CN106423119A - 一种二氧化钛光催化剂的制备方法 - Google Patents

一种二氧化钛光催化剂的制备方法 Download PDF

Info

Publication number
CN106423119A
CN106423119A CN201611029936.2A CN201611029936A CN106423119A CN 106423119 A CN106423119 A CN 106423119A CN 201611029936 A CN201611029936 A CN 201611029936A CN 106423119 A CN106423119 A CN 106423119A
Authority
CN
China
Prior art keywords
titanium dioxide
preparation
hermetic container
sealed container
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611029936.2A
Other languages
English (en)
Inventor
张学斌
孙彦民
曾贤君
于海斌
苗静
张利杰
隋云乐
李贺
李晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNOOC Energy Technology and Services Ltd
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
Original Assignee
CNOOC Energy Technology and Services Ltd
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNOOC Energy Technology and Services Ltd, CNOOC Tianjin Chemical Research and Design Institute Co Ltd filed Critical CNOOC Energy Technology and Services Ltd
Priority to CN201611029936.2A priority Critical patent/CN106423119A/zh
Publication of CN106423119A publication Critical patent/CN106423119A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二氧化钛光催化剂的制备方法,该制备方法首先将Ti‑Cu非晶合金条带置于一含有质量分数为65%的硝酸溶液的密闭容器中,加入NaF以及柠檬酸;然后将此密闭容器在60~80℃下保温36~72小时后取出,最后将所得到的物质在450~550℃下烧结1~2小时即可。本发明所制二氧化钛为具有多孔六棱柱形貌的锐钛矿型二氧化钛,是一种具有良好光催化性能的二氧化钛。本发明制备方法操作简单,反应过程容易控制,所得到的二氧化钛性能优异,是一种高效经济的制备方法。

Description

一种二氧化钛光催化剂的制备方法
技术领域:
本发明涉及一种TiO2光催化材料的制备方法,尤其涉及一种具有特殊微观形貌的二氧化钛光催化材料的制备方法。
背景技术:
自1972年日本科学家本多(Honda)和藤岛(Fujishima)在n型半导体二氧化钛电极上发现了水的光催化分解作用以来,二氧化钛作为光催化材料引起了越来越多的关注。其物理和化学性能不及取决于它本身的电子结构,而且和它的晶相,晶粒度和微观形貌有关,尤其是其微观形貌对光催化性能的影响是十分显著的。正是由于这些原因,各种各样具有不同微观形貌的二氧化钛被制备出来,利用纳米管状、纳米线状、纳米花状,杆状,六边形状等等。通过过程和反应条件控制调控二氧化钛粒子的形貌已成为重要研究方向。文献报道,F-可降低二氧化钛[001]面生长所需的能量,使其形成具有大量[001]暴露面的锐钛矿型二氧化钛,且具有优异的光催化剂性能。二氧化钛的制备方法主要包括溶胶凝胶法、水热法、气相沉积法、阳极氧化法等。目前被最为采用的方法是水热法。通过控制水热体系的反应物种类与浓度、反应液pH值、水热温度和时间等来控制水热产物的形貌结构与相组成。水热反应一般包括二氧化钛纳米颗粒的形核与长大,生长过程通过水热反应参数控制。但通常水热法所制二氧化钛结构均匀性较差,且容易产生杂晶。柠檬酸作为燃烧剂在150~200℃即可分解,在溶液中能与金属离子形成络合物,促进溶解,使反应体系升温,粉末颗粒原位长大。
发明内容:
本发明的目的是提供一种具有多孔六棱柱形貌的锐钛矿型二氧化钛的制备方法,所制二氧化钛具有大量[001]暴露面及较大的比表面积,晶型结构均匀,有利于吸附光电子及促进光生电子跃迁,光催化剂性能优异。本发明的技术解决方案是一种制备具有多孔六棱柱形貌的锐钛矿型二氧化钛的方法,具体技术方案如下:
本发明一种二氧化钛光催化剂的制备方法,该方法以非晶态Ti-Cu合金为钛源,具体步骤如下:首先将非晶态Ti-Cu合金条带置于含有浓硝酸溶液的密闭容器中,并加入浓度为0.025mol/L~0.1mol/L的NaF及浓度为0.01~0.1mol/L的柠檬酸;
然后,将该密闭容器在60~80℃下保温36~72小时;
最后,将密闭容器中反应所得的白色粉末用去离子水洗净,在450~550℃下烧结1~2小时即可。
在上述技术方案中所述非晶态Ti-Cu合金条带的总面积与浓硝酸溶液的体积比例为200~300cm2/L。
所述非晶态Ti-Cu合金条带中Ti的含量为40-45wt%。
本发明实施费用低,过程易控,操作简单,所值得的二氧化钛材料不仅具有独特的微观形貌,而且展现出优异的光催化性能。
附图说明
图1为本发明制备方法制得的二氧化钛光催化剂的SEM图。
图2为本发明制备方法制得的二氧化钛光催化剂的XRD图。
具体实施方法
对比例1
步骤一、将非晶钛铜合金Ti40Cu60(钛和铜的原子摩尔比为4:6)置于含有腐蚀液的密闭容器中,所述腐蚀液为质量分数为65%的硝酸水溶液,所述非晶钛铜合金的总面积与腐蚀液的体积比为300cm2/L。
步骤二、将该密闭容器在70℃下保温72小时。
步骤三、将密闭容器中反应所得的白色粉末用去离子水洗净,在550℃下烧结1小时。
以罗丹明B为降解物测试其光催化性能,实验操作如下:将1g/L的罗丹明B水溶液50ml倒入烧杯中。将10mg所制光催化剂放入烧杯中。浸泡0.5小时待其达到吸附饱和后,放置于40W紫外灯下(10cm)照射,80min后测其对罗丹明B的降解率。
实施例1:
步骤一、将非晶钛铜合金Ti40Cu60(钛和铜的原子摩尔比为4:6)置于含有腐蚀液的密闭容器中,所述腐蚀液为质量分数为65%的硝酸水溶液,其中加入浓度为0.025mol/L的NaF和0.01mol/L的柠檬酸,所述非晶钛铜合金的总面积与腐蚀液的体积比为300cm2/L。
步骤二、将该密闭容器在70℃下保温72小时。
步骤三、将密闭容器中反应所得的白色粉末用去离子水洗净,在550℃下烧结1小时。
按对比例1中所述方法测试催化剂对罗丹明B的降解率,结果如表1所示。
实施例2:
步骤一、将非晶钛铜合金Ti40Cu60(钛和铜的原子摩尔比为4:6)置于含有腐蚀液的密闭容器中,所述腐蚀液为质量分数为65%的硝酸水溶液,其中加入浓度为0.05mol/L的NaF及0.05mol/L的柠檬酸,所述非晶钛铜合金的总面积与腐蚀液的体积比为300cm2/L。
步骤二、将该密闭容器在70℃下保温72小时。
步骤三、将密闭容器中反应所得的白色粉末用去离子水洗净,在550℃下烧结1小时。
按对比例1中所述方法测试催化剂对罗丹明B的降解率,结果如表1所示。
实施例3:
步骤一、将非晶钛铜合金Ti40Cu60(钛和铜的原子摩尔比为4:6)置于含有腐蚀液的密闭容器中,所述腐蚀液为质量分数为65%的硝酸水溶液,其中加入浓度为0.75mol/L的NaF及0.1mol/L的柠檬酸,所述非晶钛铜合金的总面积与腐蚀液的体积比为300cm2/L。
步骤二、将该密闭容器在70℃下保温72小时。
步骤三、将密闭容器中反应所得的白色粉末用去离子水洗净,在550℃下烧结1小时。
按对比例1中所述方法测试催化剂对罗丹明B的降解率,结果如表1所示。
实施例4:
步骤一、将非晶钛铜合金Ti40Cu60(钛和铜的原子摩尔比为4:6)置于含有腐蚀液的密闭容器中,所述腐蚀液为质量分数为65%的硝酸水溶液,其中加入浓度为0.1mol/L的NaF及0.1mol/L的柠檬酸,所述非晶钛铜合金的总面积与腐蚀液的体积比为300cm2/L。
步骤二、将该密闭容器在70℃下保温72小时。
步骤三、将密闭容器中反应所得的白色粉末用去离子水洗净,在550℃下烧结1小时后制得,图1为制得的二氧化钛光催化剂的SEM图;图2为制得的二氧化钛光催化剂的XRD图。
按对比例1中所述方法测试催化剂对罗丹明B的降解率,结果如表1所示。
表1
催化剂 80min后罗丹明B降解率
对比例1 84.6%
实施例1 95.6%
实施例2 97.5%
实施例3 98.6%
实施例4 99.1%

Claims (3)

1.一种二氧化钛光催化剂的制备方法,其特征在于按照下列工序制备:将非晶态Ti-Cu合金条带置于含有浓硝酸溶液的密闭容器中,加入浓度为0.025~0.1mol/L的NaF及浓度为0.01~0.1mol/L的柠檬酸,在60-80℃下保温36~72h后取出;然后将所得产物在450~550℃下烧结1~2h后制得。
2.根据权利要求1所述的二氧化钛光催化剂的制备方法,其特征在于,所述非晶态Ti-Cu合金条带的总面积与浓硝酸的体积比例为200~300cm2/L。
3.根据权利要求1所述的二氧化钛光催化剂的制备方法,其特征在于,所述非晶态Ti-Cu合金条带中Ti的含量为40wt%-45wt%。
CN201611029936.2A 2016-12-12 2016-12-12 一种二氧化钛光催化剂的制备方法 Pending CN106423119A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611029936.2A CN106423119A (zh) 2016-12-12 2016-12-12 一种二氧化钛光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611029936.2A CN106423119A (zh) 2016-12-12 2016-12-12 一种二氧化钛光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN106423119A true CN106423119A (zh) 2017-02-22

Family

ID=58221763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611029936.2A Pending CN106423119A (zh) 2016-12-12 2016-12-12 一种二氧化钛光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106423119A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120884A1 (en) * 1999-12-13 2004-06-24 Jonathan Sherman Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof
CN102580709A (zh) * 2012-01-14 2012-07-18 天津大学 一种非晶纳米脱钛型二氧化钛材料及其制备方法
CN104609468A (zh) * 2013-11-04 2015-05-13 天津大学 一种制备具有多孔六棱柱形貌的锐钛矿型二氧化钛的方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120884A1 (en) * 1999-12-13 2004-06-24 Jonathan Sherman Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof
CN102580709A (zh) * 2012-01-14 2012-07-18 天津大学 一种非晶纳米脱钛型二氧化钛材料及其制备方法
CN104609468A (zh) * 2013-11-04 2015-05-13 天津大学 一种制备具有多孔六棱柱形貌的锐钛矿型二氧化钛的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋秀莲: "纳米TiO2的可控制备及对丙烯酸树脂抗紫外光性能改善的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Li et al. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications
Yu et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania
Preethi et al. Photocatalytic hydrogen production
Yu et al. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation
Wen et al. Synthesis of high-reactive facets dominated anatase TiO 2
Hu et al. Facile synthesis of tetrahedral Ag 3 PO 4 submicro-crystals with enhanced photocatalytic properties
Kim et al. A novel synthetic method for N doped TiO2 nanoparticles through plasma-assisted electrolysis and photocatalytic activity in the visible region
Nayak et al. Microwave-assisted greener synthesis of defect-rich tungsten oxide nanowires with enhanced photocatalytic and photoelectrochemical performance
Saeed et al. Ag-Co3O4: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium
Liu et al. Spontaneous construction of photoactive hollow TiO2 microspheres and chains
Jia et al. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance
WO2010104717A2 (en) Nanostructures having crystalline and amorphous phases
Wang et al. 7 Preparation of
Chen et al. Synthesis of TiO2 hollow sphere multimer photocatalyst by etching titanium plate and its application to the photocatalytic decomposition of gaseous styrene
Zhang et al. A novel preparation of Ag-doped TiO2 nanofibers with enhanced stability of photocatalytic activity
CN101508464A (zh) 锐钛矿型纳米二氧化钛的制备方法
Ai et al. A stable single-crystal Bi3NbO7 nanoplates superstructure for effective visible-light-driven photocatalytic removal of nitric oxide
Li et al. Preparation and characterization of buoyant nitrogen-doped TiO2 composites supported by fly ash cenospheres for photocatalytic applications
Hu et al. Synthesis of Ag-loaded SrTiO 3/TiO 2 heterostructure nanotube arrays for enhanced photocatalytic performances
Wang et al. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization
Chu et al. Morphology control of mesoporous Cu2O by reductants and its photocatalytic activity
Lin et al. Fabrication of high specific surface area TiO2 nanopowders by anodization of porous titanium
CN104056611A (zh) 一种制备纳米TiO2的方法
CN105195143A (zh) 一种介孔光催化材料及其制备方法
CN102557130B (zh) 一种制备二氧化钛纳米花阵列薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222

WD01 Invention patent application deemed withdrawn after publication