳定晶核。然后再通过吸附使晶核长大成小岛,岛长大后互相联结聚集,最后形成连续状薄膜。且部分高能溅射粒子产生不同程度的注入现象,在薄膜与基片之间形成伪扩散层,从而提高金薄膜电极与PDMS之间的附着力。并与还原氧化石墨烯层接触,形成弱化学键,增强两者之间相互作用力,同时通过控制还原氧化石墨烯的致密度来提高该传感器灵敏度。该湿敏传感器能检测最低的相对湿度<5%,可用于测试人体的呼吸运动。
附图说明
图1为本发明制备一种还原氧化石墨烯薄膜湿敏传感器的XRD图;
图2为本发明制备一种还原氧化石墨烯薄膜湿敏传感器的SEM图;
图3为本发明制备一种还原氧化石墨烯薄膜湿敏传感器对酒精棉远近的湿度感应示意图;
图4为本发明制备一种还原氧化石墨烯薄膜传感器测试人体呼吸运动的示意图。
具体实施方式
实施例1:一种还原氧化石墨烯薄膜湿敏传感器的制备方法,包括以下内容:
(1)氧化石墨烯的制备方法为:在冰水浴中缓慢将270mL浓硫酸/磷酸混酸(H2SO4:H3PO3=9:1,V/V)滴加至装有2g天然石墨粉烧杯中并保持搅拌,随后缓慢加入12g高锰酸钾,混合均匀后,将烧杯转移至50℃水浴锅中反应12h。反应完毕后,将300mL冰水加入烧杯中,冷却至室温后,再滴加5mL 30%双氧水,得到亮黄色产物。最后将产物分别用盐酸、去离子水离心洗涤,直至pH=6,转速为8000rpm/min,最后冷冻干燥得到氧化石墨烯。
(2)还原氧化石墨烯的制备方法为:量取7.5mg/mL氧化石墨烯1.67mL,加入25mL去离子水中搅拌、超声均匀。用pH计测试氧化石墨烯水溶液的pH,缓慢滴加氨水,调节氧化石墨烯的pH直至10,然后将氧化石墨烯水溶液转移到水热反应釜中,将水热反应釜置于180℃鼓风干燥箱中反应12h。图1为本发明制备一种还原氧化石墨烯薄膜湿敏传感器的XRD图。氧化石墨烯的衍射峰在12.5°,而还原氧化石墨烯的衍射峰在24.5°,说明氧化石墨烯被还原了。
(3)量取还原氧化石墨烯水溶液2mL,加入100mL的去离子水中,搅拌、超声,直至分散均匀,再用砂芯过滤装置进行抽滤,抽滤所需的滤膜为水溶性滤膜,尼龙材质,能用机溶剂才能溶解。抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h。
(4)固化的PDMS制备方法如下:按照质量比为10:1的量称取二甲基硅氧烷与交联剂,搅拌20min后,在真空干燥箱中去除气泡,然后将其倒至培养皿中,在水平桌面上静置10min,移至旋涂机上,调节转速为500rpm/min,旋涂15s后,再在水平桌面上静置10min,随后将培养皿移至90℃鼓风干燥箱中1h。
(5)将干燥完全的滤膜取出,转印到已经固化好的PDMS上,通过仔细缓慢按压的方式转印还原氧化石墨烯薄膜,还原氧化石墨烯的转印过程为反复按压附着在PDMS上的滤膜,使还原氧化石墨烯完全粘附在PDMS上,增强它们之间的结合力。压印时间控制在30min左右,并排除气泡。随后将其泡在丙酮溶液中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥。图2为本发明制备一种还原氧化石墨烯薄膜湿敏传感器的SEM图。左图为PDMS表面的SEM,可以看出PDMS表面十分光滑;右图为PDMS表面转印上一层还原氧化石墨烯的SEM,可以看出还原氧化石墨烯是片状、折皱的结构,说明还原氧化石墨烯很好地附着在PDMS的表面。
(6)用叉指图案做掩膜版,对附有还原氧化石墨烯薄膜的PDMS进行磁控溅射,在还原氧化石墨烯薄膜表面镀上金叉指电极。经磁控溅射在还原氧化石墨烯薄膜表面镀上金叉指电极的工艺参数为氩气氛围中,保持背底真空6.0-4.0×10-4Pa,溅射气压为1.0Pa,溅射功率为60W,溅射时间为7.5min,靶基距为50mm,气体流量为23sccm,室温条件下沉积金粒子。其中,磁控溅射的金叉指电极的叉指间距为200um,所述金电极厚度约为50nm。
(7)将镀上金叉指电极的还原氧化石墨烯柔性薄膜嵌入面包板上,用铂丝连接内外引线,便制得还原氧化石墨烯的湿敏传感器。该湿敏传感器包括湿度信号的采集与输出两个部分。其中,湿度信号采集部分为还原氧化石墨烯与金叉指电极部分;信号输出部分为吉时利2400表,将湿度信号转化为电信号。
图3为本发明制备一种还原氧化石墨烯薄膜湿敏传感器的对酒精棉远近的湿度感应示意图:当酒精棉靠近还原氧化石墨烯薄膜传感器时,测试的电信号增强,当酒精棉远离还原氧化石墨烯薄膜传感器时,测试的电信号减弱。可以看出该还原氧化石墨烯薄膜湿敏传感器对湿度感应十分灵敏。
图4为本发明制备一种还原氧化石墨烯薄膜湿敏传感器测试人体呼吸运动的示意图。但实验者对着还原氧化石墨烯薄膜湿敏传感器呼气时,测试的电信号增强;而当实验者吸气时,还原氧化石墨烯薄膜湿敏传感器的电信号减弱。这对未来医疗诊断具有重要意义。
实施例2:本实施例通过改变磁控溅射参数,研究金电极的沉积情况对于传感器特性的影响。
步骤1-5、7同实施例1,步骤6中的磁控溅射参数如表1~表6所示。
表1:不同背底真空度
注:溅射气压为1.0Pa,溅射功率为60W,溅射时间为7.5min,靶基距为50mm,气体流量为23sccm。
表2:不同溅射气压
注:背底真空6.0-4.0×10-4Pa,溅射功率为60W,溅射时间为7.5min,靶基距为50mm,气体流量为23sccm。
表3:不同溅射功率
注:背底真空6.0-4.0×10-4Pa,溅射气压为1.0Pa,溅射时间为7.5min,靶基距为50mm,气体流量为23sccm。
表4:不同溅射时间
溅射时间 3min 5min 7min 7.3min 7.5min 7.8min 8min 9min
薄膜厚度 9nm 26nm 39nm 46nm 50nm 75nm 81nm 100nm
注:背底真空6.0-4.0×10-4Pa,溅射气压为1.0Pa,溅射功率为60W,靶基距为50mm,气体流量为23sccm。
表5:不同靶基距
靶基距 10mm 30mm 45mm 50mm 55mm 60mm 70mm
均匀度 较差 一般 较好 较好 一般 一般
注:背底真空6.0-4.0×10-4Pa,溅射气压为1.0Pa,溅射功率为60W,溅射时间为7.5min,气体流量为23sccm。
表6:不同气体流量
气体流量 15sccm 18sccm 21sccm 22sccm 23sccm 24sccm 27sccm 30sccm
薄膜厚度 26nm 33nm 40nm 46nm 50nm 61nm 78nm 97nm
注:背底真空6.0-4.0×10-4Pa,溅射气压为1.0Pa,溅射功率为60W,溅射时间为7.5min,靶基距为50mm。
从表1~表6可以看出:当背底真空较高时,无法尽可能减少真空腔体内的残余气体,导致镀的薄膜不够纯净;当背底真空极低时,真空腔体内的残余气体能排除干净,但需要更多的能耗。因此,大量实验表明,背底真空为6.0-4.0×10-4Pa时,既能得到纯净的金薄膜电极,又能节约能源。当气压低于一定限制时,气体离子密度小,不足以形成等离子体;随着气压的不断上升,离子密度增大,溅射速率随之增加;当气压高到一定程度时,由于离子密度太大,使溅射离子平均自由程减小,从而又使溅射速率下降。而薄膜的形成是靶材粒子经过吸附、凝结、表面扩散迁移、碰撞结合形成稳定晶核。然后再通过吸附使晶核长大成小岛,岛长大后互相联结聚结,最后形成连续状薄膜。气压的大小影响粒子能量,进而影响薄膜晶核的形成。气压过低时,溅射粒子能量大,在基片上容易形成小丘或空洞,造成薄膜缺陷;随着压强的升高,溅射粒子在飞向基片的过程中与氩气原子碰撞几率增加,到达基片时能量减小,有利于去除高能造成的缺陷;但当气压太高时,溅射粒子到达基片时能量太低,又影响到薄膜的结晶。因此,经大量实验证明溅射气压为1.0Pa时,能得到成膜速率快和成膜质量较高的金薄膜叉指电极。随着溅射功率的不断增加,金薄膜的附着力也越来越好。实验表明,功率太小会使膜层结构疏松、颗粒大;提高功率,部分高能溅射粒子产生不同程度的注入现象,在薄膜与基片之间形成伪扩散层,提高附着力。但是,当功率太高时,由于膜层内应力增大,会导致膜层破裂。因此,当溅射功率为60W时,能得到附着力较大且完整的金薄膜电极。如果溅射时间较短,薄膜的层结构疏松且颗粒大,附着力也弱,难以形成均匀性和致密性较好的薄膜;如果溅射时间较长,能形成均匀的、致密的薄膜,但镀的薄膜会很厚,影响柔性电极的灵敏度。因此,当溅射时间为7.5min时,能得到厚度均一的金薄膜电极。若靶极距离较大,放电会比较集中在阴极和阳极的中心,使阴极溅射较强烈;若距离太大,在气体中产生的离子会由于非弹性碰撞被慢化,以至于当其撞击到阴极时已不能产生二次电子;而距离较小,则放电较分散,阴极边缘溅射较强烈;若距离太小,二次电子在撞击阴极后不能进行足够能量的电力碰撞。因此,靶材与基片之间必须保持一定的距离,过大或过小镀膜的均匀性和致密性都较差。实验表明,靶间距为50mm时,能得到均匀度和致密性都较好的金薄膜电极。如果气体流量较小,薄膜的层结构疏松且颗粒大,附着力也弱,难以形成均匀性和致密性较好的薄膜;如果气体流量较大,能形成均匀的、致密的薄膜,但镀的薄膜会很厚。因此,当气体流量为23sccm时,能得到厚度均一的金薄膜电极。
上述实例用来解释说明本发明,然而并非限定本发明。在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (4)

1.一种还原氧化石墨烯湿敏传感器的制备方法,其特征在于,步骤如下:
量取还原氧化石墨烯水溶液1-3mL,加入100mL的去离子水中,搅拌、超声,直至分散均匀,再用砂芯过滤装置进行抽滤,抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h;
取已经固化好的PDMS,通过按压的方式将滤膜上的还原氧化石墨烯转印到已经固化好的PDMS上,随后将PDMS泡在丙酮中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥;
将附有还原氧化石墨烯薄膜的PDMS剪出一个长方形,用叉指图案做掩膜版,进行磁控溅射,在还原氧化石墨烯薄膜表面镀上金叉指电极;磁控溅射在氩气氛围中进行,具体参数如下:保持背底真空6.0-4.0×10-4 Pa,溅射气压为1.0 Pa,溅射功率为60W,溅射时间为7.5min,靶基距为50mm,气体流量为23sccm,室温条件下沉积;
将镀上金叉指电极的还原氧化石墨烯柔性薄膜嵌入面包板上,用铂丝连接内外引线,便制得还原氧化石墨烯的湿敏传感器。
2.根据权利要求1所述的一种还原氧化石墨烯湿敏传感器的制备方法,其特征在于,所述还原氧化石墨烯水溶液的浓度小于1mg/mL。
3.根据权利要求1所述的一种还原氧化石墨烯湿敏传感器的制备方法,其特征在于,所述砂芯过滤装置中的滤膜为可溶于丙酮的水溶性滤膜。
4.根据权利要求1所述的一种还原氧化石墨烯湿敏传感器的制备方法,其特征在于,所述叉指图案的叉指间距为200um。
CN201610813060.4A 2016-09-09 2016-09-09 还原氧化石墨烯薄膜湿敏传感器的制备方法 Active CN106442629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610813060.4A CN106442629B (zh) 2016-09-09 2016-09-09 还原氧化石墨烯薄膜湿敏传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610813060.4A CN106442629B (zh) 2016-09-09 2016-09-09 还原氧化石墨烯薄膜湿敏传感器的制备方法

Publications (2)

Publication Number Publication Date
CN106442629A CN106442629A (zh) 2017-02-22
CN106442629B true CN106442629B (zh) 2018-12-25

Family

ID=58167492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610813060.4A Active CN106442629B (zh) 2016-09-09 2016-09-09 还原氧化石墨烯薄膜湿敏传感器的制备方法

Country Status (1)

Country Link
CN (1) CN106442629B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146555A (zh) * 2019-05-30 2019-08-20 河海大学常州校区 一种基于还原氧化石墨烯湿敏薄膜的湿度传感器、制备及使用方法
CN112683959B (zh) * 2019-10-17 2023-08-18 北京石墨烯研究院 一种湿敏组合物、柔性湿度传感器及其制备方法
CN111847376A (zh) * 2020-07-02 2020-10-30 上海集成电路研发中心有限公司 一种湿度传感器制备方法
CN112645683B (zh) * 2020-12-24 2021-07-27 广东工业大学 一种具有热操纵功能石墨烯薄膜的加工方法
RU2764380C1 (ru) * 2021-07-28 2022-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К.Аммосова" Способ изготовления гибкого датчика влажности
CN113832439B (zh) * 2021-08-24 2024-07-19 华能新能源股份有限公司 一种薄膜制备方法和设备
CN114034744B (zh) * 2021-11-05 2023-03-17 电子科技大学 一种高性能自驱动湿度传感器及其制备方法
CN114360809A (zh) * 2021-12-01 2022-04-15 中国科学院深圳先进技术研究院 一种超薄可拉伸薄膜电极的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793856A (zh) * 2010-04-09 2010-08-04 上海交通大学 基于石墨烯复合物的湿度传感器的制备方法
CN102680527A (zh) * 2012-05-23 2012-09-19 哈尔滨工业大学 一种基于纳米软印刷技术批量制备石墨烯气体传感器的方法
CN102879431A (zh) * 2012-10-15 2013-01-16 苏州大学 一种基于还原氧化石墨烯的气体传感器及其制备方法
CN104569078A (zh) * 2015-01-29 2015-04-29 重庆墨希科技有限公司 一种柔性石墨烯纳米墙电阻式湿度传感器及其制备方法
RU2579807C1 (ru) * 2014-11-13 2016-04-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Способ изготовления датчика влажности

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793856A (zh) * 2010-04-09 2010-08-04 上海交通大学 基于石墨烯复合物的湿度传感器的制备方法
CN102680527A (zh) * 2012-05-23 2012-09-19 哈尔滨工业大学 一种基于纳米软印刷技术批量制备石墨烯气体传感器的方法
CN102879431A (zh) * 2012-10-15 2013-01-16 苏州大学 一种基于还原氧化石墨烯的气体传感器及其制备方法
RU2579807C1 (ru) * 2014-11-13 2016-04-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Способ изготовления датчика влажности
CN104569078A (zh) * 2015-01-29 2015-04-29 重庆墨希科技有限公司 一种柔性石墨烯纳米墙电阻式湿度传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Humidity-sensing properties of chemically reduced grapheneoxide/polymer nanocomposite film sensor based on layer-by-layernano self-assembly";Dongzhi Zhang 等;《Sensors and Actuators B: Chemical》;20140302;第197卷;第66-72页 *
"基于石墨烯的光纤湿度传感器研究";肖毅 等;《光学学报》;20150430;第35卷(第4期);第0406005-1-0406005-10页 *

Also Published As

Publication number Publication date
CN106442629A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106442629B (zh) 还原氧化石墨烯薄膜湿敏传感器的制备方法
Dai et al. High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au@ C-Co3O4 heterostructures
Xu et al. Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit
CN110672670B (zh) 基于三维MXene褶皱球/ZnO复合材料的平面柔性室温NO2传感器及其制备方法
CN112557457B (zh) 基于可印刷纳米复合材料的平面柔性室温气体传感器
Zeng et al. Development of a new electrochemical sensing platform based on MoO3-polypyrrole nanowires/MWCNTs composite and its application to luteolin detection
Xu et al. Magnetism-assisted assembled porous Fe3O4 nanoparticles and their electrochemistry for dopamine sensing
Zhao et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection
CN108414589A (zh) 泡沫状多孔碳网/镍纳米粒子三维复合物及其合成方法和应用
Zhang et al. 3D CoxP@ NiCo-LDH heteronanosheet array: As a high sensitivity sensor for glucose
Liu et al. Synthesis of an ordered nanoporous Cu/Ni/Au film for sensitive non-enzymatic glucose sensing
Cui et al. Eco-friendly electrochemical biosensor based on sodium carboxymethyl cellulose/reduced graphene oxide composite
CN105063556A (zh) 一种在石墨烯上制备纳米金属颗粒阵列的制备方法
Hoo et al. Electrochemical glucose biosensor based on ZnO nanorods modified with gold nanoparticles
Adhyapak et al. Highly sensitive, room temperature operated gold nanowire-based humidity sensor: Adoptable for breath sensing
CN110687185A (zh) 基于SnO2@Fe2O3纳米异质结构敏感材料的低功耗丙酮气体传感器及其制备方法
Lapshuda et al. Nanocellulose-Based Composites for Flexible and Biodegradable Humidity Sensors for Breath Monitoring
Juang et al. Surfactant‐free synthesis of self-assembled CuO spheres composited with MnO2 nanorods for non-enzymatic glucose detection
CN115015335B (zh) SnSe/SnO2/Gr复合材料的制备方法、MEMS氨气传感器及其应用
CN112255278A (zh) 基于Ti3C2Tx/WO3复合纳米材料的室温氨气传感器及制备方法和应用
CN111189887A (zh) 一种湿度传感器及其制造方法和应用
Zhang et al. Portable glucose sensing analysis based on laser-induced graphene composite electrode
CN109459474A (zh) 一种金纳米粒子/三维石墨烯复合材料的制备及应用
Qi et al. A novel sensor apply in detection of indoor air
CN107976277A (zh) 基于石墨烯氧化物的真空传感器及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Shaoxing Lingwo Textile Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000812

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20211215

Application publication date: 20170222

Assignee: Shaoxing Ximei New Material Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000813

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20211215

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Shaoxing Keqiao Mingshi Textile Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000811

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20211216

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: GLOBALS ELECTRONICS (WENZHOU) Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000847

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20211228

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Shaoxing Xinfeng New Material Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2022330000010

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20220110

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Silicon dense core plating (Haining) semiconductor technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023980032609

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20230223

Application publication date: 20170222

Assignee: Minxin Semiconductor (Jiaxing) Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023980032567

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20230222

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: HANGZHOU FANGXIANG MEDICAL APPLIANCE Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023980034045

Denomination of invention: Preparation of reduced graphite oxide film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20230329

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: ZHEJIANG SAISAI BEARING CO.,LTD.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023330000256

Denomination of invention: Preparation of reduced graphite oxide film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20230424

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Huihao Medical Technology (Zhejiang) Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023330000750

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20230928

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: ZHEJIANG EXPO NEW MATERIALS CO.,LTD.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023330000821

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20231107

Application publication date: 20170222

Assignee: HANGZHOU COCO HEALTHCARE PRODUCTS Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023330000818

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20231107

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: WENZHOU HAOGE ANTI-COUNTERFEITING TECHNOLOGY CO.,LTD.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000016

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20240229

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: CHANGSHAN XINLONG BEARING Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000027

Denomination of invention: Preparation method of reduced graphene oxide thin film humidity sensor

Granted publication date: 20181225

License type: Common License

Record date: 20240403