CN106442221A - 一种粘性流体流变试验系统测试流体流变参数的方法 - Google Patents

一种粘性流体流变试验系统测试流体流变参数的方法 Download PDF

Info

Publication number
CN106442221A
CN106442221A CN201610859920.8A CN201610859920A CN106442221A CN 106442221 A CN106442221 A CN 106442221A CN 201610859920 A CN201610859920 A CN 201610859920A CN 106442221 A CN106442221 A CN 106442221A
Authority
CN
China
Prior art keywords
fluid
chute
viscous fluid
slide rail
belt conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610859920.8A
Other languages
English (en)
Other versions
CN106442221B (zh
Inventor
姜元俊
姜震
王萌
肖思友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mountain Hazards and Environment IMHE of CAS
Original Assignee
Institute of Mountain Hazards and Environment IMHE of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mountain Hazards and Environment IMHE of CAS filed Critical Institute of Mountain Hazards and Environment IMHE of CAS
Priority to CN201610859920.8A priority Critical patent/CN106442221B/zh
Publication of CN106442221A publication Critical patent/CN106442221A/zh
Application granted granted Critical
Publication of CN106442221B publication Critical patent/CN106442221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material

Abstract

本发明公开一种粘性流体流变试验系统测试流体流变参数的方法,其中,试验系统包括皮带输送机、滑槽、激光发射器、挡板、第一滑轨、高速摄像机、支架和第三滑轨;测试方法包括:(1)将流体往挡板方向传送,流体在挡板作用下形成固定形态的堆积区域;(2)对粘性流体运动的最高势面发射激光,并捕捉到最高势面的剖面不同时刻的流体运动影像;(3)根据流体运动影像得到粘性流体流动的高度H;(4)分别确定ub、α、ρ、Hp、up、z0、Ha和ua等参数;(5)按公式τc=ρg sinα(H‑Hp)计算流体屈服应力;(6)按公式计算流体流态性能指数:(7)按公式θ=α计算流体塑性粘度系数,获得τc、K、n。本发明解决了现有技术难以准确分析粘性流体流变特征的问题。

Description

一种粘性流体流变试验系统测试流体流变参数的方法
技术领域
本发明涉及一种测试方法,具体涉及的是一种粘性流体流变试验系统测试流体流变参数的方法。
背景技术
粘性流体的流变参数是反映流体流动规律研究的重大内容。通过对粘性流体的流变参数的测定可以获得物料的流变学表征,指导工程流变学研究与设计,检验和反正流变本构模型。现有的粘性流体参数测量仪器按照原理可以主要分为:旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。然而,上述的常规流变仪在测定粘性流体时,对粘性流体粒径要求严格,不能获得流体全粒径流变曲线,所允许的最大测量粒径不超过2mm的粘性流体。
同时,现有的流变仪在岩土工程中的运用存在的主要技术缺陷包括:
(1)毛细管粘度计。其主要原理是保持柱塞恒压或者恒速前进,测得毛细出口处流体的出口速度或者压力,从而根据流体的本构模型,获得流体的流变参数。但样本在柱塞压力作用下破坏较大且实验对样品粒径要求非常小,难以模拟粘性流体的流动规律。
(2)旋转流变仪。其是依靠旋转运动来产生剪切从而快速确定流变参数,但是旋转流变仪只能应用于较小剪切速度的流变分析,在多相体系中,会由于分散相粒子的尺寸与板的距离太近而出现较大误差。
(3)界面流变仪。其是根据流体在平面上通过震荡或者旋转运动产生剪切来研究流体的运动规律,由于平板式或锥板式流变仪、圆筒流变仪在试验过程中容易出现圆柱面的滑移效应,因而会影响到试验的精度,此外,现有大型的平板式或锥板式流变仪也只能测量粒径20mm左右的粘性流体的流变参数。
(4)R/S流变测试仪。其可以进行复杂的流变分析,其主要的型号有锥/板型、同轴圆柱型和软固体测试仪。R/S流变仪流变参数测试原理仍然是基于常规的流变仪原理,其主要特点是可以双重控制剪切应力和剪切率,可以快速连接转子系统,并快速对流体多种流变特性进行分析。然而,R/S流变仪的试验尺寸较小,仅适用于胶粘剂等浆体或膏体材料,并不适用于流体尤其是粒径较粗流体的流变分析。
而目前,由Phillips开发的大型椎板流变仪测试的最大粒径为35mm粘性流体,由Coussot等开发的大型同心圆筒流变仪测试的最大粒径为20mm粘性流体,王裕宜等开发的大型平板流变仪测试了最大粒径为15mm的泥石流体,这些测量结果能加深对粘性流体宏观流变特性的认识,但由于测量过程中的沉降、不均匀剪切等因素的影响,测量结果重复性较差,且大型流变仪造价成本高拆卸组装困难,不具备好的灵活性。
发明内容
针对上述现有技术的不足,本发明提供了一种粘性流体流变试验系统测试流体流变参数的方法,能够灵活针对粘性流体的流变特征进行模拟试验,并测试得到粘性流体的流变参数,从而对粘性流体进行准确的流变分析。
为实现上述目的,本发明采用的技术方案如下:
一种粘性流体流变试验系统测试流体流变参数的方法,所述的粘性流体流变试验系统包括皮带输送机、滑槽、激光发射器、挡板、第一滑轨、高速摄像机、支架和第三滑轨;
所述皮带输送机设置在支架上,所述滑槽设置在皮带输送机上,且其上设有可以控制滑槽坡度的滑槽旋钮,该滑槽用于放置粘性流体,并通过坡度调整来控制粘性流体的剪切力,所述激光发射器通过激光发射器安装支架安装在滑槽正上方中间位置,用于向滑槽中的粘性流体发射激光,所述第三滑轨安装在皮带传送机上,并与激光发射器安装支架连接,用于实现激光发射器位置的调整,所述挡板设置在支架上,并位于滑槽的一端,所述第一滑轨位于皮带传送机旁,所述高速摄像机安装在该第一滑轨上,并可沿第一滑轨移动,用于从侧面对准滑槽中的流体流动最高势面,并与粘性流体反射的激光相对应,从而捕捉到粘性流体最高势面的剖面不同时刻的流体运动影像;
所述的测试流体流变参数的方法则包括以下步骤:
(1)将粘性流体放置在滑槽中,然后利用皮带输送机将流体往挡板方向传送;
(2)循环步骤(1),实现粘性流体的连续传送,然后在挡板作用下于滑槽中形成固定形态的堆积区域;
(3)利用激光发射器对粘性流体运动的最高势面发射激光,激光反射后经由高速摄像机捕捉到最高势面的剖面不同时刻的流体运动影像;
(4)根据高速摄像机捕捉到的流体运动影像,得到粘性流体流动的高度H;
(5)定义在皮带输送机输送带上的高度H为0,并且向上和与皮带输送机的输送带方向相反的方向为正,然后分别测得皮带输送机的运动速度为ub、皮带输送机的坡度为α、高速摄像机捕捉到的最高势面的剖面的粘性流体密度为ρ、剪切应变层的厚度为Hp、与该剪切应变层对应的流动速度为up,并按照z0=H-Hp计算该剪切应变层对应的液面高度,按照Ha=1/2z0计算剪切应变层中间液面的高度,然后测得剪切应变层中间液面的速度为ua
(6)按照下列公式计算流体的屈服应力:
τc=ρg sinα(H-Hp)
式中,g为重力加速度;
(7)按照下列公式计算流体的流态性能指数:
(8)按照下列公式计算流体的塑性粘度系数:
θ=α ②
至此,即可获得粘性流体的流变参数τc、K、n。
进一步地,所述的粘性流体流变试验系统还包括设置在支架上的第二滑轨,以及同时与该第二滑轨和滑槽侧壁连接、用于在第二滑轨上移动从而调整滑槽整体宽度的连杆。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过设计全新的试验系统,利用皮带输送机和可移动的激光发射器+高速摄像机,可以测得滑槽内任意一处截面流体的速度分布;同时,依靠滑槽坡度的改变,并配合皮带输送机的传送,可以实现流体流动形态的控制,从而不仅实现了流体三维流动特性的观察,而且在配合本发明设计的τc=ρg sinα(H-Hp)、 三个公式后,可以计算获得相应的流体流变参数,进而分析出粘性流体的流变特性。因此,本发明不仅测试灵活性强、测试结果误差率小,而且适用于粒径较粗流体的流变分析。
(2)本发明试验系统利用设置的第二滑轨和连杆,可实现滑槽整体宽度的调整,从而控制试验流体材料的用量,并且还可以研究流体流动范围尺寸对流变特性的影响,如此一来,本发明在测试粘性流体的过程中,不仅操作灵活,而且能够充分测试流体在多种情况下的流变特性,且试验结果准确、试验效率高。
(3)本发明设计巧妙、流程合理、构思严谨、实用性强,能准确反映出粘性流体的流变特征,从而为满足实际工程需要提供了保障。因此,本发明具有非常高的实用价值和推广价值。
附图说明
图1为本发明所述的粘性流体流变试验系统的结构示意图。
图2为本发明-实例中流体剖面的速度分布示意图。
其中,附图标记对应的名称为:
1-皮带输送机,2-滑槽旋钮,3-连杆,4-滑槽,5-激光发射器,6-激光发射器安装支架,7-挡板,8-第二滑轨,9-第一滑轨,10-高速摄像机,11-支架,12-第三滑轨。
具体实施方式
下面结合附图说明和实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。
本发明提供了一种测试粘性流体流变参数的方法,该方法需配合申请人自行设计的一套试验系统一起使用。如图1所示,本发明所述的试验系统,其包括皮带输送机1、连杆3、滑槽4、激光发射器5、挡板7、第二滑轨8、第一滑轨9、高速摄像机10、支架11和第三滑轨12。
所述的皮带输送机1设置在支架11上,用于将粘性流体往挡板7设置方向传送。所述的滑槽4设置在皮带输送机1上,且其上设有可以控制滑槽坡度的滑槽旋钮2。滑槽4用于放置粘性流体,并通过坡度调整来控制粘性流体的剪切力。所述的激光发射器5通过激光发射器安装支架6安装在滑槽4正上方中间位置,用于向滑槽4中的粘性流体发射激光。而所述的第二滑轨8设置在支架11上,所述的连杆3同时与第二滑轨8和滑槽4侧壁连接,用于在第二滑轨8上移动,从而调整滑槽4的整体宽度。
所述的第三滑轨12安装在皮带输送机1上,并与激光发射器安装支架6连接,用于实现激光发射器5位置的调整。所述的挡板7设置在支架上,并位于滑槽4的一端,用于限制粘性流体的运动,使之形成一定形态的流通区域。所述的第一滑轨9位于皮带输送机1旁,所述的高速摄像机10安装在该第一滑轨9上,并可沿其移动,从而在侧面对准滑槽4中的流体流动最高势面,以便与粘性流体反射的激光相对应,从而捕捉粘性流体最高势面的剖面不同时刻的流体运动影像。
下面介绍本发明的测试过程:
首先,将粘性流体放置在滑槽中,然后利用皮带输送机将流体连续往挡板方向传送。由于挡板的限制,流体的运动最后会于滑槽中形成固定形态的堆积区域。
接着,利用激光发射器对粘性流体运动的最高势面发射激光,激光反射后经由高速摄像机捕捉到最高势面的剖面不同时刻的流体运动影像。根据高速摄像机捕捉到的流体运动影像,得到粘性流体流动的高度H。在试验的过程中,还需测得如下参数:
(1)皮带输送机的运动速度ub,并定义与皮带输送机的输送带方向相反为正,且在皮带输送机输送带上的高度H为0,并定义向上方向为正;
(2)皮带输送机的坡度α;
(3)高速摄像机捕捉到的最高势面的剖面的粘性流体密度ρ;
(4)剪切应变层的厚度Hp、与该剪切应变层对应的流动速度up,然后计算与该剪切应变层对应的液面高度z0=H-Hp以及剪切应变层中间液面的高度Ha=1/2z0,并测得与剪切应变层中间液面对应的速度ua
上述所有参数的单位均为SI国际标准单位。获得上述参数后,按照下列公式计算流体的屈服应力:
τc=ρg sinα(H-Hp)
式中,g为重力加速度;
而后,按照下列公式计算流体的流态性能指数:
再接着,按照下列公式计算流体的塑性粘度系数:
θ=α ②
至此,即可获得流体的流变参数τc、K、n。然后复位高速摄像机和激光发射器,准备下一次试验。
上述τc、K、n的计算公式,其推导过程如下:
首先,随着皮带输送机的运转,流体中剪切应力会克服重力保持一定的流动形态,最终堆积在挡板附近,因此,流体中的不同液面高度的屈服应力τ可以表示为:
τ(z)=ρg(H-z)sinα
而根据Herschel-Bulkley模型的表达式:(为剪切速率,s-1)可知,在剪切应变层和有剪切应变层过渡面的屈服应力为材料的屈服应力,该屈服应力即等于此处液面的重力,因此,可以得到τc的计算公式为:
τc=ρg sinα(H-Hp)。
接着,对Herschel-Bulkley模型的表达式进行直接积分,再由边界条件u(0)=-ub可以得到流体不同液面高度的速度u的表达式为:
①式中,由于z0=H-Hp,因此,u0可以表示为:
根据边界条件u(Hp)=up和②式联立可得:
根据测量的u(Ha)=ua和②式联立可得:
由于up、H和Hp均已知,因而在③式和④式中只有K和n两个未知数。联立式③式和④就可以求得K和n两个未知数,即:
解得:
进而得到:
下面以一个实例来对本发明的计算过程进行说明。
确定试验滑槽的倾角α为22°,皮带输送机输送带的传送速度ub为0.04552m/s。流体的密度ρ为1000kg/m3,高速摄像机监测得到的图像经过图像处理得到流体剖面的速度分布如图2所示,其中流体最高势面剖面的高度H为0.01m,有剪切应变和无剪切应变过渡面的速度up为0.01035m/s,对应的液面高度z0为0.0076m,有剪切应变层剖面中点液面的速度ua为0.0051616m/s,对应的液面高度Ha为0.0038m。
根据公式计算得出流变参数τc、K、n的值分别为:
τc=ρg sinα(H-Hp)=1000×9.8×sin 22°×(0.01-0.0076)=6.16(pa);
下表为本发明与现有技术测得的流变参数τc、K、n数值对比:
测试方法 τc(pa) K n
本发明 6.16 7.4621 0.4037
毛细管流变仪 4.02 5.2541 0.3256
R/S流变仪 5.19 6.3126 0.3674
锥板流变仪 5.99 6.6286 0.3791
圆筒流变仪 6.14 7.4599 0.4025
目前,行业内普遍公认的测量粘性流体流变参数最为准确的是采用圆筒流变仪(由Coussot等开发)所进行的测量,而由上表不难看出,本发明测得的流变参数与圆筒流变仪测得的参数最为接近,因此,本发明测得的流变参数,准确度非常高,但是相比现有的圆筒流变仪来说,除了测量数据准确外,本发明还具有试验系统结构简单、组装方便、成本低廉、测量重复性和灵活性好的优势。
本发明通过设计一种专用于粘性流体流变试验的系统和测试方法,相比现有设备和测试方式来说,其很好地实现了粘性流体运动的模拟及其流变特性、特别是粒径较粗流体流变特性的分析。而之所以获得如此效果,原因在于本发明并不采用与常规流变仪采用的旋转震荡等方式使流体产生剪切,而是通过流体在皮带输送机上的自由表面运动使流体产生剪切,然后利用激光发射器+高速摄相机可以测得任意一处截面流体的速度分布,进而根据相应的计算获得流体的流变参数。本发明所得的测试结果并不依靠一个面或者一个点的受力或者速度分布,而是通过综合分析整个流动区域的速度分布和剪切应力来求得流变参数。因此本发明不但可以测得粗粒径粘性流体的流变参数,而且不会对样品结构造成破坏,其分析结果误差非常小,非常有利于实际工程中对粘性流体流变特性的研究。因此,本发明相比现有技术来说,技术进步十分明显,其具有突出的实质性特点和显著的进步。
上述实施例仅为本发明的优选实施方式之一,不应当用于限制本发明的保护范围,凡在本发明的主体设计思想和精神上作出的毫无实质意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。

Claims (2)

1.一种粘性流体流变试验系统测试流体流变参数的方法,其特征在于,所述的粘性流体流变试验系统包括皮带输送机(1)、滑槽(4)、激光发射器(5)、挡板(7)、第一滑轨(9)、高速摄像机(10)、支架(11)和第三滑轨(12);
所述皮带输送机(1)设置在支架(11)上,所述滑槽(4)设置在皮带输送机(1)上,且其上设有可以控制滑槽坡度的滑槽旋钮(2),该滑槽用于放置粘性流体,并通过坡度调整来控制粘性流体的剪切力,所述激光发射器(5)通过激光发射器安装支架(6)安装在滑槽(4)正上方中间位置,用于向滑槽中的粘性流体发射激光,所述第三滑轨(12)安装在皮带传送机(1)上,并与激光发射器安装支架(6)连接,用于实现激光发射器位置的调整,所述挡板(7)设置在支架(11)上,并位于滑槽的一端,所述第一滑轨(9)位于皮带传送机(1)旁,所述高速摄像机(10)安装在该第一滑轨(9)上,并可沿第一滑轨移动,用于从侧面对准滑槽中的流体流动最高势面,并与粘性流体反射的激光相对应,从而捕捉到粘性流体最高势面的剖面不同时刻的流体运动影像;
所述的测试流体流变参数的方法则包括以下步骤:
(1)将粘性流体放置在滑槽中,然后利用皮带输送机将流体往挡板方向传送;
(2)循环步骤(1),实现粘性流体的连续传送,然后在挡板作用下于滑槽中形成固定形态的堆积区域;
(3)利用激光发射器对粘性流体运动的最高势面发射激光,激光反射后经由高速摄像机捕捉到最高势面的剖面不同时刻的流体运动影像;
(4)根据高速摄像机捕捉到的流体运动影像,得到粘性流体流动的高度H;
(5)定义在皮带输送机输送带上的高度H为0,并且向上和与皮带输送机的输送带方向相反的方向为正,然后分别测得皮带输送机的运动速度为ub、皮带输送机的坡度为α、高速摄像机捕捉到的最高势面的剖面的粘性流体密度为ρ、剪切应变层的厚度为Hp、与该剪切应变层对应的流动速度为up,并按照z0=H-Hp计算该剪切应变层对应的液面高度,按照Ha=1/2z0计算剪切应变层中间液面的高度,然后测得剪切应变层中间液面的速度为ua
(6)按照下列公式计算流体的屈服应力:
τc=ρg sinα(H-Hp)
式中,g为重力加速度;
(7)按照下列公式计算流体的流态性能指数:
n = l n ( 1 - H a / z 0 ) l n ( u p - u a ) - l n ( 1 - H a / z 0 ) - l n ( u p + u b )
(8)按照下列公式计算流体的塑性粘度系数:
θ=α ②
至此,即可获得粘性流体的流变参数τc、K、n。
2.根据权利要求1所述的一种粘性流体流变试验系统测试流体流变参数的方法,其特征在于,所述的粘性流体流变试验系统还包括设置在支架(11)上的第二滑轨(8),以及同时与该第二滑轨(8)和滑槽(4)侧壁连接、用于在第二滑轨上移动从而调整滑槽整体宽度的连杆(3)。
CN201610859920.8A 2016-09-29 2016-09-29 一种粘性流体流变试验系统测试流体流变参数的方法 Active CN106442221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610859920.8A CN106442221B (zh) 2016-09-29 2016-09-29 一种粘性流体流变试验系统测试流体流变参数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610859920.8A CN106442221B (zh) 2016-09-29 2016-09-29 一种粘性流体流变试验系统测试流体流变参数的方法

Publications (2)

Publication Number Publication Date
CN106442221A true CN106442221A (zh) 2017-02-22
CN106442221B CN106442221B (zh) 2018-12-04

Family

ID=58170815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610859920.8A Active CN106442221B (zh) 2016-09-29 2016-09-29 一种粘性流体流变试验系统测试流体流变参数的方法

Country Status (1)

Country Link
CN (1) CN106442221B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238553A (zh) * 2017-07-21 2017-10-10 华北理工大学 充填料浆临界流速与沉降速率检测装置及用其检测的方法
CN108426802A (zh) * 2018-03-28 2018-08-21 中国建筑材料科学研究总院有限公司 通过坍落度测试过程预测新拌混凝土流变参数的装置
DE102020216545B3 (de) 2020-12-23 2022-05-12 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und Messanordnung zum Ermitteln einer Fließeigenschaft eines Fluids
US11982607B2 (en) 2020-12-23 2024-05-14 Friedrich-Alexander-Universitaet Erlangen-Nuernberg Method and measuring arrangement for determining a rheological property of a fluid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2921811Y (zh) * 2006-06-09 2007-07-11 华中农业大学 径流动力学参数试验台
US20080060423A1 (en) * 2006-04-29 2008-03-13 Wen-Chen Jau Measurements of yield stress and plastic viscosity of cement-based materials via concrete rheometer
CN102147325A (zh) * 2011-02-28 2011-08-10 浙江工业大学 非恒定泥石流实验装置
CN105004508A (zh) * 2015-07-14 2015-10-28 中国科学院水利部成都山地灾害与环境研究所 泥石流沿程演化实验测量系统及参数测算方法
CN105527405A (zh) * 2016-01-28 2016-04-27 西南石油大学 一种泥石流汇江物理模拟试验装置及试验方法
KR20160067660A (ko) * 2014-12-04 2016-06-14 부경대학교 산학협력단 물흐름 특성을 고려한 베인 타입 레오메타 및 이를 이용한 시료의 유변물성 획득방법
CN105841919A (zh) * 2016-03-23 2016-08-10 河海大学 黏性非牛顿流体中固体物质运动试验装置及其使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080060423A1 (en) * 2006-04-29 2008-03-13 Wen-Chen Jau Measurements of yield stress and plastic viscosity of cement-based materials via concrete rheometer
CN2921811Y (zh) * 2006-06-09 2007-07-11 华中农业大学 径流动力学参数试验台
CN102147325A (zh) * 2011-02-28 2011-08-10 浙江工业大学 非恒定泥石流实验装置
KR20160067660A (ko) * 2014-12-04 2016-06-14 부경대학교 산학협력단 물흐름 특성을 고려한 베인 타입 레오메타 및 이를 이용한 시료의 유변물성 획득방법
CN105004508A (zh) * 2015-07-14 2015-10-28 中国科学院水利部成都山地灾害与环境研究所 泥石流沿程演化实验测量系统及参数测算方法
CN105527405A (zh) * 2016-01-28 2016-04-27 西南石油大学 一种泥石流汇江物理模拟试验装置及试验方法
CN105841919A (zh) * 2016-03-23 2016-08-10 河海大学 黏性非牛顿流体中固体物质运动试验装置及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨红娟 等: "不同上限粒径泥石流浆体的流变参数变化规律", 《水利学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238553A (zh) * 2017-07-21 2017-10-10 华北理工大学 充填料浆临界流速与沉降速率检测装置及用其检测的方法
CN107238553B (zh) * 2017-07-21 2023-11-28 华北理工大学 充填料浆临界流速与沉降速率检测装置及用其检测的方法
CN108426802A (zh) * 2018-03-28 2018-08-21 中国建筑材料科学研究总院有限公司 通过坍落度测试过程预测新拌混凝土流变参数的装置
DE102020216545B3 (de) 2020-12-23 2022-05-12 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und Messanordnung zum Ermitteln einer Fließeigenschaft eines Fluids
EP4019932A1 (de) 2020-12-23 2022-06-29 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und messanordnung zum ermitteln einer fliesseigenschaft eines fluids
US11982607B2 (en) 2020-12-23 2024-05-14 Friedrich-Alexander-Universitaet Erlangen-Nuernberg Method and measuring arrangement for determining a rheological property of a fluid

Also Published As

Publication number Publication date
CN106442221B (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
CN104132699B (zh) 一种激光扫描式散状物料流量检测及分布误差消除方法
CN106442221A (zh) 一种粘性流体流变试验系统测试流体流变参数的方法
Ni et al. Lagrangian acceleration measurements in convective thermal turbulence
Zeng et al. Measurement of bulk material flow based on laser scanning technology for the energy efficiency improvement of belt conveyors
CN105509661B (zh) 一种陶瓷砖平面度在线检测方法
Rao et al. Coarse aggregate shape and size properties using a new image analyzer
CN103090936A (zh) 一种新型煤炭运输量测量装置和测量方法
CN104678186B (zh) 电容式触摸屏传感器的测量系统
CN203981165U (zh) 一种新型河工动床模型地形测量装置
CN104458542A (zh) 非接触式砂石骨料粒度粒形检测仪及检测方法
CN108180947B (zh) 一种不规则散堆状运动物料品质的综合评价方法
CN106442220B (zh) 一种粘性流体流变试验系统
CN106018179A (zh) 一种基于图像处理的胶料表面黏性测量方法及装置
CN105636328B (zh) 一种基于驻极体的等离子体密度测量系统及其测量方法
CN106092137A (zh) 一种车载三维激光路面检测系统的室外校准设备与方法
CN105043287A (zh) 一种基于灰关联评估的凸轮轮廓检测装置及其方法
Rozbroj et al. Validation of movement over a belt conveyor drum
CN107873233A (zh) 一种阵列红外光电式谷物流量测量装置及方法
CN204330801U (zh) 液滴在自重下于不同温度材料表面的流速测试装置
CN109253944B (zh) 一种超高温熔体界面流变及三明治效应表面张力测试装置
CN107449828B (zh) 一种堆石混凝土结构空间密实度检测方法及评价方法
CN203163842U (zh) 一种新型煤炭运输量测量装置
CN107268400B (zh) 一种路面施工质量检测方法及系统
CN107014301B (zh) 一种钵苗直径的检测装置及方法
CN106153501B (zh) 一种利用弹簧小球系统进行液体粘滞系数测量的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant