CN106430276B - 一种纳米晶及其制备方法和应用 - Google Patents

一种纳米晶及其制备方法和应用 Download PDF

Info

Publication number
CN106430276B
CN106430276B CN201610824292.XA CN201610824292A CN106430276B CN 106430276 B CN106430276 B CN 106430276B CN 201610824292 A CN201610824292 A CN 201610824292A CN 106430276 B CN106430276 B CN 106430276B
Authority
CN
China
Prior art keywords
nanocrystalline
acetylacetone
pentanedione
milliliters
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610824292.XA
Other languages
English (en)
Other versions
CN106430276A (zh
Inventor
雷磊
吴若桢
肖珍
徐时清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengde Kexiang New Material Technology Co ltd
Guangzhou Xingchen Technology Information Consulting Service Co.,Ltd.
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610824292.XA priority Critical patent/CN106430276B/zh
Publication of CN106430276A publication Critical patent/CN106430276A/zh
Application granted granted Critical
Publication of CN106430276B publication Critical patent/CN106430276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/288Sulfides
    • C01F17/294Oxysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及无机纳米材料领域。一种纳米晶,化学表达式是Eu/Tb:Gd2O2S。该纳米晶具有依赖激发波长的光学性能,有望应用于防伪标记领域。

Description

一种纳米晶及其制备方法和应用
技术领域
本发明涉及无机纳米材料领域。
背景技术
硫氧化物纳米材料具有低声子能量,无毒性以及高光化学稳定性等特点,被广泛应用于半导体和生物医学领域。以硫氧化物为基质,通过稀土离子掺杂可以实现高效率的荧光性能,例如Tb离子掺杂的纳米晶能够在紫外灯照射下发出明亮的绿光。由于纳米晶的形貌与其光学性能紧密相光,因而实现具有特殊性能的纳米材料的形貌调控具有重要的实际意义。
Tb3+和Eu3+是目前研究非常广泛的两种荧光激活离子,在紫外激发下,Tb3+的发射以绿光为主,Eu3+的发射以红光为主,两者共掺可以实现多色发光。我们在实验中发现,Tb/Eu离子掺杂的纳米晶可以通过改变激发波长来调控其荧光性能,使得这种材料在防伪标记领域具有潜在的应用前景。目前针对稀土硫氧化物纳米材料的形貌调控还鲜见报道,主要是由于这类体系难以通过常规的改变反应温度、时间或者单一离子掺杂等来实现。
发明内容
本发明的一个目的是公开一种具有依赖激发波长的光学性能的纳米晶;本发明的另一个目的是公开一种调控具有依赖激发波长的光学性能的纳米晶形貌的制备方法。
为了实现发明目的,本专利采用了下述的技术方案:
一种纳米晶,化学表达式是Eu/Tb:Gd2O2S。
上述纳米晶的制备方法,在前驱反应液中加入用于改变纳米晶生长过程的Y3+和Sr2+。进一步的,在前驱反应液是乙酰丙酮钆、乙酰丙酮铕、乙酰丙酮铽、油酸和十八烯的混合。进一步的,加入Y3+和Sr2+之后,继续加入硫粉和油胺,且油酸和油胺的比例是1:3,在加入硫粉以后将体系抽真空,纳米晶生长温度高于290℃。
作为优选,上述纳米晶的制备方法包括如下步骤:(1)将(0.48-x)毫摩尔乙酰丙酮钆,0.01毫摩尔乙酰丙酮铕,0.01毫摩尔乙酰丙酮铽,x毫摩尔乙酰丙酮钇,y毫摩尔乙酰丙酮锶,2毫升油酸,8毫升十八烯,在室温下加入到50毫升三颈瓶中,升温至100~150℃,并保温1小时,形成溶液A;(2)待溶液A冷却至50℃以下,加入10毫摩尔硫粉,6毫升油胺,用机械泵将三颈瓶内抽真空约5分钟,然后升温至100~120℃,并保温30分钟,随后在氩气保护条件下,迅速升温至290℃~320℃,并保温1~3小时;(3)待反应液冷却至室温后,加入乙醇离心得到沉淀,并用乙醇:环己烷为3:1的混合液洗涤产物,然后于40℃-80℃烘干后得到最终产物。
作为优选,x是0.05~0.1之间,y是0.2~0.5之间。
一种纳米晶的应用,上述的纳米晶应用于光学防伪标签。
采用以上技术方案的一种纳米晶,具有依赖激发波长的光学性能,有望应用于防伪标记领域。一种纳米晶的制备方法,在前驱溶液中,加入Y3+和Sr2+两种离子,通过改变两种离子的掺杂浓度来改变纳米晶的生长过程,从而得到不同形貌的纳米晶,包括颗粒状、薄片状和花瓣状,这主要归因于:第一,Sr2+取代Gd3+属于异价离子取代,为了使体系达到电荷平衡而在晶格中产生F-空位,而F-空位使得纳米晶表面产生正极朝外的偶极矩,进而加速溶液中F-离子向纳米晶表面扩散,促进纳米晶的生长;第二,Gd3+与Y3+虽然属于同一主族,但是它们具有不同的离子半径,各自具有不同的择优生长取向,使得产物具有不同的形貌。上述纳米晶具有依赖激发波长的光学性能,并且,这种结合多种离子掺杂共同调控纳米晶形貌的方法为制备新颖的纳米材料提供了一个全新的思路。
附图说明
图1:实施例中Tb/Eu:Gd2O2S纳米晶的X射线衍射图;
图2:实施例中Tb/Eu:Gd2O2S纳米晶的透射电镜图;
图3:实施例中Tb/Eu:Gd2O2S纳米晶(x=0.1,y=0.5)在不同激发波长条件下的荧光光谱图。
具体实施方式
下面结合图1、图2、图3对本专利实施例做详细的说明。
一种纳米晶,化学表达式是Eu/Tb:Gd2O2S。用于调控Eu/Tb:Gd2O2S纳米晶形貌的制备方法如下步骤:(1)将(0.48-x)毫摩尔乙酰丙酮钆,0.01毫摩尔乙酰丙酮铕,0.01毫摩尔乙酰丙酮铽,x毫摩尔乙酰丙酮钇,y毫摩尔乙酰丙酮锶,2毫升油酸,8毫升十八烯,在室温下加入到50毫升三颈瓶中,升温至150℃,并保温1小时,得到溶液A;(2)待溶液A冷却至50℃以下,加入10毫摩尔硫粉,6毫升油胺,并用机械泵将三颈瓶内抽真空(约5分钟),然后升温至120℃,并保温30分钟,随后在氩气保护条件下,迅速升温至315℃,并保温1小时;(3)待反应液冷却至室温后,加入乙醇离心得到沉淀,并用乙醇:环己烷为3:1的混合液洗涤产物,然后于60℃烘干后得到最终产物。
图1中a,b,c,d对应不同Y3+和Sr2+离子浓度,分别为(x=0.05,y=0.2;x=0.05,y=0.5;x=0.1,y=0.2;x=0.1,y=0.5),e为标准JCPDS 26-1422卡片。图2中a,b,c,d对应不同Y3+和Sr2+离子浓度,分别为(x=0.05,y=0.2;x=0.05,y=0.5;x=0.1,y=0.2;x=0.1,y=0.5),图中的标尺长度为100nm;图3是纳米晶(x=0.1,y=0.5)在不同激发波长条件下的荧光光谱图:(a)234nm(b)254nm(c)274nm(d)294nm(e)314nm(f)334nm(g)365nm。粉末X射线衍射结果表明:所有产物均为纯六方相;透射电镜结果表明:当Y3+和Sr2+离子浓度分别为(x=0.05,y=0.2)时,产物为尺寸约为7nm的颗粒状;当Y3+和Sr2+离子浓度分别为(x=0.05,y=0.5)时,产物为尺寸约为12nm的颗粒状;当Y3+和Sr2+离子浓度分别为(x=0.1,y=0.2)时,产物为尺寸约为47nm的圆片状;当Y3+和Sr2+离子浓度分别为(x=0.1,y=0.5)时,产物为花瓣状;光谱结果表明:对于Y3+和Sr2+离子浓度分别为(x=0.1,y=0.5)时的Tb/Eu:Gd2O2S纳米晶而言,随着激发波长从234nm逐渐增加到365nm,Tb3+离子的发光强度迅速减弱,而Eu3+离子下降的幅度非常小,导致不同发光波段的比值发生很大变化,并且肉眼可以很清晰的分辨出发光颜色的变化。
传统的光学防伪标签是在某种单一的激发波长下实现的。本专利的光学防伪标签,使用上述的纳米晶,纳米晶能够在不同波长的激发下发射不同颜色的可见光,若将按照特殊的图案镶嵌在标签中,有望制备出新颖的光学防伪标签。

Claims (5)

1.一种纳米晶的制备方法,其特征在于纳米晶化学表达式是Eu/Tb: Gd2O2S;在前驱反应液中加入用于改变纳米晶生长过程的Y3+和Sr2+;加入Y3+和Sr2+之后,继续加入硫粉和油胺,在加入硫粉以后将体系抽真空,纳米晶生长温度高于290 ℃。
2.根据权利要求1所述的一种纳米晶的制备方法,其特征在于在前驱反应液是乙酰丙酮钆、乙酰丙酮铕、乙酰丙酮铽、油酸和十八烯的混合。
3.根据权利要求2所述的一种纳米晶的制备方法,其特征在于油酸和油胺的比例是1:3。
4.根据权利要求1所述的一种纳米晶的制备方法,其特征在于包括如下步骤:(1)将(0.48-x)毫摩尔乙酰丙酮钆,0.01毫摩尔乙酰丙酮铕,0.01毫摩尔乙酰丙酮铽,x毫摩尔乙酰丙酮钇,y毫摩尔乙酰丙酮锶,2毫升油酸,8毫升十八烯,在室温下加入到50毫升三颈瓶中,升温至100~150oC,并保温1小时,形成溶液A;(2)待溶液A冷却至50oC以下,加入10毫摩尔硫粉,6毫升油胺,用机械泵将三颈瓶内抽真空约5分钟,然后升温至100~120o C ,并保温30分钟,随后在氩气保护条件下,迅速升温至290o C~320o C,并保温1~3小时;(3)待反应液冷却至室温后,加入乙醇离心得到沉淀,并用乙醇:环己烷为3:1的混合液洗涤产物,然后于40o C-80o C烘干后得到最终产物。
5.根据权利要求4所述的一种纳米晶的制备方法,其特征在于x是0.05~0.1,y是0.2~0.5。
CN201610824292.XA 2016-09-14 2016-09-14 一种纳米晶及其制备方法和应用 Active CN106430276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610824292.XA CN106430276B (zh) 2016-09-14 2016-09-14 一种纳米晶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610824292.XA CN106430276B (zh) 2016-09-14 2016-09-14 一种纳米晶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106430276A CN106430276A (zh) 2017-02-22
CN106430276B true CN106430276B (zh) 2017-11-07

Family

ID=58167864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610824292.XA Active CN106430276B (zh) 2016-09-14 2016-09-14 一种纳米晶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106430276B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475204A (zh) * 2009-01-05 2009-07-08 昆明理工大学 一种荧光材料的制备方法
CN101486909A (zh) * 2009-02-16 2009-07-22 昆明理工大学 一种绿色荧光粉及其制备方法
CN102105557A (zh) * 2008-07-23 2011-06-22 皇家飞利浦电子股份有限公司 用于CT应用中的Gd2O2S材料
CN102392322A (zh) * 2011-08-30 2012-03-28 长春理工大学 一种制备掺铕硫氧化钆发光纳米纤维的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105557A (zh) * 2008-07-23 2011-06-22 皇家飞利浦电子股份有限公司 用于CT应用中的Gd2O2S材料
CN101475204A (zh) * 2009-01-05 2009-07-08 昆明理工大学 一种荧光材料的制备方法
CN101486909A (zh) * 2009-02-16 2009-07-22 昆明理工大学 一种绿色荧光粉及其制备方法
CN102392322A (zh) * 2011-08-30 2012-03-28 长春理工大学 一种制备掺铕硫氧化钆发光纳米纤维的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
One-pot solvothermal synthesis of uniform layer-by-layer self-assembled ultrathin hexagonal Gd2O2S nanoplates and luminescent properties from single doped Eu3+ and codoped Er3+,Yb3+;Jie Liu,et al.;《Dalton Transactions》;20121231;13984-13988 *
Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method;Ying Tian,et al.;《Journal of Alloys and Compounds》;20061115;全文 *

Also Published As

Publication number Publication date
CN106430276A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Raju et al. The influence of sintering temperature on the photoluminescence properties of oxyapatite Eu3+: Ca2Gd8Si6O26 nanophosphors
Xiong et al. Luminescent properties and energy transfer mechanism from Tb3+ to Eu3+ in CaMoO4: Tb3+, Eu3+ phosphors
Pereira et al. Red, green and blue (RGB) emission doped Y3Al5O12 (YAG) phosphors prepared by non-hydrolytic sol–gel route
Guo et al. Study on the stability of phosphor SrAl2O4: Eu2+, Dy3+ in water and method to improve its moisture resistance
Li et al. Effect of oxygen vacancies on the reduction of Eu3+ in Mg3Ca3 (PO4) 4 in air atmosphere
CN102585813B (zh) 一种紫外光激发的可控颜色长余辉材料及其制备方法
Dejene et al. Structural and photoluminescence properties of Dy3+ co-doped and Eu2+ activated MAl2O4 (M= Ba, Ca, Sr) nanophosphors
Keskin et al. Structural, optical, luminescence properties and energy transfer mechanism of Tb3+/Eu3+ co-doped SrLa2 (MoO4) 4 phosphors produced by sol-gel process
Shafia et al. A critical role of pH in the combustion synthesis of nano-sized SrAl2O4: Eu2+, Dy3+ phosphor
Sahu et al. RETRACTED: luminescence enhancement of bluish-green Sr2Al2SiO7: Eu2+ phosphor by dysprosium co-doping
Park et al. Effect of alkaline metal ions on the photoluminescence properties of Eu3+-doped Ca3Al2O6 phosphors
Singh et al. Synthesis and optical investigations of Eu3+ activated MYAlO4 (M= Ca and Sr) as promising display nanomaterials
Zhang et al. White long-lasting phosphorescence generation in a CaAl2Si2O8: Eu2+, Mn2+, Dy3+ system through persistent energy transfer
Jain et al. Covering the optical spectrum through different rare-earth ion-doping of YAG nanospheres produced by rapid microwave synthesis
Singh et al. Green emission from Tb3+-doped CaLaAl3O7 phosphor–A photoluminescence study
Li et al. Tunable magnetic and fluorescent properties of Tb3Ga5O12 nanoparticles doped with Er3+, Yb3+, and Sc3+
Ming et al. Study on the color tunability and energy transfer mechanism in Tb3+, Sm3+ co-doped CaMoO4 phosphors
Liu et al. Spherical red-emitting X1-Y2SiO5: Eu and α-Y2Si2O7: Eu phosphors with high color purity: The evolution of morphology, phase and photoluminescence upon annealing
Koseva et al. Some investigations on Tb3+ and Eu3+ doped Na2SiO3 as a material for LED application
Jiang et al. Up-conversion luminescence of Er 2 Mo 4 O 15 under 980 and 1550 nm excitation
Cao et al. Efficiently enhanced deep-red emission of Ba3WO6: Mn4+ oxide phosphor via the Gd3+ incorporation
CN113528139A (zh) 一种激光辐照调控硫氧化物荧光粉形貌和粒径的处理方法
Dubey et al. Effect of Eu3
CN106430276B (zh) 一种纳米晶及其制备方法和应用
Kunimi et al. Green emissions from green-colored Y2BaMO5: Tb (M= Cu, Zn) materials as inorganic luminescent pigments

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230627

Address after: Room K178, Floor 5, Jinxing Building, No. 1, Hanjing Road, Tianhe District, Guangzhou, Guangdong 510000 (office only)

Patentee after: Guangzhou Xingchen Technology Information Consulting Service Co.,Ltd.

Address before: College of Materials Science, No. 258, Xueyuan Street, Jianggan District, Hangzhou, Zhejiang, 310018

Patentee before: China Jiliang University

Effective date of registration: 20230627

Address after: 067600 in the factory area of Chengde kuanhang New Material Co., Ltd., yaowangmiao village, longxumen Town, Kuancheng Manchu Autonomous County, Chengde City, Hebei Province

Patentee after: Chengde Kexiang New Material Technology Co.,Ltd.

Address before: Room K178, Floor 5, Jinxing Building, No. 1, Hanjing Road, Tianhe District, Guangzhou, Guangdong 510000 (office only)

Patentee before: Guangzhou Xingchen Technology Information Consulting Service Co.,Ltd.