CN106438218A - 基于方向角传感器求测量点间距的风电叶片弯曲测量方法 - Google Patents

基于方向角传感器求测量点间距的风电叶片弯曲测量方法 Download PDF

Info

Publication number
CN106438218A
CN106438218A CN201610858320.XA CN201610858320A CN106438218A CN 106438218 A CN106438218 A CN 106438218A CN 201610858320 A CN201610858320 A CN 201610858320A CN 106438218 A CN106438218 A CN 106438218A
Authority
CN
China
Prior art keywords
measurement
ultrasonic
wind electricity
electricity blade
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610858320.XA
Other languages
English (en)
Other versions
CN106438218B (zh
Inventor
覃翠
张健
余辉龙
赵静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201610858320.XA priority Critical patent/CN106438218B/zh
Publication of CN106438218A publication Critical patent/CN106438218A/zh
Application granted granted Critical
Publication of CN106438218B publication Critical patent/CN106438218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/04Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring the deformation in a solid, e.g. by vibrating string
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Abstract

本发明公开了一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置,所述超声波发射装置的双晶探头与超声波接收装置的单晶探头前均设有锥形共振盘,锥形共振盘安装的高度为风电电机轴承高度和风电叶片长度两者积的0.5倍,本发明能够通过超声波测量叶片的弯曲程度,从而为风电的监测和检修提供数据支持,从而减少风电的安全事故。

Description

基于方向角传感器求测量点间距的风电叶片弯曲测量方法
技术领域
本发明涉及技术领域,具体为一种基于求相邻测量点间距的风电叶片弯曲测量装置及方法,尤其是一种基于方向角超声传感器接收装置求相邻测量点间距的风电叶片弯曲测量装置及方法。
背景技术
风电叶片长度可达上百米,在运转工作过程中,因风力作用会发生不同程度的弯曲变形,叶片的弯曲变形会影响叶片的受力状态,从而降低叶片的使用寿命,严重时会产生断裂,因此需要监测风电叶片上不同位置点的变形情况。
发明内容
本发明的目的在于提供一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置。
优选的,所述超声波发射装置的双晶探头与超声波接收装置的单晶探头前均设有锥形共振盘,锥形共振盘安装的高度为风电电机轴承高度和风电叶片长度两者积的0.5倍。
优选的,所述两个超声波接收装置,其中之一包括方向角超声传感器接收装置、信号放大调理装置、方向角测量及F/V变换装置、相位测量装置和数值计算装置,其中另一包括全向超声传感器接收装置、信号放大调理装置、F/V变换装置、相位测量装置和数值计算装置;所述的方向角超声传感器接收装置既能测量声压的大小也能测量声压的方向,将超声波的声强时间特性转换为电压时间特性以及频率时间特性,通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,结合吸声材料以及电压时间特性测量出吸声材料位置到各个超声传感器接收装置的相位差。
一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,包括以下步骤:
S1:记录测量点的位置,在风电叶片表面涂覆吸声材料,在测量点上不涂吸声材料,并记录测量点在风电叶片上的位置;
S2:安装测量装置,风电叶片下方地面上在相对位置处安装两套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,其中每套测量装置包括一个超声波发射装置和两个超声波接收装置,两个超声波接收装置中,一个能测量方向角,一个是普通的超声传感器,超声波发射装置均设置在风电叶片下方的地面上,且超声波接收装置均安装在以风电立柱为圆心,风电叶片长度为半径的圆外侧,所述测量装置中的超声波发射装置在频率的选择上,应该满足以下条件:其中之一的超声波发射装置发射频率为f时,另一超声波发射装置发射频率应该大于,从而保证了两个测量装置互不干扰;
S3:根据频率确定超声波信号来自于哪个测量点,其中测量点的线速度为,超声波接收装置到测量点的连线与测量点线速度之间的夹角为,根据多普勒效应,则超声波接收装置接收的各个测量点反射的超声波频率为:
式中为超声波在空气中的速度,f为的超声波发射装置的发射频率,当测量点离电机轴承中心点的距离越大时,越大,接收端可以根据频率的不同确定超声波信号来自于哪个测量点;
S4:在风电叶片下方,在小尺寸范围内以某点O为中心放置两个声压感知方向垂直的超声传感器接收装置即方向角超声传感器接收装置和全向超声传感器接收装置,在三维坐标方向设OA、OB和OC为坐标轴建立坐标系,则A、B、C接收到的声压对应的电流大小为Pa,Pb和Pc,声音矢量的方向为(Pa,Pb,Pc),则直线方程为,全向声压值为
超声传感器接收装置将超声波的声强时间特性转换为电压时间特性以及频率时间特性,并通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,即Aj(j=1,2)点声压代表的电信号为,这里θ j为初相角,
,其中a>>b
i=2时设方向角超声传感器接收装置的值为(Pa(t),Pb(t),Pc(t)),
则对应的
S5:计算相邻的两个测量点之间的距离,令R0、R1、为超声波接收装置,Ry为超声波发射装置,则各点的坐标为:
R0(0,0,0),
R1(-1,0,0),
Ry(x0,y0,z0),
通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,即Aj(j=1,2),经过F/V变换装置将放大调理输出的频率信号变换成电压时间特性即Bi(i=1,2),通过相位测量装置测量Bi的突变位置及相位的整体偏移规律,从而得出相位差Δti,即时差,再根据时差可以计算出测量点到R0、R1的距离差,即为B1、B2到R0、R1的距离差如下:
B1突变处B1R0的矢量方向(Pa1,Pb1,Pc1)
B2突变处B2R0的矢量方向(Pa2,Pb2,Pc2)
得到
同理,在风电叶片的另一侧安装的测量装置,也可以测得相邻的两个测量点之间的距离;
S6:计算弯曲半径,通过风电叶片一侧安装的测量装置,可以测得相邻的两个测量点之间的距离为L1,通过风电叶片另一侧安装的测量装置,可以测得前后对应位置的相邻的两个测量点之间的距离为L2,则:
风电叶片的弯曲半径为:,其中H为风电叶片的厚度,根据风电叶片的弯曲半径就可以知道风电叶片的弯曲程度了,即风电叶片的弯曲半径越大,风电叶片的弯曲越小。
与现有技术相比,本发明的有益效果是:本发明利用超声传感器上的探头测量计算风电叶片上测量点的坐标,通过几何计算获得叶片局部弯曲半径,判断叶片变形情况,这种非接触式的测量不会对叶片本身的运行产生影响,通过计算机处理,可以同时测量多点的叶片形变,为风电的监测和检修提供数据支持,从而减少风电安全事故;而且不需要在叶片上安装测试设备,简化设备的维护。
附图说明
图1为本发明超声波接收装置的安装示意图;
图2为超声波接收装置的安装位置示意;
图3为本发明的系统框图;
图4为本发明的相位测量模型;
图5为本发明弯曲半径的计算示意图;
图6为本发明风电叶片上的测量点的分布的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-6,本发明提供一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法的技术方案:
一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置;所述两个超声波接收装置,其中之一包括方向角超声传感器接收装置、信号放大调理装置、方向角测量及F/V变换装置、相位测量装置和数值计算装置,其中另一包括全向超声传感器接收装置、信号放大调理装置、F/V变换装置、相位测量装置和数值计算装置;所述的方向角超声传感器接收装置既能测量声压的大小也能测量声压的方向,将超声波的声强时间特性转换为电压时间特性以及频率时间特性,通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,结合吸声材料以及电压时间特性测量出吸声材料位置到各个超声传感器接收装置的相位差。
一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,包括以下步骤:
S1:记录测量点的位置,在风电叶片表面涂覆吸声材料,在测量点上不涂吸声材料,并记录测量点在风电叶片上的位置。
S2:安装测量装置,叶片下方地面上在相对位置处安装两套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,其中每套测量装置包括一个超声波发射装置和两个超声波接收装置,两个超声波接收装置中,一个能测量方向角,一个是普通的超声传感器,超声波发射装置均设置在风电下方的地面上,且超声波接收装置均安装在以风电立柱为圆心,叶片长度为半径的圆外侧;(图1中大圆外侧),假设,测量点用A标记,风电叶片以风电电机轴承中心点O为圆心,以角速度 (为固定值,取决于电机的磁极对数P )转动,则对于空间上的任意一测量点的A线速度为,其中r为该测量点A到风电电机轴承的中心线的距离,安装时需要保证与测量点A运动的圆相切的平面和测量点A到超声波接收装置的连线之间的夹角α随着测量点A离电机轴承中心O的距离增大而减小,即图1中叶片上各点到轴承中心O的距离OA1>OA2>…>OAi,对应的夹角α12<…<αi
S3:根据频率确定超声波信号来自于哪个测量点,如图1所示,其中测量点的线速度为,超射波接收装置到测量点的连线与测量点线速度之间的夹角为,每个超声波接收装置收到的信号满足,根据多普勒效应,则超声波接收装置接收的各个测量点反射的超声波频率为:
式中为超声波在空气中的速度(取340m/s),f为的超声波发射装置的发射频率,当测量点离电机轴承中心点的距离越大时,越大,接收端可以根据频率的不同确定超声波信号来自于哪个测量点。
本发明中,超声波发射装置的双晶探头与超声波接收装置的单晶探头前均设有锥形共振盘,使得发射的超声波集中在风电电机安装立柱的单侧,且高度为电机轴承高度上下0.5L(L为风电叶片的长度)的区域内,从而保证在对一个叶片进行测量时,不会受到其他叶片的影响。
S4:如图2所示,在风电叶片下方,在小尺寸范围内以某点O为中心放置两个声压感知方向垂直的超声传感器接收装置即方向角超声传感器接收装置和全向超声传感器接收装置,在三维坐标方向设OA、OB和OC为坐标轴建立坐标系,则A、B、C接收到的声压对应的电流大小为Pa,Pb和Pc,声音矢量的方向为(Pa,Pb,Pc),则直线方程为,全向声压值为
如图3所示,超声传感器接收装置将超声波的声强时间特性转换为电压时间特性以及频率时间特性,并通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,即Aj(j=1,2)点声压代表的电信号为,这里θ j为初相角,
,其中a>>b
i=2时设方向角超声传感器接收装置的值为(Pa(t),Pb(t),Pc(t)),
则对应的
S5:计算相邻的两个测量点之间的距离,如图4所示,令R0、R1、为超声波接收装置,Ry为超声波发射装置,则各点的坐标为:
R0(0,0,0),
R1(-1,0,0),
Ry(x0,y0,z0),
通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,即Aj(j=1,2),经过F/V变换装置将放大调理输出的频率信号变换成电压时间特性即Bi(i=1,2),通过相位测量装置测量Bi的突变位置及相位的整体偏移规律,从而得出相位差Δti,即时差,再根据时差可以计算出测量点到R0、R1的距离差,即为B1、B2到R0、R1的距离差如下:
B1突变处B1R0的矢量方向(Pa1,Pb1,Pc1)
B2突变处B2R0的矢量方向(Pa2,Pb2,Pc2)
同理,在风电叶片的另一侧安装的测量装置,也可以测得相邻的两个测量点之间的距离。
S6:计算弯曲半径,在风电叶片的另一侧,取数量相同的测量点,并保证对应的测量点连线与叶片的中轴线垂直,且所有的测量点在同一平面上,为了避免两侧的频率发生干扰,在频率的选择上,应该满足以下条件:当一侧的频率选择了f时,另一侧的频率应该大于,从而保证两个测量装置互不干扰;通过风电叶片一侧安装的测量装置,可以测得相邻的两个测量点之间的距离为L1,通过风电叶片另一侧安装的测量装置,可以测得前后对应位置的相邻的两个测量点之间的距离为L2,当风电叶片前后对应位置的测量点与相邻的一测量点距离很近时(10cm以内),可以认为叶片的厚度不变,如图5所示,可以测得相邻的两个测量点之间的距离为L1,通过风电叶片另一侧安装的测量装置,可以测得前后对应位置的相邻的两个测量点之间的距离为L2,则:
风电叶片的弯曲半径为:,其中H为风电叶片的厚度,根据风电叶片的弯曲半径就可以知道风电叶片的弯曲程度了,即风电叶片的弯曲半径越大,风电叶片的弯曲越小 。
整个风电叶片上,根据需要设置多个相邻测量点对,并利用至少两个测量装置分别测量点对的一组,如图6所示,就可以了解整个叶片的弯曲情况。
本发明能够通过超声波测量叶片的弯曲程度,从而为风电的监测和检修提供数据支持,从而减少风电的安全事故。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,其特征在于:包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置。
2.根据权利要求1所述的一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,其特征在于:所述超声波发射装置的双晶探头与超声波接收装置的单晶探头前均设有锥形共振盘,锥形共振盘安装的高度为风电电机轴承高度和风电叶片长度两者积的0.5倍。
3.根据权利要求1所述的一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,其特征在于:所述两个超声波接收装置,其中之一包括方向角超声传感器接收装置、信号放大调理装置、方向角测量及F/V变换装置、相位测量装置和数值计算装置,其中另一包括全向超声传感器接收装置、信号放大调理装置、F/V变换装置、相位测量装置和数值计算装置;所述的方向角超声传感器接收装置既能测量声压的大小也能测量声压的方向,将超声波的声强时间特性转换为电压时间特性以及频率时间特性,通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,结合吸声材料以及电压时间特性测量出吸声材料位置到各个超声传感器接收装置的相位差。
4.一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,其特征在于,包括以下步骤:
S1:记录测量点的位置,在风电叶片表面涂覆吸声材料,在测量点上不涂吸声材料,并记录测量点在风电叶片上的位置;
S2:安装测量装置,风电叶片下方地面上在相对位置处安装两套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,其中每套测量装置包括一个超声波发射装置和两个超声波接收装置,两个超声波接收装置中,一个能测量方向角,一个是普通的超声传感器,超声波发射装置均设置在风电叶片下方的地面上,且超声波接收装置均安装在以风电立柱为圆心,风电叶片长度为半径的圆外侧;
S3:根据频率确定超声波信号来自于哪个测量点,其中测量点的线速度为,超声波接收装置到测量点的连线与测量点线速度之间的夹角为,根据多普勒效应,则超声波接收装置接收的各个测量点反射的超声波频率为:
式中为超声波在空气中的速度,f为超声波发射装置的发射频率,当测量点离电机轴承中心点的距离越大时,越大,接收端可以根据频率的不同确定超声波信号来自于哪个测量点;
S4:在风电叶片下方,在小尺寸范围内以某点O为中心放置两个声压感知方向垂直的超声传感器接收装置即方向角超声传感器接收装置和全向超声传感器接收装置,在三维坐标方向设OA、OB和OC为坐标轴建立坐标系,则A、B、C接收到的声压对应的电流大小为Pa,Pb和Pc,声音矢量的方向为(Pa,Pb,Pc),则直线方程为,全向声压值为
超声传感器接收装置将超声波的声强时间特性转换为电压时间特性以及频率时间特性,并通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,即Aj(j=1,2)点声压代表的电信号为,这里θ j为初相角,
,其中a>>b
i=2时设方向角超声传感器接收装置的值为(Pa(t),Pb(t),Pc(t)),
则对应的
S5:计算相邻的两个测量点之间的距离,令R0、R1、为超声波接收装置,Ry为超声波发射装置,则各点的坐标为:
R0(0,0,0),
R1(-1,0,0),
Ry(x0,y0,z0),
通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,即Aj(j=1,2),经过F/V变换装置将放大调理输出的频率信号变换成电压时间特性即Bi(i=1,2),通过相位测量装置测量Bi的突变位置及相位的整体偏移规律,从而得出相位差Δti,即时差,再根据时差可以计算出测量点到R0、R1的距离差,即为B1、B2到R0、R1的距离差如下:
B1突变处B1R0的矢量方向(Pa1,Pb1,Pc1)
B2突变处B2R0的矢量方向(Pa2,Pb2,Pc2)
得到
同理,在风电叶片的另一侧安装的测量装置,也可以测得相邻的两个测量点之间的距离;
S6:计算弯曲半径,通过风电叶片一侧安装的测量装置,可以测得相邻的两个测量点之间的距离为L1,通过风电叶片另一侧安装的测量装置,可以测得前后对应位置的相邻的两个测量点之间的距离为L2,则:
风电叶片的弯曲半径为:,其中H为风电叶片的厚度,根据风电叶片的弯曲半径就可以知道风电叶片的弯曲程度了,即风电叶片的弯曲半径越大,风电叶片的弯曲越小。
5.根据权利要求4所述的一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,其特征在于:所述步骤S2中测量装置中的超声波发射装置在频率的选择上,应该满足以下条件:其中之一的超声波发射装置发射频率为f时,另一超声波发射装置发射频率应该大于,从而保证了两个测量装置互不干扰。
CN201610858320.XA 2016-09-28 2016-09-28 基于方向角传感器求测量点间距的风电叶片弯曲测量方法 Active CN106438218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610858320.XA CN106438218B (zh) 2016-09-28 2016-09-28 基于方向角传感器求测量点间距的风电叶片弯曲测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610858320.XA CN106438218B (zh) 2016-09-28 2016-09-28 基于方向角传感器求测量点间距的风电叶片弯曲测量方法

Publications (2)

Publication Number Publication Date
CN106438218A true CN106438218A (zh) 2017-02-22
CN106438218B CN106438218B (zh) 2019-02-15

Family

ID=58170708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610858320.XA Active CN106438218B (zh) 2016-09-28 2016-09-28 基于方向角传感器求测量点间距的风电叶片弯曲测量方法

Country Status (1)

Country Link
CN (1) CN106438218B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963315A (zh) * 2021-04-12 2021-06-15 上海电气风电集团股份有限公司 风力发电机组的叶片、检测装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080141778A1 (en) * 2006-12-07 2008-06-19 Thomas Bosselmann Method of non-destructively testing a work piece and non-destructive testing arrangement
CN104101879A (zh) * 2014-06-29 2014-10-15 湖北汽车工业学院 基于超声波的车辆空间定位方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080141778A1 (en) * 2006-12-07 2008-06-19 Thomas Bosselmann Method of non-destructively testing a work piece and non-destructive testing arrangement
CN104101879A (zh) * 2014-06-29 2014-10-15 湖北汽车工业学院 基于超声波的车辆空间定位方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963315A (zh) * 2021-04-12 2021-06-15 上海电气风电集团股份有限公司 风力发电机组的叶片、检测装置及方法
CN112963315B (zh) * 2021-04-12 2022-01-25 上海电气风电集团股份有限公司 风力发电机组的叶片、检测装置及方法

Also Published As

Publication number Publication date
CN106438218B (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN101561379B (zh) 一种用于结构损伤检测的敲击扫描方法
CN105865788A (zh) 一种用于列车轴承缺陷在线监测的阵列声学检测方法
CN103925984B (zh) 光纤振动传感器及应用其的输电线路微风振动监测系统
CN102175888B (zh) 输电线路覆冰监测用光纤布拉格光栅风速传感器及系统
CN102102622A (zh) 利用磁致伸缩传感器的叶片偏转测量
CN103063746B (zh) 敲击扫描式桥梁损伤检测的信号采集装置
AU2016248563B2 (en) Ultrasonic anemometer and method for determining at least one component of a wind speed vector or the sound speed in the atmosphere
CN105911582A (zh) 一种自然灾害次声波监测系统
CN102269769A (zh) 超声波三维测风方法和三维超声波风速风向仪
CN110927257A (zh) 检测基础飞行区道面影响区压实质量的检测系统及方法
CN112727437B (zh) 自适应超声相控阵列出砂在线监测系统及方法
CN112162034A (zh) 一种应用结构噪声的钢-混凝土组合梁损伤识别方法
CN104374830A (zh) 一种基于压电阵列的近场相控阵结构健康监测方法
CN106438218A (zh) 基于方向角传感器求测量点间距的风电叶片弯曲测量方法
CN106321370B (zh) 通过求测量点坐标的风电叶片弯曲测量装置及方法
CN106443684B (zh) 通过求相邻测量点间距的风电叶片弯曲测量装置及方法
CN205941599U (zh) 基于光纤光栅的风速传感装置及风速风向监测系统
CN106321369B (zh) 基于方向角传感器求测量点坐标的风电叶片弯曲测量方法
CN108061666A (zh) 一种输电塔损伤识别方法
CN101398482B (zh) 声接收基阵被动宽带检测中的噪声场数值计算方法
CN106154273B (zh) 基于超声波多普勒效应的风电叶片弯曲测量装置及方法
CN107167626A (zh) 基于非正交测风阵型的三维超声波测风仪及测风方法
CN206177379U (zh) 双板差分式谷物产量计量装置
CN100422708C (zh) 近地面湍流廓线仪
CN108120573A (zh) 时间反演超分辨率管道泄漏监测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant