CN106441311A - 一种基于激光成像雷达的非合作航天器相对位姿测量方法 - Google Patents

一种基于激光成像雷达的非合作航天器相对位姿测量方法 Download PDF

Info

Publication number
CN106441311A
CN106441311A CN201610557070.6A CN201610557070A CN106441311A CN 106441311 A CN106441311 A CN 106441311A CN 201610557070 A CN201610557070 A CN 201610557070A CN 106441311 A CN106441311 A CN 106441311A
Authority
CN
China
Prior art keywords
point cloud
laser imaging
cloud
imaging radar
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610557070.6A
Other languages
English (en)
Other versions
CN106441311B (zh
Inventor
刘玉
陈凤
顾冬晴
王盈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace System Engineering Institute
Original Assignee
Shanghai Aerospace System Engineering Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace System Engineering Institute filed Critical Shanghai Aerospace System Engineering Institute
Priority to CN201610557070.6A priority Critical patent/CN106441311B/zh
Publication of CN106441311A publication Critical patent/CN106441311A/zh
Application granted granted Critical
Publication of CN106441311B publication Critical patent/CN106441311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提出一种基于激光成像雷达的非合作航天器相对位姿测量方法,采用激光成像雷达作为测量设备,实现对无明显特征的非合作目标相对位姿测量。主要包括如下步骤:1. 根据非合作航天器模型建立精密点云模型库;2.根据激光成像雷达获取可视部位点云数据;3.对可视部位点云数据进行预处理;4. 将可视部位点云数据与精密点云模型数据进行粗配准;5. 采用ICP算法进行点云精配准确定最优相对位置姿态。本发明可实现对任意构型的非合作航天器的相对位置姿态姿测量,通过建立点云数据库,合理选择待配准点云,取得了抗干扰能力强、算法鲁棒性好、相对位置姿态测量精度高、可满足空间操控中近距离非合作目标相对导航任务需求的有益效果。

Description

一种基于激光成像雷达的非合作航天器相对位姿测量方法
技术领域
本发明涉及一种基于激光成像雷达的非合作航天器相对位姿测量方法,尤其是一种适用于没有明显特征的非合作航天器的相对位姿测量。
背景技术
随着空间技术不断发展,各类航天器构造越来越复杂,造价越来越昂贵。为节省航天任务费用、延长航天器工作寿命、提高灵活执行任务能力,美国航空航天局、欧洲空间局等部门相继开展了针对空间飞行器,特别是已失效的具有非合作特征的航天器的操控任务,以期望实现可重复利用空间的在轨服务技术。传统基于二维成像传感器的测量系统由于作用距离短、受光照条件影响大等问题制约了空间操控平台灵活性,而激光成像雷达则由于受光照条件影响小、作用距离长等优势,且能直接获取高精度、高细节表征的三维点云信息,因此,为提高空间智能操控能力,自主完成空间服务任务,迫切需要突破针对激光成像雷达的非合作航天器相对位姿测量技术。
现有的基于激光雷达载荷的相对导航技术主要针对远距离目标(点目标或小目标)进行测距和测角确定目标的方位,目前尚未发现与本发明类似的针对近距离段的基于激光成像雷达的非合作航天器相对位姿测量技术相关的说明或报道,也尚未收集到国内类似的资料。
发明内容
本发明所要解决的技术问题是空间操控中近距离非合作目标相对导航问题。本发明的目的在于提供一种基于激光成像雷达的非合作航天器相对位姿测量方法。利用本发明可解决传统基于二维成像传感器的测量系统存在环境适应性差、作用距离短问题,可实现对任意构型的空间非合作航天器位置姿态测量,满足空间操控中近距离非合作目标相对导航任务需求。
为了达到上述发明目的,本发明提供了一种基于激光成像雷达的非合作航天器相对位姿测量方法,该方法主要采用激光成像雷达作为载荷,主要步骤如下:
步骤1,根据非合作航天器模型建立精密点云模型库
将已知构型的非合作航天器(一般以CAD模型形式表征)通过UGS NX 7.0软件进行表面网格划分,生成由不同点云密度构成的点云模型数据库。
步骤2,根据激光成像雷达获取可视部位点云数据
根据任务需求,合理设计激光成像雷达参数,然后通过激光成像雷达对非合作航天器可视部位成像获得可视部位三维点云数据。
步骤3,可视部位点云数据进行预处理
主要通过双边滤波算法过滤掉孤立点和混杂点,得到无噪声影响的点云数据。
步骤4,将可视部位点云数据与精密点云模型数据进行粗配准
通过计算每个点处的法向量、主曲率以及相应的主方向向量,应用相似性度量原理实现可视部位点云数据与点云密度间隔最小的精密点云进行粗配准,确定初始位置姿态。
步骤5,采用ICP算法进行点云精配准确定最优相对位置姿态
根据初始位姿,判断激光成像雷达距离目标的大致距离,然后自适应选择模型库中相应密度的点云,利用ICP算法进行高精度配准得到最优的相对位置姿态。
本发明带来以下有益效益:
本发明中提出的一种基于激光成像雷达的非合作航天器相对位姿测量方法合理可行,通过建立点云数据库,合理选择待配准点云,使得测量方法具有抗干扰能力强、鲁棒性好、相对位置姿态测量精度高的优势,适用于没有明显特征的任意构型的非合作航天器相对位置姿态测量,可满足空间操控中近距离非合作目标相对导航任务需求。与此同时,该技术方法还可拓展应用至目标三维重构、翻滚目标运动特性估计等方面,因此,具有较为广阔的前景收益,为我国后续实施工程应用提供重要参考依据。
附图说明
图1为本发明一种基于激光成像雷达的非合作航天器相对位姿测量方法的步骤图;
图2为本发明一具体实施例中复杂构型航天器模型图;
图3为本发明一具体实施例中复杂构型航天器模型网格划分后效果图;
图4为本发明一具体实施例中复杂构型航天器可视部位成像效果图;
图5为本发明一具体实施例中复杂构型航天器点云配准效果图。
具体实施方式
在下面的描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。
其次,本发明利用示意图进行详细描述,在详述本发明实施例时,为便于说明,所述示意图只是实例,其在此不应限制本发明保护的范围。
本发明提供一种基于激光成像雷达的非合作航天器相对位姿测量方法,通过激光成像雷达获取非合作航天器可视部位点云数据,然后利用点云预处理、点云粗配准和精配准精度实现非合作航天器的相对位置姿态估计。
下面结合实施例介绍本发明的应用过程。
如图1所示为本发明提出的一种基于激光成像雷达的非合作航天器相对位姿测量方法的步骤图。该方法包括如下的步骤:
步骤1,根据非合作航天器模型建立精密点云模型库
将已知构型的非合作航天器(一般以CAD模型形式表征)通过UGS NX 7.0软件进行表面网格划分,生成由不同点云密度构成的点云模型数据库。
步骤2,根据激光成像雷达获取可视部位点云数据
根据任务需求,合理设计激光成像雷达参数,然后通过激光成像雷达对非合作航天器可视部位成像获得可视部位三维点云数据。
步骤3,可视部位点云数据进行预处理
主要通过双边滤波算法过滤掉孤立点和混杂点,得到无噪声影响的点云数据。
步骤4,将可视部位点云数据与精密点云模型数据进行粗配准
通过计算每个点处的法向量、主曲率以及相应的主方向向量,应用相似性度量原理实现可视部位点云数据与点云密度间隔最小的精密点云进行粗配准,确定初始位置姿态。
步骤5,采用ICP算法进行点云精配准确定最优相对位置姿态
根据初始位姿,判断激光成像雷达距离目标的大致距离,然后自适应选择模型库中相应密度的点云,利用ICP算法进行高精度配准得到最优的相对位置姿态。
如图2所示为某复杂构型航天器目标模型构型图,航天器尺寸较大,约为30*30*5m,整个模型主要由柱形结构连接而成。
如表2所示为根据任务需求设计激光成像雷达参数,这里为说明算法的有效性,采用光线追踪法仿真生成激光成像雷达可视部位点云数据。
如图3所示为对复杂构型航天器利用网格划分技术生成间隔为5mm的点云数据效果,共计203873个数据点。根据任务需求,这里共仿真生成10组点云模型数据。
如图4所示为采用光线追踪法模拟激光成像雷达仿真生成的可视部位点云效果图。
如图5所示为作用距离为54.4931米处点云配准效果。
如表3所示不同作用距离下解算得到的相对位置姿态误差。从结果中可以看出,位置误差在0.12m以内,姿态误差在0.5°以内,可满足绕复杂飞行器任意指定部位进行绕飞/悬停/逼近过程中的相对导航任务需求。
因此,本发明专利提供的基于激光成像雷达的非合作航天器相对位姿测量方法合理可行,测量结果精度较高,算法鲁棒性好,抗干扰能力强,可实现对没有明显特征的任意构型的非合作航天器相对位置姿态测量。
表2 激光成像雷达设计参数
表3 不同作用距离下相对位置姿态解算结果
作用距离(m) 误差dX (m) 误差dY (m) 误差dZ (m) 滚动角误差(O 俯仰角误差(O 偏航角误差(O
312.5018 0.0879548 -0.0183768 0.0199113 0.0590695 0.173289 0.0696192
204.3189 -0.0105757 -0.004338 -0.00833062 -0.0162187 -0.241058 0.168197
169.4058 0.0161048 -0.00298844 -0.00361461 0.0540593 -0.108041 0.177106
103.7267 0.0154477 -0.0240305 -0.00488669 0.0852108 0.00400262 0.0222856
82.3608 0.0104428 -0.0265139 -0.00342948 0.0519882 -0.0479032 0.044377
54.4931 -0.0009364 0.00317612 -0.0123425 0.0815211 -0.00594417 -0.0289984
28.2864 -0.0648431 -0.0198165 -0.0229579 -0.219054 -0.3193 -0.232793
19.3470 -0.107635 -0.0688704 -0.0387707 -0.475105 -0.49222 -0.421067

Claims (3)

1.一种基于激光成像雷达的非合作航天器相对位姿测量方法,采用激光成像雷达作为测量设备,实现对无明显特征的非合作目标相对位姿测量,其特征在于,包括如下步骤:
步骤1,根据非合作航天器模型建立精密点云模型库
将已知构型的非合作航天器通过UGS NX 7.0软件进行表面网格划分,生成由不同点云密度构成的点云模型数据库;
步骤2,根据激光成像雷达获取可视部位点云数据
根据任务需求,合理设计激光成像雷达参数,然后通过激光成像雷达对非合作航天器可视部位成像获得可视部位三维点云数据;
步骤3,对可视部位点云数据进行预处理
主要通过双边滤波算法过滤掉孤立点和混杂点,得到无噪声影响的点云数据;
步骤4,将可视部位点云数据与精密点云模型数据进行粗配准
通过计算每个点处的法向量、主曲率以及相应的主方向向量,应用相似性度量原理实现可视部位点云数据与点云密度间隔最小的精密点云进行粗配准,确定初始位置姿态;
步骤5,采用ICP算法进行点云精配准确定最优相对位置姿态
根据初始位姿,判断激光成像雷达距离目标的大致距离,然后自适应选择模型库中相应密度的点云,利用ICP算法进行高精度配准得到最优的相对位置姿态。
2.根据权利要求1所述的基于激光成像雷达的非合作航天器相对位姿测量方法,其特征在于,所述的步骤1,对已知模型进行表面网格划分,生成由不同点云密度构成的点云模型数据库,具体如下:假定激光成像雷达作用距离范围为L1~L2,单位是米,激光成像雷达视场角为α×β,单位是度,成像点数为M×N,那么将作用距离段分成n等份,则距离区间分别记为:
然后计算不同距离下的可视部位点云间隔,具体如公式(2)所示:
根据不同距离下的点云间隔,设定已知模型的点云间隔如公式(3)所示,与公式(2)相比,模型点云间隔比可视部位点云间隔小一个数量级;
根据公式(3)依据最小化原则确定的n个点云密度间隔如公式(4)所示:
最后,依据确定的n个点云密度间隔分别对已知模型点云运行网格划分,得到由n组点云(点云序号分别为1,2,3,...,i,...,n)构成的数据库。
3.根据权利要求2所述的基于激光成像雷达的非合作航天器相对位姿测量方法,其特征在于,所述的步骤5,根据初始位姿自适应选择待匹配模型点云,利用ICP算法进行高精度配准得到最优的相对位置姿态,具体为:假定经过粗配准确定位置矢量T(Tx,Ty,Tz)和姿态矩阵R,然后计算欧式距离判断该距离所在的距离区间,假定落在区间内,则选择模型库中第i组点云利用ICP算法进行精配准。
CN201610557070.6A 2016-07-15 2016-07-15 一种基于激光成像雷达的非合作航天器相对位姿测量方法 Active CN106441311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610557070.6A CN106441311B (zh) 2016-07-15 2016-07-15 一种基于激光成像雷达的非合作航天器相对位姿测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610557070.6A CN106441311B (zh) 2016-07-15 2016-07-15 一种基于激光成像雷达的非合作航天器相对位姿测量方法

Publications (2)

Publication Number Publication Date
CN106441311A true CN106441311A (zh) 2017-02-22
CN106441311B CN106441311B (zh) 2019-06-28

Family

ID=58184429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610557070.6A Active CN106441311B (zh) 2016-07-15 2016-07-15 一种基于激光成像雷达的非合作航天器相对位姿测量方法

Country Status (1)

Country Link
CN (1) CN106441311B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590347A (zh) * 2017-09-22 2018-01-16 武汉德友科技有限公司 一种基于设计模型匹配孤立点识别与删除方法及系统
CN108489496A (zh) * 2018-04-28 2018-09-04 北京空间飞行器总体设计部 基于多源信息融合的非合作目标相对导航运动估计方法及系统
CN108519075A (zh) * 2018-03-22 2018-09-11 北京控制工程研究所 一种空间多目标位姿测量方法
CN108680926A (zh) * 2018-04-11 2018-10-19 北京特种机械研究所 平面内双平台相对位姿测量系统及方法
CN109901177A (zh) * 2017-12-07 2019-06-18 北京万集科技股份有限公司 一种提升激光雷达测距能力的方法及装置
CN110264502A (zh) * 2019-05-17 2019-09-20 华为技术有限公司 点云配准方法和装置
CN110286371A (zh) * 2019-06-28 2019-09-27 北京理工大学 基于雷达点阵数据的小天体着陆器相对位姿确定方法
CN110348473A (zh) * 2019-05-27 2019-10-18 南京航空航天大学 基于ransac的非合作航天器自主识别方法
CN110796728A (zh) * 2019-09-20 2020-02-14 南京航空航天大学 一种基于扫描式激光雷达的非合作航天器三维重建方法
CN111750870A (zh) * 2020-06-30 2020-10-09 南京理工大学 一种空间翻滚火箭箭体的运动参数估计方法
CN112100900A (zh) * 2020-06-30 2020-12-18 北京控制工程研究所 一种空间非合作目标点云初始姿态测量方法
CN113706619A (zh) * 2021-10-21 2021-11-26 南京航空航天大学 一种基于空间映射学习的非合作目标姿态估计方法
CN116105694A (zh) * 2022-12-09 2023-05-12 中国科学院上海技术物理研究所 一种多手段光学载荷复合的空间目标三维视觉测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130030773A1 (en) * 2011-07-29 2013-01-31 Hexagon Metrology, Inc. Coordinate measuring system data reduction
CN104299260A (zh) * 2014-09-10 2015-01-21 西南交通大学 一种基于sift和lbp的点云配准的接触网三维重建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130030773A1 (en) * 2011-07-29 2013-01-31 Hexagon Metrology, Inc. Coordinate measuring system data reduction
CN104299260A (zh) * 2014-09-10 2015-01-21 西南交通大学 一种基于sift和lbp的点云配准的接触网三维重建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIN LU ETC.: "Automatic markerless registration of mobile LiDAR point-clouds", 《2014 IEEE GEOSCIENCE AND REMOTE SENSING SYMPOSIUM》 *
高伟等: "基于点云的空间非合作目标运动测量技术研究", 《计算机仿真》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590347A (zh) * 2017-09-22 2018-01-16 武汉德友科技有限公司 一种基于设计模型匹配孤立点识别与删除方法及系统
CN109901177B (zh) * 2017-12-07 2020-12-18 北京万集科技股份有限公司 一种提升激光雷达测距能力的方法及装置
CN109901177A (zh) * 2017-12-07 2019-06-18 北京万集科技股份有限公司 一种提升激光雷达测距能力的方法及装置
CN108519075A (zh) * 2018-03-22 2018-09-11 北京控制工程研究所 一种空间多目标位姿测量方法
CN108680926A (zh) * 2018-04-11 2018-10-19 北京特种机械研究所 平面内双平台相对位姿测量系统及方法
CN108680926B (zh) * 2018-04-11 2022-03-25 北京特种机械研究所 平面内双平台相对位姿测量系统
CN108489496A (zh) * 2018-04-28 2018-09-04 北京空间飞行器总体设计部 基于多源信息融合的非合作目标相对导航运动估计方法及系统
CN110264502A (zh) * 2019-05-17 2019-09-20 华为技术有限公司 点云配准方法和装置
CN110264502B (zh) * 2019-05-17 2021-05-18 华为技术有限公司 点云配准方法和装置
CN110348473A (zh) * 2019-05-27 2019-10-18 南京航空航天大学 基于ransac的非合作航天器自主识别方法
CN110286371A (zh) * 2019-06-28 2019-09-27 北京理工大学 基于雷达点阵数据的小天体着陆器相对位姿确定方法
CN110796728A (zh) * 2019-09-20 2020-02-14 南京航空航天大学 一种基于扫描式激光雷达的非合作航天器三维重建方法
CN110796728B (zh) * 2019-09-20 2023-05-12 南京航空航天大学 一种基于扫描式激光雷达的非合作航天器三维重建方法
CN111750870A (zh) * 2020-06-30 2020-10-09 南京理工大学 一种空间翻滚火箭箭体的运动参数估计方法
CN112100900A (zh) * 2020-06-30 2020-12-18 北京控制工程研究所 一种空间非合作目标点云初始姿态测量方法
CN111750870B (zh) * 2020-06-30 2023-12-26 南京理工大学 一种空间翻滚火箭箭体的运动参数估计方法
CN112100900B (zh) * 2020-06-30 2024-03-26 北京控制工程研究所 一种空间非合作目标点云初始姿态测量方法
CN113706619A (zh) * 2021-10-21 2021-11-26 南京航空航天大学 一种基于空间映射学习的非合作目标姿态估计方法
CN116105694A (zh) * 2022-12-09 2023-05-12 中国科学院上海技术物理研究所 一种多手段光学载荷复合的空间目标三维视觉测量方法
CN116105694B (zh) * 2022-12-09 2024-03-12 中国科学院上海技术物理研究所 一种多手段光学载荷复合的空间目标三维视觉测量方法

Also Published As

Publication number Publication date
CN106441311B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CN106441311A (zh) 一种基于激光成像雷达的非合作航天器相对位姿测量方法
CN107991683B (zh) 一种基于激光雷达的机器人自主定位方法
CN105547305B (zh) 一种基于无线定位和激光地图匹配的位姿解算方法
Zhao et al. Learning-based bias correction for time difference of arrival ultra-wideband localization of resource-constrained mobile robots
CN111060888B (zh) 一种融合icp和似然域模型的移动机器人重定位方法
CN104048645B (zh) 线性拟合地面扫描点云整体定向方法
CN106323286B (zh) 一种机器人坐标系与三维测量坐标系的变换方法
CN109118940A (zh) 一种基于地图拼接的移动机器人构图
CN108896957A (zh) 一种无人机操控信号源的定位系统及方法
CN103822582A (zh) 用于交会对接实验平台的相对运动测量系统
Yang et al. High-precision UWB-based localisation for UAV in extremely confined environments
CN105203994B (zh) 一种电子标签定位方法、装置、服务器及系统
Wen et al. Uncertainty estimation of LiDAR matching aided by dynamic vehicle detection and high definition map
CN102223711A (zh) 一种基于遗传算法的无线传感器网络节点定位方法
Gullu et al. Datum transformation by artificial neural networks for geographic information systems applications
Wang et al. An improved measurement model of binocular vision using geometrical approximation
CN107463871A (zh) 一种基于角特征加权的点云匹配方法
CN113536412A (zh) 一种基于bim和gis的三维实景模型高精度融合方法
Hu et al. A reliable cooperative fusion positioning methodology for intelligent vehicle in non-line-of-sight environments
CN102565554B (zh) 一种生成三维雷电定位地闪点分布图的方法
CN109975745A (zh) 一种基于到达时间差的近远场统一定位方法
CN109116351A (zh) 一种星载InSAR定位解析算法
CN108828509B (zh) 一种多平台多辐射源承载关系判定方法
Thieling et al. Scalable sensor models and simulation methods for seamless transitions within system development: from first digital prototype to final real system
CN111123279B (zh) 一种融合nd和icp匹配的移动机器人重定位方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant