CN106411338A - Receiving circuit capable of correcting signal-to-noise characteristic value estimation and related method - Google Patents
Receiving circuit capable of correcting signal-to-noise characteristic value estimation and related method Download PDFInfo
- Publication number
- CN106411338A CN106411338A CN201510458314.0A CN201510458314A CN106411338A CN 106411338 A CN106411338 A CN 106411338A CN 201510458314 A CN201510458314 A CN 201510458314A CN 106411338 A CN106411338 A CN 106411338A
- Authority
- CN
- China
- Prior art keywords
- signal
- noise characteristic
- characteristic value
- value
- correction value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种可修正信噪特征值估计的接收电路与相关方法,尤指一种可修正因硬决策(hard decision)截剪(slicing)所导致的信噪比错误高估的接收电路与相关方法。The present invention relates to a receiving circuit and related method capable of correcting signal-to-noise eigenvalue estimation, especially a receiving circuit capable of correcting erroneous overestimation of signal-to-noise ratio caused by hard decision slicing and related methods.
背景技术Background technique
有线及/或无线网络系统是现代信息社会所不可或缺的。有线及/或无线网络系统包括有发射端与接收端,发射端与接收端间以信道(channel)相连;举例而言,此信道可以是由空气媒质/空间形成的无线信道,或是由网线、电力线(power line)等形成的有线信道。发射端可将数字信息编码调制为传输信号,并发射至信道上,经信道传播至接收端,再由接收端接收并解调解码为数字信息。Wired and/or wireless network systems are indispensable in the modern information society. The wired and/or wireless network system includes a transmitter and a receiver, and the transmitter and receiver are connected by a channel; for example, the channel can be a wireless channel formed by air medium/space, or a network cable , Power line (power line), etc. to form a wired channel. The transmitting end can encode and modulate the digital information into a transmission signal, transmit it to the channel, propagate to the receiving end through the channel, and then receive, demodulate and decode it into digital information at the receiving end.
不过,在网络系统中传输信号时,必定会受噪声影响,例如说是叠加性白色高斯噪声(AWGN,additive white Gaussian noise)。因此,信号与噪声间的关系也就成为设计、实施、布署、优化网络系统时的重要考虑因素。信号与噪声间的关系可量化为信噪特征值,例如信噪比,用以反映信号功率与噪声功率的比值。对比于真正携载信息的传输信号的功率,若噪声的功率相对较低,则信噪比的数值会较高,由发射端至接收端的传输信号较不易受噪声干扰,故可在较高的正确率(较低的错误率,error rate)将信息由发射端送抵接收端。However, when a signal is transmitted in a network system, it must be affected by noise, such as additive white Gaussian noise (AWGN, additive white Gaussian noise). Therefore, the relationship between signal and noise has become an important consideration when designing, implementing, deploying, and optimizing network systems. The relationship between signal and noise can be quantified as signal-to-noise characteristic value, such as signal-to-noise ratio, which is used to reflect the ratio of signal power to noise power. Compared with the power of the transmission signal that actually carries information, if the power of the noise is relatively low, the value of the signal-to-noise ratio will be higher, and the transmission signal from the transmitter to the receiver is less susceptible to noise interference, so it can be used at a higher The correct rate (lower error rate, error rate) sends information from the transmitter to the receiver.
在现代化的网络系统中,接收端会估计信噪比,使接收端及/或发射端能依据信噪比适应性地调整信号发射及/或接收的运作。举例而言,在先进电力线网络系统中,当接收端估计出的信噪比数值较高时,接收端会认为当下的信息传输情况良好,并进而回授通知发射端,使发射端增加速率(rate)。反之,当接收端估计出的信噪比数值较低时,接收端会认为当下的信息传输情况欠佳,资料传输容易出错,故接收端可回授通知发射端,使发射端减少速率,如此可得到最佳的流量(throughput)。In a modern network system, the receiving end will estimate the SNR, so that the receiving end and/or the transmitting end can adaptively adjust the operation of signal transmission and/or reception according to the SNR. For example, in an advanced power line network system, when the signal-to-noise ratio value estimated by the receiving end is high, the receiving end will think that the current information transmission is in good condition, and then feed back to notify the transmitting end, so that the transmitting end increases the rate ( rate). Conversely, when the signal-to-noise ratio value estimated by the receiving end is low, the receiving end will think that the current information transmission situation is not good, and data transmission is prone to errors, so the receiving end can feedback to the transmitting end to reduce the transmission rate, so The best throughput can be obtained.
不过,对接收端而言,由于噪声的本质是随机的,且会和真正携载信息的信号混合(叠加)在一起,故接收端仅能得出估计的信噪比,而此估计信噪比不一定能反映真正的信噪比。若接收端估计出的信噪比与真正的信噪比差异过大,当网络系统依据估计讯杂比适应性地调整信号发射及/或接收的运作时,就会影响网络系统的运作功效。举例而言,若接收端估计出的信噪比较为乐观而高于真正的信噪比,会误使发射端增加信息传输的速率;然而,虽信息传输流量高,但错误率也会较高,因为接收端真正接收到的信号已经受到高噪声的干扰;因此,能正确有效传递的信息量反而减少。However, for the receiving end, since the nature of the noise is random and will be mixed (superimposed) with the real information-carrying signal, the receiving end can only obtain an estimated SNR, and this estimated SNR The ratio does not necessarily reflect the true signal-to-noise ratio. If the difference between the estimated SNR and the real SNR at the receiving end is too large, when the network system adaptively adjusts the operation of signal transmission and/or reception according to the estimated SNR, the operation efficiency of the network system will be affected. For example, if the signal-to-noise ratio estimated by the receiver is optimistic and higher than the real signal-to-noise ratio, it will mistakenly cause the transmitter to increase the rate of information transmission; however, although the information transmission traffic is high, the error rate will also be high , because the signal actually received by the receiving end has been interfered by high noise; therefore, the amount of information that can be correctly and effectively transmitted is reduced instead.
发明内容Contents of the invention
本发明的目的的一是提供一种可修正信噪特征值(如信噪比)估计的接收电路(如20,图1),其可设于一网络系统的一接收端中,并包括一均衡器(如24)、一截剪器(如26)、一估计电路(如28)与一校正电路(如30)。均衡器可依据一接收信号(如s1)提供一均衡信号(如s2)。截剪器耦接该均衡器,可判读该均衡信号中的数字信息,以依据该均衡信号提供一截剪信号(如s3)。估计电路耦接该均衡器与该截剪器,用以依据该均衡信号与该截剪信号的差异提供一初始信噪特征值(如SNRi[k])。校正电路耦接该估计电路,依据该初始信噪特征值的数值提供一对应修正值(如r[k]),并依据该对应修正值修正该初始信噪特征值,以产生一修正信噪特征值(如SNRc[k])。One object of the present invention is to provide a receiving circuit (such as 20, Fig. 1 ) that can correct the estimation of signal-to-noise characteristic value (such as signal-to-noise ratio), which can be installed in a receiving end of a network system, and includes a An equalizer (such as 24), a clipper (such as 26), an estimation circuit (such as 28) and a correction circuit (such as 30). The equalizer can provide an equalized signal (such as s2) according to a received signal (such as s1). The clipper is coupled to the equalizer and can interpret digital information in the equalized signal to provide a clipped signal (eg s3 ) according to the equalized signal. The estimation circuit is coupled to the equalizer and the clipper, and is used for providing an initial signal-to-noise characteristic value (such as SNRi[k]) according to the difference between the equalized signal and the clipped signal. The correction circuit is coupled to the estimation circuit, provides a corresponding correction value (such as r[k]) according to the value of the initial signal-to-noise characteristic value, and corrects the initial signal-to-noise characteristic value according to the corresponding correction value to generate a corrected signal-to-noise characteristic value Eigenvalues (such as SNRc[k]).
该校正电路中可包括一查表电路(如34)与一乘法器(如32)。查表电路可储存多个预设修正值(如e[p,1]至e[p,N],图6),并依据该初始信噪特征值与这些预设修正值提供该对应修正值;其中,各该预设修正值对应于多个预设信噪特征值(如SNRt[1]至SNRt[N])的其中之一。乘法器耦接该查表电路与该估计电路,可将该初始信噪特征值乘以该对应修正值,并据以产生该修正信噪特征值。一实施例中,当该查表电路依据该初始信噪特征值与这些预设修正值提供该对应修正值时,是由这些预设信噪特征值中寻得一个最接近该初始信噪特征值的(如SNRt[n]),并将该寻得的预设信噪特征值所关连的该预设修正值(如e[p,n])作为该对应修正值。随着这些预设信噪特征值由小至大排列,相对应的这些预设修正值至少有部分数目个会先呈一第一增减趋势变化,再呈一第二增减趋势变化,且该第一增减趋势与该第二增减趋势相反。例如,该第一增减趋势可为严格递减(或单调递减),第二增减趋势可为严格递增(或单调递增)。The correction circuit may include a look-up table circuit (such as 34) and a multiplier (such as 32). The look-up table circuit can store multiple preset correction values (such as e[p,1] to e[p,N], Figure 6), and provide the corresponding correction value based on the initial signal-to-noise characteristic value and these preset correction values ; Wherein, each of the preset correction values corresponds to one of a plurality of preset signal-to-noise characteristic values (such as SNRt[1] to SNRt[N]). The multiplier is coupled to the look-up table circuit and the estimation circuit, and can multiply the initial signal-to-noise characteristic value by the corresponding correction value to generate the modified signal-to-noise characteristic value. In one embodiment, when the look-up table circuit provides the corresponding correction value according to the initial signal-to-noise characteristic value and these preset correction values, a characteristic closest to the initial signal-to-noise characteristic is found from these preset signal-to-noise characteristic values value (such as SNRt[n]), and the preset correction value (such as e[p,n]) associated with the found preset signal-to-noise characteristic value is used as the corresponding correction value. As the preset signal-to-noise characteristic values are arranged from small to large, at least some of the corresponding preset correction values will first change in a first increasing or decreasing trend, and then change in a second increasing or decreasing trend, and The first increasing-decreasing trend is opposite to the second increasing-decreasing trend. For example, the first increasing-decreasing trend may be strictly decreasing (or monotonically decreasing), and the second increasing-decreasing trend may be strictly increasing (or monotonically increasing).
该校正电路更依据该接收信号的一调制设定提供该对应修正值。一实施例中,该接收信号包含第二数目(大于等于1,如K)个载波(如s1[1]至s1[K]),并于各该载波(如s1[k])上依据一对应调制设定(如ms[k])携载对应数字信息,且各该载波的该对应调制设定是由第一数目(大于等于1,如P)个预设调制设定MS[1]至MS[P]中所选出。举例而言,预设调制设定MS[1]至MS[P]可以分别是二元相移调制(binary phase shift keying,以下简称BPSK)、四元相移调制(quadrature phase shift keying,以下简称QPSK)、八元正交振幅调制(quadrature amplitude modulation,以下简称8QAM)、十六元正交振幅调制(以下简称16QAM)、六十四元正交振幅调制(以下简称64QAM)、二百五十六元正交振幅调制(以下简称256QAM)、一千零二十四元正交振幅调制(以下简称1024QAM)与四千零九十六元正交振幅调制(以下简称4096QAM)。The correction circuit further provides the corresponding correction value according to a modulation setting of the received signal. In one embodiment, the received signal includes a second number (greater than or equal to 1, such as K) of carriers (such as s1[1] to s1[K]), and on each of the carriers (such as s1[k]) according to a The corresponding modulation setting (such as ms[k]) carries corresponding digital information, and the corresponding modulation setting of each carrier is a first number (greater than or equal to 1, such as P) preset modulation setting MS[1] to MS[P]. For example, the default modulation settings MS[1] to MS[P] can be binary phase shift keying (binary phase shift keying, hereinafter referred to as BPSK), quadrature phase shift keying (quadrature phase shift keying, hereinafter referred to as QPSK), eight-element quadrature amplitude modulation (hereinafter referred to as 8QAM), sixteen-element quadrature amplitude modulation (hereinafter referred to as 16QAM), sixty-four element quadrature amplitude modulation (hereinafter referred to as 64QAM), two hundred and fifty Six-element quadrature amplitude modulation (hereinafter referred to as 256QAM), 1024-element quadrature amplitude modulation (hereinafter referred to as 1024QAM) and 4096-element quadrature amplitude modulation (hereinafter referred to as 4096QAM).
该估计电路为各该载波s1[k]提供一初始信噪特征值SNRi[k]。该校正电路则是依据各该载波的该初始信噪特征值SNRi[k]与各该载波的该对应调制设定ms[k]而为各该载波提供一对应修正值r[k],并依据各该载波的该对应修正值修正各该载波的该初始信噪特征值,以便为各该载波产生一修正信噪特征值SNRc[k]。在该校正电路中,该查表电路为各该预设调制设定MS[p](p=1至P,图6)储存多个预设修正值e[p,1]至e[p,N],并依据各该载波的该对应调制设定ms[k]、各该载波的该初始信噪特征值SNRi[k]与各该预设调制设定MS[1]至MS[P]的这些预设修正值e[1,1]至e[P,1]、…、e[1,N]至e[P,N]而为各该载波s1[k]提供该对应修正值SNRc[k]。其中,各该预设调制设定MS[p]的各该预设修正值e[p,n](对n=1至N)是关连于多个预设信噪特征值SNRt[1]至SNRt[N]的其中之一SNRt[n]。该乘法器则用以将各该载波的该初始信噪特征值乘以各该载波的该对应修正值,并据以产生各该载波的该修正信噪特征值。The estimation circuit provides an initial signal-to-noise characteristic value SNRi[k] for each carrier s1[k]. The correction circuit provides a corresponding correction value r[k] for each carrier according to the initial signal-to-noise characteristic value SNRi[k] of each carrier and the corresponding modulation setting ms[k] of each carrier, and The initial signal-to-noise characteristic value of each carrier is corrected according to the corresponding correction value of each carrier, so as to generate a modified signal-to-noise characteristic value SNRc[k] for each carrier. In the correction circuit, the look-up table circuit stores a plurality of preset correction values e[p,1] to e[p, N], and according to the corresponding modulation setting ms[k] of each carrier, the initial signal-to-noise characteristic value SNRi[k] of each carrier and the preset modulation settings MS[1] to MS[P] These preset correction values e[1,1] to e[P,1], ..., e[1,N] to e[P,N] provide the corresponding correction value SNRc for each carrier s1[k] [k]. Wherein, each of the preset correction values e[p,n] (for n=1 to N) of each of the preset modulation settings MS[p] is related to a plurality of preset signal-to-noise characteristic values SNRt[1] to One of SNRt[n] SNRt[n]. The multiplier is used for multiplying the initial signal-to-noise characteristic value of each carrier by the corresponding modified value of each carrier, and accordingly generating the modified signal-to-noise characteristic value of each carrier.
当该查表电路为各该载波s1[k]提供该对应修正值r[k]时,是由这些预设调制设定MS[1]至MS[P]中找出一个符合各该载波的该对应调制设定ms[k]的(假设为MS[p1]),并由这些预设信噪特征值SNRt[1]至SNRt[N]中寻得一个最接近各该载波的该初始信噪特征值SNRi[k]的(假设为SNRt[n1]),以在该符合的预设调制设定MS[p]的这些预设修正值e[p1,1]至e[p1,N]中将该寻得的预设信噪特征值SNRt[n]所关连的该预设修正值e[p1,n1]作为各该载波的该对应修正值r[k]。随着这些预设信噪特征值SNRt[1]至SNRt[N]由小至大排列,在同一该预设调制设定MS[p]的这些预设修正值e[p,1]至e[p,N]中,至少有部分数目个该预设修正值会先呈一第一增减趋势变化,再呈一第二增减趋势变化,且该第一增减趋势与该第二增减趋势相反。随着这些预设调制设定MS[1]至MS[P]在单位时间内携载的比特数由小至大排列,在对应于同一预设信噪特征值SNRt[n]且对应于不同预设调制设定的多个该预设修正值e[1,n]至e[P,n]中,至少有部分数目个会呈现渐减的趋势。When the table look-up circuit provides the corresponding correction value r[k] for each carrier s1[k], one of the preset modulation settings MS[1] to MS[P] is found to match each carrier The corresponding modulation setting is ms[k] (assumed to be MS[p1]), and the initial signal closest to each carrier is found from these preset signal-to-noise characteristic values SNRt[1] to SNRt[N] noise eigenvalue SNRi[k] (assumed to be SNRt[n1]), with these preset correction values e[p1,1] to e[p1,N] in the corresponding preset modulation setting MS[p] The preset correction value e[p1,n1] associated with the found preset signal-to-noise characteristic value SNRt[n] is used as the corresponding correction value r[k] of each carrier. As these preset signal-to-noise characteristic values SNRt[1] to SNRt[N] are arranged from small to large, these preset correction values e[p,1] to e in the same preset modulation setting MS[p] Among [p, N], at least some of the preset correction values will first change in a first increasing-decreasing trend, and then change in a second increasing-decreasing trend, and the first increasing-decreasing trend and the second increasing-decreasing trend The decreasing trend is opposite. With these preset modulation settings MS[1] to MS[P] the number of bits carried per unit time is arranged from small to large, corresponding to the same preset signal-to-noise characteristic value SNRt[n] and corresponding to different Among the plurality of preset correction values e[1,n] to e[P,n] of the preset modulation settings, at least some of the numbers show a decreasing trend.
一实施例中,该第二数目个载波是正交分频多工(OFDM,orthogonalfrequency-division multiplexing)下的多个载波。In an embodiment, the second number of carriers is a plurality of carriers under Orthogonal Frequency-Division Multiplexing (OFDM, Orthogonal Frequency-Division Multiplexing).
一实施例中,该接收电路更包括一比特负载(bit loading)设定电路(如38),耦接该校正电路,用以依据各该载波的该修正信噪特征值产生一回授信号(如s4,图1)至发射电路(如10),以更新各该载波的该对应调制设定,使该发射电路可依据各该载波的该更新后的对应调制设定而于各载波上携载后续数字信息。In one embodiment, the receiving circuit further includes a bit loading (bit loading) setting circuit (such as 38), coupled to the correction circuit, for generating a feedback signal ( Such as s4, Fig. 1) to the transmitting circuit (such as 10), to update the corresponding modulation setting of each carrier, so that the transmitting circuit can carry on each carrier according to the updated corresponding modulation setting of each carrier Download subsequent digital information.
本发明的一目的是提供一种可于一接收电路中修正信噪特征值估计的方法,包括:依据该接收电路所接收的一接收信号提供一均衡信号(equalizedsignal),其中该接收信号可包含第二数目(K)个载波s1[1]至s1[K],并于各该载波s1[k]上依据一对应调制设定ms[k]携载对应数字信息,且各该载波的该对应调制设定ms[k]是由第一数目(P)个预设调制设定MS[1]至MS[P]中所选出;进行一截剪步骤,依据该均衡信号提供一截剪信号;进行一估计步骤,依据该均衡信号与该截剪信号的差异为各该载波提供一初始信噪特征值SNRi[k];以及,进行一校正步骤,依据各该载波的该初始信噪特征值的数值提供一对应修正值r[k],并依据各该载波的该对应修正值与该初始信噪特征值修正各该载波的该初始信噪特征值,以便为各该载波产生一修正信噪特征值SNRc[k]。An object of the present invention is to provide a method for correcting signal-to-noise eigenvalue estimation in a receiving circuit, comprising: providing an equalized signal (equalized signal) according to a received signal received by the receiving circuit, wherein the received signal may include The second number (K) of carriers s1[1] to s1[K] carry corresponding digital information on each carrier s1[k] according to a corresponding modulation setting ms[k], and each of the carriers The corresponding modulation setting ms[k] is selected from the first number (P) of preset modulation settings MS[1] to MS[P]; a clipping step is performed to provide a clipping step based on the equalized signal signal; perform an estimation step, provide an initial signal-to-noise characteristic value SNRi[k] for each of the carriers according to the difference between the equalized signal and the truncated signal; and perform a correction step, based on the initial SNR of each of the carriers The value of the eigenvalue provides a corresponding correction value r[k], and correcting the initial signal-to-noise characteristic value of each carrier according to the corresponding correction value and the initial signal-to-noise characteristic value of each carrier, so as to generate a Correct the signal-to-noise eigenvalue SNRc[k].
其中,依据该初始信噪特征值提供该对应修正值的步骤更包含:依据该接收信号的一调制设定、该初始信噪特征值与多个预设修正值提供该对应修正值;其中,各该预设修正值是对应于多个预设信噪特征值的其中之一;以及,由这些预设修正值中寻得一预设修正值其对应的预设信噪特征值最接近该初始信噪特征值来提供该对应修正值。Wherein, the step of providing the corresponding correction value according to the initial signal-to-noise characteristic value further includes: providing the corresponding correction value according to a modulation setting of the received signal, the initial signal-to-noise characteristic value and a plurality of preset correction values; wherein, Each of the preset correction values corresponds to one of a plurality of preset signal-to-noise characteristic values; and a preset correction value whose corresponding preset signal-to-noise characteristic value is closest to the The initial signal-to-noise characteristic value is used to provide the corresponding correction value.
例如,当为各该载波提供该对应修正值时,是由这些预设调制设定MS[1]至MS[P]中找出一个符合各该载波的该对应调制设定ms[k]的(假设为MS[p1]),并由这些预设信噪特征值SNRt[1]至SNRt[N]中寻得一个最接近各该载波的该初始信噪特征值的(假设为SNRt[n1]),以在该符合的预设调制设定的这些预设修正值e[p1,1]至e[p1,N]中将该寻得的预设信噪特征值SNRt[n1]所对应的该预设修正值e[p1,n1]作为各该载波的该对应修正值r[k]。For example, when the corresponding correction value is provided for each carrier, one of the preset modulation settings MS[1] to MS[P] is found to match the corresponding modulation setting ms[k] of each carrier. (assumed to be MS[p1]), and from these preset signal-to-noise characteristic values SNRt[1] to SNRt[N], one of the initial signal-to-noise characteristic values closest to each carrier (assumed to be SNRt[n1] is found ]), to correspond to the found preset signal-to-noise characteristic value SNRt[n1] among the preset correction values e[p1,1] to e[p1,N] of the corresponding preset modulation setting The preset correction value e[p1,n1] is used as the corresponding correction value r[k] of each carrier.
附图说明Description of drawings
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明,其中:In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, the specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, wherein:
图1示意的是依据本发明一实施例的接收电路。FIG. 1 schematically illustrates a receiving circuit according to an embodiment of the present invention.
图2示意的是一预设调制设定下于一散射图上的星座点。FIG. 2 illustrates constellation points on a scatter diagram under a default modulation setting.
图3示意的是一决策区间划分。FIG. 3 schematically shows a division of a decision interval.
图4a、4b分别示意固定边界的决策区间划分与其信噪特征值的误估情形。Figures 4a and 4b respectively illustrate the division of decision intervals with fixed boundaries and the misestimation of signal-to-noise eigenvalues.
图5示意的是在固定边界的决策区间划分下不同调制设定的信噪特征值误估。Fig. 5 illustrates the misestimation of signal-to-noise characteristic values under different modulation settings under the division of decision-making intervals with fixed boundaries.
图6示意的是依据本发明一实施例的一表格,用以提供修正值。FIG. 6 illustrates a table for providing correction values according to an embodiment of the present invention.
图7绘示图6表格的一实施例。FIG. 7 illustrates an embodiment of the table in FIG. 6 .
图8示意的是未校正的初始信噪特征值与校正后的修正信噪特征值。FIG. 8 shows the uncorrected initial signal-to-noise feature value and the corrected corrected signal-to-noise feature value.
图9示意的是依据本发明一实施例的流程。FIG. 9 schematically shows a process according to an embodiment of the present invention.
10:发射电路10: Transmitting circuit
12:信道12: channel
20:接收电路20: Receive circuit
22:信道估计电路22: Channel estimation circuit
24:均衡器24: Equalizer
26:截剪器26: Clipper
28:估计电路28: Estimation circuit
30:校正电路30: Correction circuit
32:乘法器32: Multiplier
34:查表电路34: Look-up table circuit
36:应用电路36: Application circuit
38:比特负载设定电路38: Bit load setting circuit
s0-s4:信号s0-s4: signal
s0[k]-s3[k]:载波s0[k]-s3[k]: Carrier
SNRi[k]:初始信噪特征值SNRi[k]: initial signal-to-noise eigenvalue
SNRc[k]:修正信噪特征值SNRc[k]: corrected signal-to-noise eigenvalue
r[k]:修正值r[k]: correction value
MS[1]-MS[P]:预设调制设定MS[1]-MS[P]: preset modulation settings
ms[k]:调制设定ms[k]: modulation setting
c[p,1,1]-c[p,I[p],Q[p]]:星座点c[p,1,1]-c[p,I[p],Q[p]]: constellation point
a[p]:距离a[p]: distance
SNRt[1]-SNRt[N]:预设信噪特征值SNRt[1]-SNRt[N]: preset signal-to-noise characteristic value
e[1,1]-e[P,N]:预设修正值e[1,1]-e[P,N]: preset correction value
sa0、sa、sb、sc、z1-z4、a1-a4、a20、a30、a40、b1-b4、b20、b30、b40:点sa0, sa, sb, sc, z1-z4, a1-a4, a20, a30, a40, b1-b4, b20, b30, b40: point
B[p]:边界B[p]: boundary
D[p]:决策区间划分D[p]: decision interval division
d[p,1,1]-d[p,I[p],Q[p]]:决策区间d[p,1,1]-d[p,I[p],Q[p]]: decision interval
va、vb、vc、v0、v1e-v4e、v2-v3:向量va, vb, vc, v0, v1e-v4e, v2-v3: vector
400、500、600、700:直线400, 500, 600, 700: Straight line
410、501-508、610、701-708、901-908、1000-1002、1100-1102:曲线410, 501-508, 610, 701-708, 901-908, 1000-1002, 1100-1102: curve
SNR0:正确信噪特征值SNR0: correct signal-to-noise eigenvalue
h1-h3、h11、h12、h1a、h2a、h10、u1、u11:值h1-h3, h11, h12, h1a, h2a, h10, u1, u11: value
800:表格800: Form
1200:流程1200: process
1202-1208:步骤1202-1208: Steps
具体实施方式detailed description
请参考图1,其所示意的是依据本发明一实施例的接收电路20,其可经由一信道12接收一发射电路10所发出的信号s0。举例而言,发射电路10与接收电路20可以分别设置于一网络系统的一发射端与一接收端。信道12可以是有线或无线信道;举例而言,信道12可以是传输交流电力的电力线。当发射电路10要将数字信息传递至接收电路20时,发射电路10可将数字信息编码调制为信号s0,信号s0经由信道12传输至接收电路20;经由信道12传输,信号s0会受噪声影响变为一信号s1(接收信号)。接收电路20中可包括一信道估计电路22、一均衡器24、一截剪器26、一估计电路28与一应用电路36;为实现本发明修正信噪特征值的目的,接收电路20中更包括有一校正电路30。Please refer to FIG. 1 , which shows a receiving circuit 20 according to an embodiment of the present invention, which can receive a signal s0 from a transmitting circuit 10 through a channel 12 . For example, the transmitting circuit 10 and the receiving circuit 20 may be respectively disposed at a transmitting end and a receiving end of a network system. Channel 12 may be a wired or wireless channel; for example, channel 12 may be a power line that transmits AC power. When the transmitting circuit 10 wants to transmit digital information to the receiving circuit 20, the transmitting circuit 10 can encode and modulate the digital information into a signal s0, and the signal s0 is transmitted to the receiving circuit 20 through the channel 12; the signal s0 will be affected by noise when transmitted through the channel 12 becomes a signal s1 (reception signal). A channel estimation circuit 22, an equalizer 24, a clipper 26, an estimation circuit 28 and an application circuit 36 may be included in the receiving circuit 20; A correction circuit 30 is included.
一范例中,信号s0中可包括有K个载波s0[1]至s0[K];在一单位时间内,发射电路10可依据一调制设定ms[k](未图示)来将一符元smb[k](未图示)的数字信息调制携载至载波s0[k]。载波s0[k]的调制设定ms[k]可以是由P个预设调制设定MS[1]至MS[P]中所选出的;以P=8为例,预设调制设定MS[1]至MS[8]可分别是正交分频多工的调制方式BPSK、QPSK、8QAM、16QAM、64QAM、256QAM、1024QAM与4096QAM。不同载波s0[k1]与s0[k2]的调制设定ms[k1]与ms[k2]可以相同或相异。同一载波s0[k]的调制设定ms[k]可以是固定的,也可以是动态改变的;举例而言,要传输一第一符元时,载波s0[1]的调制设定ms[1]可采用预设调制设定MS[1](BPSK);要传输另一符元时,载波s0[1]的调制设定ms[1]可以改采预设调制设定MS[2](QPSK)。In an example, the signal s0 may include K carriers s0[1] to s0[K]; within a unit time, the transmitting circuit 10 may transmit a modulation setting ms[k] (not shown) The digital information modulation of the symbol smb[k] (not shown) is carried on the carrier s0[k]. The modulation setting ms[k] of the carrier s0[k] may be selected from P preset modulation settings MS[1] to MS[P]; taking P=8 as an example, the preset modulation setting MS[1] to MS[8] can be OFDM modulation modes BPSK, QPSK, 8QAM, 16QAM, 64QAM, 256QAM, 1024QAM and 4096QAM respectively. The modulation settings ms[k1] and ms[k2] of different carriers s0[k1] and s0[k2] can be the same or different. The modulation setting ms[k] of the same carrier s0[k] can be fixed or dynamically changed; for example, when a first symbol is to be transmitted, the modulation setting ms[k] of the carrier s0[1] 1] The default modulation setting MS[1] (BPSK) can be used; when another symbol is to be transmitted, the modulation setting ms[1] of the carrier s0[1] can be changed to the default modulation setting MS[2] (QPSK).
各预设调制设定MS[p]可依据M[p]个星座点来携载数字信息;延续图1,请一并参考图2,其是于一散射图中示意某一预设调制设定MS[p]的M[p]个星座点c[p,i,q](i=1至I[p],q=1至Q[p]);其中,M[p]=I[p]*Q[p]。图2的横轴代表各星座点c[p,i,q]的平行相位(in-phase)分量,纵轴则代表各星座点c[p,i,q]的正交相位(quadrature-phase)分量;举例而言,若某一预设调制设定MS[4]为16QAM,则其可依据M[4]=I[4]*Q[4]=4*4=16个星座点c[4,1,1]、c[4,1,2]、c[4,2,1]、c[4,2,2]、…、c[4,i,q]、…至c[4,4,4]来携载数字信息。各星座点c[p,i,q]的座标(AI[p,i,q],AQ[p,i,q])(未图示)可以等于((i-0.5*I[p]-0.5)*a[p],(q-0.5*Q[p]-0.5)*a[p]);其中,项目a[p]为两相邻星座点间的距离,如图2所标示。举例而言,若某一预设调制设定MS[4]为16QAM,i=1,q=1,则星座点c[4,1,1]的座标(AI[4,1,1],AQ[4,1,1])等于((1-0.5*4-0.5)*a[p],(1-0.5*4-0.5)*a[p])=(-1.5*a[p],-1.5*a[p])。各个星座点c[p,i,q]可对应一符元的数字预设信息SMB[p,i,q](未图示),各预设信息SMB[p,i,q]可以是log2(M[p])个比特的组合;以某一预设调制设定MS[4]为16QAM为例,各个星座点c[4,i,q]所对应的各数字预设信息SMB[4,i,q]可以是log2(16)=4个比特的组合。在信号s0中,当发射电路10(图1)要在载波s0[k]采用预设调制设定MS[p]作为其调制设定ms[k]以携载某一预设信息SMB[p,i,q]时,即可依据AI[p,i,q]*cos(2*π*f[k]*t)+AQ[p,i,q]*sin(2*π*f[k]*t)(未图示)来形成载波s0[k],其中,项目f[k]为载波s0[k]的频率,项目t为时间。Each preset modulation setting MS[p] can carry digital information according to M[p] constellation points; continuing FIG. 1, please refer to FIG. 2 together, which shows a certain preset modulation setting in a scatter diagram Determine M[p] constellation points c[p,i,q] of MS[p] (i=1 to I[p], q=1 to Q[p]); where M[p]=I[ p]*Q[p]. The horizontal axis of Fig. 2 represents the parallel phase (in-phase) component of each constellation point c[p,i,q], and the vertical axis represents the quadrature-phase (quadrature-phase) component of each constellation point c[p,i,q]. ) component; for example, if a certain preset modulation setting MS[4] is 16QAM, it can be based on M[4]=I[4]*Q[4]=4*4=16 constellation points c [4,1,1], c[4,1,2], c[4,2,1], c[4,2,2], ..., c[4,i,q], ... to c[ 4,4,4] to carry digital information. The coordinates (AI[p,i,q], AQ[p,i,q]) (not shown) of each constellation point c[p,i,q] can be equal to ((i-0.5*I[p] -0.5)*a[p],(q-0.5*Q[p]-0.5)*a[p]); Among them, the item a[p] is the distance between two adjacent constellation points, as shown in Figure 2 . For example, if a certain preset modulation setting MS[4] is 16QAM, i=1, q=1, then the coordinates of constellation point c[4,1,1] (AI[4,1,1] ,AQ[4,1,1]) is equal to ((1-0.5*4-0.5)*a[p],(1-0.5*4-0.5)*a[p])=(-1.5*a[p ],-1.5*a[p]). Each constellation point c[p,i,q] can correspond to digital preset information SMB[p,i,q] of one symbol (not shown), and each preset information SMB[p,i,q] can be log A combination of 2 (M[p]) bits; taking a certain preset modulation setting MS[4] as 16QAM as an example, each digital preset information SMB[ 4,i,q] can be a combination of log 2 (16)=4 bits. In the signal s0, when the transmitting circuit 10 (Fig. 1) wants to use the preset modulation setting MS[p] on the carrier s0[k] as its modulation setting ms[k] to carry a certain preset information SMB[p ,i,q], it can be based on AI[p,i,q]*cos(2*π*f[k]*t)+AQ[p,i,q]*sin(2*π*f[ k]*t) (not shown) to form the carrier s0[k], wherein the item f[k] is the frequency of the carrier s0[k], and the item t is the time.
举例而言,若某一预设调制设定MS[p1]为QPSK,则其共有M[p1]=4个星座点c[p1,1,1]、c[p1,2,1]、c[p1,1,2]与c[p1,2,2],其对应的预设信息SMB[p1,1,1]、SMB[p1,2,1]、SMB[p1,1,2]至SYM[p1,2,2]可以分别是log2(M[p1])=log2(4)=2比特的00、10、01、11。由于功率正规化(normalization)的缘故,对不同的预设调制设定MS[p1]与MS[p2]而言,相邻星座点间的距离a[p1]与a[p2]可以是相异的。举例而言,若预设调制设定MS[1]至MS[P]分别为BPSK、QPSK、8QAM、16QAM、64QAM、256QAM、1024QAM与4096QAM,则距离a[1]>a[2]>…>a[P]。For example, if a certain preset modulation setting MS[p1] is QPSK, then it has M[p1]=4 constellation points c[p1,1,1], c[p1,2,1], c [p1,1,2] and c[p1,2,2], the corresponding preset information SMB[p1,1,1], SMB[p1,2,1], SMB[p1,1,2] to SYM[p1,2,2] can be log 2 (M[p1])=log 2 (4)=2 bits 00, 10, 01, 11, respectively. Due to power normalization, for different preset modulation settings MS[p1] and MS[p2], the distances a[p1] and a[p2] between adjacent constellation points can be different of. For example, if the default modulation settings MS[1] to MS[P] are BPSK, QPSK, 8QAM, 16QAM, 64QAM, 256QAM, 1024QAM and 4096QAM respectively, then the distance a[1]>a[2]>… >a[P].
请再度参考图1。经由信道12的传输,信号s0的K个载波s0[1]至s0[K]会分别形成信号s1中的K个载波s1[1]至s1[K]。在接收电路20中,均衡器24耦接于信道12,用以对信号s1中的载波s1[1]至s1[K]进行均衡运作,分别形成信号s2中的载波s2[1]至s2[K]。截剪器26耦接均衡器24,用以判读信号s2中由各载波s2[1]至s2[K]携载的数字信息,并据以提供一信号s3(截剪信号)的各载波s3[1]至s3[K]。估计电路28耦接均衡器24与截剪器26,可依据载波s2[k]与载波s3[k]的差异而为各载波s1[k]提供一初始信噪特征值SNRi[k]。Please refer to Figure 1 again. Through the transmission of the channel 12 , the K carriers s0 [ 1 ] to s0 [K] of the signal s0 respectively form the K carriers s1 [ 1 ] to s1 [K] of the signal s1 . In the receiving circuit 20, the equalizer 24 is coupled to the channel 12, and is used to equalize the carriers s1[1] to s1[K] in the signal s1 to form the carriers s2[1] to s2[ in the signal s2 respectively. K]. The clipper 26 is coupled to the equalizer 24, and is used to interpret the digital information carried by the carriers s2[1] to s2[K] in the signal s2, and accordingly provide a signal s3 (cut signal) of each carrier s3 [1] to s3[K]. The estimation circuit 28 is coupled to the equalizer 24 and the clipper 26, and can provide an initial signal-to-noise characteristic value SNRi[k] for each carrier s1[k] according to the difference between the carrier s2[k] and the carrier s3[k].
延续图1与图2,请参考图3,其是以散射图示意均衡器24与截剪器26的运作。当发射电路10依据某一预设调制设定MS[p]将一预设信息SMB[p,i,q]调制至信号s0(图1)的载波s0[k],并经由信道12的传输变为接收电路20所接收到的信号s1中的载波s1[k]时,由于噪声等因素,载波s1[k]在散射图上所对应的点会无法与载波s0[k]在散射图上所对应的星座点c[p,i,q]重合;举例而言,载波s0[1]所对应的星座点为c[p,1,1],载波s1[1]所对应的点可以是点sa0、sb或sc。均衡器24会对载波s1[k]进行均衡处理而使均衡后的载波s2[k]收敛至一边界B[p]内;举例而言,假设载波s1[1]所对应的点sa0超出边界B[p],则均衡后的载波s2[1]所对应的点sa就会座落于边界B[p]上;另举例而言,假设载波s1[1]所对应的点在边界B[p]内,例如sb或sc,则均衡后的载波s2[1]所对应的点仍会座落于边界B[p]内。Continuing with FIG. 1 and FIG. 2 , please refer to FIG. 3 , which illustrates the operations of the equalizer 24 and the clipper 26 in a scatter diagram. When the transmitting circuit 10 modulates a preset information SMB[p,i,q] to the carrier s0[k] of the signal s0 (Fig. 1 ) according to a preset modulation setting MS[p], and transmits the When becoming the carrier s1[k] in the signal s1 received by the receiving circuit 20, due to factors such as noise, the point corresponding to the carrier s1[k] on the scatter diagram cannot be compared with the carrier s0[k] on the scatter diagram. The corresponding constellation points c[p,i,q] coincide; for example, the constellation point corresponding to carrier s0[1] is c[p,1,1], and the point corresponding to carrier s1[1] can be Point sa0, sb or sc. The equalizer 24 performs equalization processing on the carrier s1[k] so that the equalized carrier s2[k] converges to a boundary B[p]; for example, suppose the point sa0 corresponding to the carrier s1[1] exceeds the boundary B[p], then the point sa corresponding to the equalized carrier s2[1] will be located on the boundary B[p]; for another example, suppose the point corresponding to the carrier s1[1] is on the boundary B[ p], such as sb or sc, the point corresponding to the equalized carrier s2[1] will still be located within the boundary B[p].
接着,截剪器26便会采用与载波s0[k]所采用的预设调制设定MS[p]关连的决策区间划分D[p]来判读载波s0[k]所携载的数字信息。决策区间划分D[p]是在边界B[p]中划分出多个决策区间d[p,1,1]至d[p,I[p],Q[p]],如图3所示,各决策区间d[p,i,q]可以涵盖对应的星座点c[p,i,q],分别关连于预设调制设定MS[p]的M[p]个预设信息SMB[p,1,1]至SMB[p,I[p],Q[p]]。其中,在一种变动边界的决策区间划分中,各决策区间d[p,i,q]可均为以星座点c[p,i,q]为中心、边长等于相邻星座点间的距离a[p]的正方形;而在一种固定边界的决策区间划分中,邻接边界B[p]的决策区间d[p,1,1]至d[p,I[p],1]、d[p,1,1]至d[p,1,Q[p]]、d[p,1,Q[p]]至d[p,I[p],Q[p]]与d[p,I[p],1]至d[p,I[p],Q[p]](亦即:边界决策区间)可为至少有一侧边的边长大于相邻星座点间的距离a[p]、不以星座点c[p,i,q]为中心的矩形,边界决策区间之外的其余决策区间则可为以星座点c[p,i,q]为中心、边长等于相邻星座点间的距离a[p]的正方形。截剪器26借由判断载波s2[k]于散射图上所对应的点座落在那一个决策区间,来判定发射电路10所发射的载波s0[k]在散射图上所对应的星座点c[p,i,q],以判读载波s0[k]所携载的数字信息。举例而言,如图3所示,若载波s2[1]位于点sa,由于点sa落在决策区间d[p,1,2],故截剪器26便会判定载波s0[1]所对应的星座点为c[p,1,2],并将载波s1[1]携载的数字信息判读为预设信息SMB[p,1,2];若载波s2[1]位于点sb,由于点sb亦落在决策区间d[p,1,2],故截剪器26便会判定载波s0[1]所对应的星座点为c[p,1,2],并将载波s1[1]携载的数字信息判读为预设信息SMB[p,1,2];若载波s2[1]位于点sc,由于点sc是落在决策区间d[p,1,1],故截剪器26便会判定载波s0[1]所对应的星座点为c[p,11],并将载波s1[1]携载的数字信息判读为预设信息SMB[p,1,1]。Then, the clipper 26 uses the decision interval division D[p] associated with the default modulation setting MS[p] adopted by the carrier s0[k] to interpret the digital information carried by the carrier s0[k]. Decision interval division D[p] is to divide multiple decision intervals d[p,1,1] to d[p,I[p],Q[p]] in the boundary B[p], as shown in Figure 3 , each decision interval d[p,i,q] can cover the corresponding constellation point c[p,i,q], which are respectively related to the M[p] preset information SMB[ of the preset modulation setting MS[p] p,1,1] to SMB[p,I[p],Q[p]]. Among them, in a decision interval division of a variable boundary, each decision interval d[p,i,q] can be centered on the constellation point c[p,i,q], and the side length is equal to the distance between adjacent constellation points A square with a distance of a[p]; and in a decision interval division with a fixed boundary, the decision interval d[p,1,1] to d[p,I[p],1] adjacent to the boundary B[p], d[p,1,1] to d[p,1,Q[p]], d[p,1,Q[p]] to d[p,I[p],Q[p]] and d[ p, I[p], 1] to d[p, I[p], Q[p]] (that is, the boundary decision interval) can have at least one side whose side length is greater than the distance a between adjacent constellation points [p], a rectangle not centered on the constellation point c[p,i,q], the other decision intervals outside the boundary decision interval can be centered on the constellation point c[p,i,q] and the side length is equal to The square of the distance a[p] between adjacent constellation points. The clipper 26 determines the constellation point corresponding to the carrier s0[k] transmitted by the transmitting circuit 10 on the scatter diagram by judging which decision interval the corresponding point of the carrier s2[k] on the scatter diagram is located in. c[p,i,q] to interpret the digital information carried by the carrier s0[k]. For example, as shown in FIG. 3, if the carrier s2[1] is located at point sa, since the point sa falls in the decision interval d[p,1,2], the clipper 26 will determine that the carrier s0[1] is The corresponding constellation point is c[p,1,2], and the digital information carried by the carrier s1[1] is interpreted as the preset information SMB[p,1,2]; if the carrier s2[1] is located at point sb, Since the point sb also falls in the decision interval d[p,1,2], the clipper 26 will determine that the constellation point corresponding to the carrier s0[1] is c[p,1,2], and the carrier s1[ 1] The digital information carried is interpreted as the preset information SMB[p,1,2]; if the carrier s2[1] is located at point sc, since point sc falls in the decision interval d[p,1,1], the interception The clipper 26 determines that the constellation point corresponding to the carrier s0[1] is c[p,11], and interprets the digital information carried by the carrier s1[1] as the preset information SMB[p,1,1].
接着,估计电路28便会依据载波s2[k]所对应的点与载波s3[k]所对应的星座点c[p,i1,q1]在散射图上的座标差异来为载波s1[k]提供初始信噪特征值SNRi[k]。举例而言,若载波s2[k]在散射图上位于点sa,截剪器26会认为原本的载波s0[k]是位于星座点c[p,1,2],而估计电路28便会将点sa与星座点c[p,1,2]间的差异向量va当作是噪声引发的误差,并依据向量va的长度来计算初始信噪特征值SNRi[k]。同理,若载波s2[k]落在点sb,截剪器26也会认为原本的载波s0[k]是位于星座点c[p,1,2],而估计电路28便会将点sb与星座点c[p,1,2]间的差异向量vb当作是噪声引发的误差,并依据向量vb的长度来计算初始信噪特征值SNRi[k]。由于点sb比点sa更接近星座点c[p,1,2],差异向量vb小于差异向量va,故载波s2[k]位于点sb时估计电路28得出的初始信噪特征值会较载波s2[k]位于点sa时估计电路28得出的初始信噪特征值高。Then, the estimation circuit 28 will calculate the carrier s1[k] according to the coordinate difference between the point corresponding to the carrier s2[k] and the constellation point c[p,i1,q1] corresponding to the carrier s3[k] on the scatter diagram. ] provides the initial signal-to-noise eigenvalue SNRi[k]. For example, if the carrier s2[k] is located at the point sa on the scatter diagram, the clipper 26 will consider the original carrier s0[k] to be at the constellation point c[p,1,2], and the estimation circuit 28 will The difference vector va between the point sa and the constellation point c[p,1,2] is regarded as the error caused by noise, and the initial signal-to-noise eigenvalue SNRi[k] is calculated according to the length of the vector va. Similarly, if the carrier s2[k] falls on the point sb, the clipper 26 will also consider that the original carrier s0[k] is located at the constellation point c[p,1,2], and the estimation circuit 28 will set the point sb The difference vector vb between the constellation point c[p,1,2] is regarded as the error caused by noise, and the initial signal-to-noise eigenvalue SNRi[k] is calculated according to the length of the vector vb. Since the point sb is closer to the constellation point c[p,1,2] than the point sa, the difference vector vb is smaller than the difference vector va, so when the carrier s2[k] is located at the point sb, the initial signal-to-noise characteristic value obtained by the estimation circuit 28 will be smaller The initial signal-to-noise characteristic value obtained by the estimation circuit 28 is high when the carrier s2[k] is located at the point sa.
然而,依据上述原理,估计电路28的估计运作会发生估计错误,因为在传输资料讯框时,截剪器26其实无法真正得知载波s0[k]原本在那一个星座点。举例而言,假设发射电路10的载波s0[k]原本真正的位置是在星座点c[p,1,1],但因较大的噪声而使接收电路20得到的载波s2[k]漂移至点sb。在此情形下,真正的信噪特征值应该是依据点sb与星座点c[p,1,1]间的差异向量v0来计算。然而,由于点sb是位在决策区间d[p,1,2]中,截剪器26会错误地认定载波s0[k]原本是位于星座点c[p,1,2];连带地,估计电路28就会错误地依据点sb与星座点c[p,1,2]间的差异向量vb计算出错误的信噪特征值。因为向量vb比向量v0短,错误的信噪特征值会高于真正的信噪特征值;换言之,在上述情形下,估计电路28对信噪特征值的估算会过于乐观。若信噪特征值被错估,网络系统基于信噪特征值所作的适应性运作也会连带出错。举例而言,若接收端错误地高估信噪比,会错误地使发射端增加信息传输的速率;然而,虽信息传输速率高,但错误率也会较高,因为接收端真正接收到的信号已经受到高噪声的干扰;因此,能正确有效传递的信息比特量反而减少。However, according to the above principles, the estimation operation of the estimation circuit 28 will cause estimation errors, because the clipper 26 cannot really know which constellation point the carrier s0[k] is originally in when transmitting the data frame. For example, assume that the carrier s0[k] of the transmitting circuit 10 is originally at the constellation point c[p,1,1], but the carrier s2[k] obtained by the receiving circuit 20 drifts due to large noise to point sb. In this case, the real signal-to-noise eigenvalue should be calculated according to the difference vector v0 between the point sb and the constellation point c[p,1,1]. However, since the point sb is located in the decision interval d[p,1,2], the clipper 26 will mistakenly determine that the carrier s0[k] is originally located at the constellation point c[p,1,2]; jointly, The estimation circuit 28 will erroneously calculate the wrong signal-to-noise characteristic value based on the difference vector vb between the point sb and the constellation point c[p,1,2]. Because the vector vb is shorter than the vector v0, the false signal-to-noise characteristic value will be higher than the true signal-to-noise characteristic value; in other words, in the above situation, the estimation circuit 28 will estimate the signal-to-noise characteristic value too optimistically. If the signal-to-noise characteristic value is misestimated, the adaptive operation of the network system based on the signal-to-noise characteristic value will also cause errors. For example, if the receiving end mistakenly overestimates the SNR, it will mistakenly cause the transmitting end to increase the rate of information transmission; however, although the information transmission rate is high, the error rate will also be high, because the receiver actually receives The signal is already corrupted by high noise; therefore, the number of bits of information that can be correctly and efficiently conveyed is reduced instead.
延续图1至图3,请参考图4a与图4b;针对发射电路10依据预设调制设定MS[p]所发出的原始载波s0[k],若截剪器26是采用固定边界的决策区间划分D[p]将均衡后载波s2[k]判读为载波s3[k],当估计电路28依据载波s2[k]与s3[k]提供初始信噪特征值SNRi[k]时,其错估信噪特征值的情形可用图4a的散射图分布来示意说明,图4b则示意性地比较真实信噪特征值SNR0(横轴,可为对数尺度)与初始信噪特征值SNRi[k](纵轴,可为对数尺度)。在图4a与图4b的例子中,(真实、初始)信噪特征值可以是指信噪比。Continuing from FIG. 1 to FIG. 3, please refer to FIG. 4a and FIG. 4b; for the original carrier s0[k] sent by the transmitting circuit 10 according to the preset modulation setting MS[p], if the clipper 26 adopts a decision with a fixed boundary Interval division D[p] interprets the equalized carrier s2[k] as carrier s3[k], when the estimation circuit 28 provides the initial signal-to-noise characteristic value SNRi[k] according to the carrier s2[k] and s3[k], its The situation of misestimating the signal-to-noise characteristic value can be schematically illustrated by the scatter diagram distribution in Figure 4a, and Figure 4b schematically compares the real signal-to-noise characteristic value SNR0 (horizontal axis, which can be a logarithmic scale) with the initial signal-to-noise characteristic value SNR[ k] (vertical axis, can be logarithmic scale). In the example of Fig. 4a and Fig. 4b, the (true, initial) signal-to-noise characteristic value may refer to the signal-to-noise ratio.
由于图4b与图4b的例子采用的是固定边界的决策区间划分D[p](图4a),边界决策区间(至少有一边重合于边界B[p]的决策区间)至少有一边长大于星座点间距离a[p],其余的决策区间(侧边未与边界B[p]重合的决策区间)的边长则等于距离a[p]。Since the example in Fig. 4b and Fig. 4b adopts the decision interval division D[p] with a fixed boundary (Fig. 4a), the boundary decision interval (the decision interval with at least one side coincident with the boundary B[p]) has at least one side longer than the constellation The distance between points is a[p], and the side length of the remaining decision intervals (decision intervals whose sides do not coincide with the boundary B[p]) is equal to the distance a[p].
图4b所示,在估计电路28产出的初始信噪特征值SNRi[k]与真实信噪特征值SNR0之间的正确(理想)关系应呈线性,如直线600所示;不过,在固定边界的决策区间划分下,初始信噪特征值SNRi[k]与真实信噪特征值SNR0之间的关系却会呈曲线610,其理由可说明如下。As shown in FIG. 4 b, the correct (ideal) relationship between the initial signal-to-noise characteristic value SNRi[k] produced by the estimation circuit 28 and the real signal-to-noise characteristic value SNR0 should be linear, as shown in the straight line 600; however, at a fixed Under the division of the boundary decision interval, the relationship between the initial signal-to-noise characteristic value SNRi[k] and the real signal-to-noise characteristic value SNR0 shows a curve 610 , and the reason can be explained as follows.
在图4a中,发射电路10的原始载波s0[k]是依据星座点c[p,i0,q0]所形成。若真实信噪特征值SNR0等于一较高的值h1(图4b)时,代表噪声干扰较小,经信道12传输后的载波s2[k]会落在星座点c[p,i0,q0]周围的决策区间d[i,p0,q0]中,例如说是位于点z1;在此情形下,截剪器26会正确判读出载波s2[k]是对应于星座点c[p,i0,q0],当估计电路28将判读出的星座点c[p,i0,q0]与点z1间的差异向量v1e视为噪声以估计出初始信噪特征值SNRi[k]时,初始信噪特征值SNRi[k]也会十分接近真实信噪特征值SNR0,如图4b上的点b1所示。In FIG. 4a, the original carrier wave s0[k] of the transmitting circuit 10 is formed according to the constellation points c[p, i0, q0]. If the real signal-to-noise characteristic value SNR0 is equal to a higher value h1 (Figure 4b), it means that the noise interference is small, and the carrier s2[k] transmitted through channel 12 will fall on the constellation point c[p,i0,q0] In the surrounding decision interval d[i,p0,q0], for example, it is located at point z1; in this case, the clipper 26 will correctly judge that the carrier s2[k] is corresponding to the constellation point c[p,i0, q0], when the estimation circuit 28 regards the difference vector v1e between the interpreted constellation point c[p, i0, q0] and point z1 as noise to estimate the initial signal-to-noise characteristic value SNRi[k], the initial signal-to-noise characteristic The value SNRi[k] will also be very close to the true signal-to-noise characteristic value SNR0, as shown by point b1 in Fig. 4b.
若真实信噪特征值SNR0为一较小的值h2(h2<h1),代表噪声干扰较大,会使载波s2[k]的位置远离原始星座点c[p,i0,q0]所在的决策区间d[p,i0,q0];例如,载波s2[k]的位置可能漂移至点z2,位于星座点c[p,i2,q2]的决策区间d[p,i2,q2]中;因此,截剪器26会误判载波s2[k]是对应于星座点c[p,i2,q2];依据截剪器26的判读,估计电路28会将星座点c[p,i2,q2]与点z2间的差异向量v2e视为噪声以估计初始信噪特征值SNRi[k],形成曲线610(图4b)上的点b2。然而,由于真正的原始星座点为c[p,i0,q0]而非c[p,i2,q2],真正的噪声应是星座点c[p,i0,q0]与点z2间的差异向量v2,而非v2e。亦即,初始信噪特征值SNRi[k]的正确值应在直线600上的点b20。因为向量v2e的长度比向量v2短,初始信噪特征值SNRi[k]会高于真实信噪特征值SNR0。在图4b上,点b2与b20间的差距即关连于向量v2e与v2间的差异。If the real signal-to-noise eigenvalue SNR0 is a small value h2 (h2<h1), it means that the noise interference is large, and the position of the carrier s2[k] will be far away from the original constellation point c[p,i0,q0] interval d[p,i0,q0]; for example, the position of carrier s2[k] may drift to point z2, which is in decision interval d[p,i2,q2] of constellation point c[p,i2,q2]; thus , the clipper 26 will misjudge that the carrier s2[k] corresponds to the constellation point c[p, i2, q2]; The difference vector v2e from point z2 is treated as noise to estimate the initial signal-to-noise eigenvalue SNRi[k], forming point b2 on curve 610 ( FIG. 4 b ). However, since the real original constellation point is c[p,i0,q0] instead of c[p,i2,q2], the real noise should be the difference vector between constellation point c[p,i0,q0] and point z2 v2, not v2e. That is, the correct value of the initial signal-to-noise characteristic value SNRi[k] should be at the point b20 on the straight line 600 . Because the length of vector v2e is shorter than vector v2, the initial signal-to-noise eigenvalue SNRi[k] will be higher than the real signal-to-noise eigenvalue SNR0. In Fig. 4b, the difference between points b2 and b20 is related to the difference between vectors v2e and v2.
若真实信噪特征值SNR0为更小的值h3(h3<h2),代表噪声干扰更大,会使载波s2[k]的位置更远离原始星座点c[p,i0,q0]的决策区间d[p,i0,q0];例如,载波s2[k]的位置可能漂移至图4a中的点z3,位于星座点c[p,i3,q3]的决策区间d[p,i3,q3]中。因此,截剪器26会误判载波s2[k]是对应于星座点c[p,i3,q3];依据截剪器26的判读,估计电路会将星座点c[p,i3,q3]与点z3间的差异向量v3e视为噪声以估计初始信噪特征值SNRi[k],形成曲线610上的点b3。不过,真正的原始星座点是c[p,i0,q0]而非c[p,i3,q3],星座点c[p,i0,q0]与点z3间的差异向量v3才能正确反映真正的噪声,而非向量v3e;初始信噪特征值SNRi[k]的正确值应在直线400上的点a30而吻合真实信噪特征值SNR0。因为向量v3e的长度比向量v3短,将向量v3e视为噪声所得的初始信噪特征值SNRi[k]会高于真实信噪特征值SNR0。在图4b上,点b3与b30间的差距即关连于向量v3e与v3间的差异。由图4a可看出,向量v3e与v3间的差异大于向量v2e与v2间的差异,故点b3与b30间的差距大于点b2与b20间的差距。If the real signal-to-noise eigenvalue SNR0 is a smaller value h3 (h3<h2), it means that the noise interference is greater, and the position of the carrier s2[k] will be farther away from the decision interval of the original constellation point c[p,i0,q0] d[p,i0,q0]; for example, the position of carrier s2[k] may drift to point z3 in Figure 4a, in the decision interval d[p,i3,q3] of constellation point c[p,i3,q3] middle. Therefore, the clipper 26 will misjudge that the carrier s2[k] corresponds to the constellation point c[p, i3, q3]; The difference vector v3e from point z3 is regarded as noise to estimate the initial signal-to-noise eigenvalue SNRi[k], forming point b3 on curve 610 . However, the real original constellation point is c[p, i0, q0] instead of c[p, i3, q3], and the difference vector v3 between the constellation point c[p, i0, q0] and point z3 can correctly reflect the real Noise, not vector v3e; the correct value of the initial signal-to-noise eigenvalue SNRi[k] should be at point a30 on the straight line 400 and coincide with the real signal-to-noise eigenvalue SNR0. Because the length of vector v3e is shorter than vector v3, the initial signal-to-noise eigenvalue SNRi[k] obtained by treating vector v3e as noise will be higher than the real signal-to-noise eigenvalue SNR0. In Fig. 4b, the difference between points b3 and b30 is related to the difference between vectors v3e and v3. It can be seen from FIG. 4a that the difference between vectors v3e and v3 is greater than the difference between vectors v2e and v2, so the difference between points b3 and b30 is greater than the difference between points b2 and b20.
若真实信噪特征值SNR0为更小的值h4(h4<h3),代表噪声干扰更大,会使载波s2[k]的位置更远离原始星座点c[p,i0,q0],漂移至边界B[p]附近;例如,载波s2[k]的位置可能漂移至图4a中的点z4,位于星座点c[p,1,q4]的边界决策区间d[p,1,q4]中。因此,截剪器26会误判载波s2[k]是对应于星座点c[p,1,q4];依据截剪器26的判读,估计电路会将星座点c[p,1,q4]与点z4间的差异向量v4e视为噪声以估计初始信噪特征值SNRi[k],形成曲线610上的点b4。然而,由于真正的原始星座点是c[p,i0,q0]而非c[p,1,q4],星座点c[p,i0,q0]与点z4间的差异向量v4才能正确反映真正的噪声,而非向量v4e;初始信噪特征值SNRi[k]的正确值应在直600上的点a40以吻合真实信噪特征值SNR0。因为向量v4e的长度比向量v4短,依据向量v4e所得的初始信噪特征值SNRi[k]会高于真实信噪特征值SNR0。如图4b所示,点b4与b40间的差距即关连于向量v4e与v4间的差异。If the real signal-to-noise eigenvalue SNR0 is a smaller value h4 (h4<h3), it means that the noise interference is greater, and the position of the carrier s2[k] will be farther away from the original constellation point c[p,i0,q0], drifting to near the boundary B[p]; for example, the position of carrier s2[k] may drift to point z4 in Fig. 4a, in the boundary decision interval d[p,1,q4] of constellation point c[p,1,q4] . Therefore, the clipper 26 will misjudge that the carrier s2[k] corresponds to the constellation point c[p,1,q4]; The difference vector v4e from point z4 is regarded as noise to estimate the initial signal-to-noise eigenvalue SNRi[k], forming point b4 on the curve 610 . However, since the real original constellation point is c[p,i0,q0] instead of c[p,1,q4], the difference vector v4 between constellation point c[p,i0,q0] and point z4 can correctly reflect the real noise, not vector v4e; the correct value of the initial signal-to-noise eigenvalue SNRi[k] should be at point a40 on straight 600 to match the real signal-to-noise eigenvalue SNR0. Because the length of the vector v4e is shorter than the vector v4, the initial signal-to-noise eigenvalue SNRi[k] obtained according to the vector v4e will be higher than the real signal-to-noise eigenvalue SNR0. As shown in Fig. 4b, the difference between points b4 and b40 is related to the difference between vectors v4e and v4.
如图4a所示,点z2与z3所在的决策区间d[p,i2,q2]与d[p,i3,q3]两者可以不是边界决策区间,故向量v2e与v3e的长度仍受限于距离a[p]/2。不过,在固定边界的决策区间划分下,边界决策区间至少有一边长大于距离a[p],所以向量v4e的长度不会受限于距离a[p]/2,并使初始信噪特征值SNRi[k]降低而较为接近真实信噪特征值SNR0,在对应点b4(图6B)的纵轴高度也因此而低于点b2与b3的纵轴高度。As shown in Figure 4a, the decision intervals d[p, i2, q2] and d[p, i3, q3] where points z2 and z3 are located may not be boundary decision intervals, so the lengths of vectors v2e and v3e are still limited by The distance a[p]/2. However, under the decision interval division with fixed boundaries, at least one side of the boundary decision interval is longer than the distance a[p], so the length of the vector v4e will not be limited by the distance a[p]/2, and the initial signal-to-noise eigenvalue SNRi[k] decreases and is closer to the real signal-to-noise characteristic value SNR0, and the height of the vertical axis corresponding to point b4 (FIG. 6B) is therefore lower than the height of the vertical axis of points b2 and b3.
亦即,在固定边界的决策区间划分下,随真实信噪特征值SNR0由值h1降低至h2、h3与h4,初始信噪特征值SNRi[k]会先逐渐远离真实信噪特征值SNR0(如曲线610在值h1与h3之间的走势),然后又会朝向真实信噪特征值SNR0接近(如曲线610在值h3至h4间的走势),这便是因为尺寸较大的边界决策区间有较多的空间反映较长的噪声向量(如向量v4e),使噪声向量不会受限于尺寸较小的非边界决策区间。That is, under the decision interval division with fixed boundaries, as the real signal-to-noise eigenvalue SNR0 decreases from h1 to h2, h3, and h4, the initial signal-to-noise eigenvalue SNRi[k] will gradually move away from the real signal-to-noise eigenvalue SNR0( Such as the trend of the curve 610 between the values h1 and h3), and then it will approach the real signal-to-noise characteristic value SNR0 (such as the trend of the curve 610 between the values h3 to h4), this is because the larger-sized boundary decision interval There is more space to reflect longer noise vectors (such as vector v4e), so that noise vectors are not restricted to non-boundary decision intervals with smaller sizes.
延续图4a、4b,请参考图5;在固定边界的决策区间划分下,若载波s0[k]采用的调制设定ms[k]为BPSK、QPSK、8QAM、16QAM、64QAM、256QAM、1024QAM或4096QAM以在单位时间内携载1、2、3、4、6、8、10或12比特的数字信息,则初始信噪特征值SNRi[k](纵轴,可为对数尺度,如以分贝为单位)与真实信噪特征值SNR0(横轴,可为对数尺度,如以分贝为单位)间的关系会分别呈现为曲线701、702、703、704、705、706、707或708(曲线701与702几乎重合);相对地,初始信噪特征值SNRi[k]与真实信噪特征值SNR0之间的正确(理想)关系应呈直线700的线性关系。例如,当真实信噪特征值SNR0等于值u11时,初始信噪特征值SNRi[k]的正确值应等于值h10;不过,如图5所示,在同一真实信噪特征值SNR0的下,调制设定ms[k]在单位时间内携载的比特数越多,初始信噪特征值SNRi[k]与真实信噪特征值间SNR0的差距也越大。举例而言,当真实信噪特征值SNR0等于值h10时,若调制设定ms[k]为256QAM以在每单位时间内携载6比特的符元,则初始信噪特征值SNRi[k]会被错误地高估为值h1a;若调制设定ms[k]为4096QAM以在每单位时间内携载12比特的符元,则初始信噪特征值SNRi[k]会被错误地高估为值h1b,且值h1b>h1a>h10。在单位时间内携载的比特数越高,相邻星座点间的最短距离也会越短,非边界决策区间的尺寸也会越小;当真实信噪特征值SNR0的值还不算太小时(例如大于值u11),估计电路28错估的噪声向量比较容易落在同一个非边界决策区间内,非边界决策区间越小,估计电路28提供的初始信噪特征值SNRi[k]就越会被高估,与真实信噪特征值SNR0间的差距也越大。Continuing from Figure 4a and 4b, please refer to Figure 5; under the decision interval division with fixed boundaries, if the modulation setting ms[k] adopted by the carrier s0[k] is BPSK, QPSK, 8QAM, 16QAM, 64QAM, 256QAM, 1024QAM or 4096QAM can carry digital information of 1, 2, 3, 4, 6, 8, 10 or 12 bits per unit time, then the initial signal-to-noise characteristic value SNRi[k] (the vertical axis can be a logarithmic scale, such as decibels) and the true signal-to-noise characteristic value SNR0 (horizontal axis, can be a logarithmic scale, such as in decibels) will be presented as curves 701, 702, 703, 704, 705, 706, 707 or 708 (curves 701 and 702 almost coincide); relatively, the correct (ideal) relationship between the initial signal-to-noise characteristic value SNRi[k] and the real signal-to-noise characteristic value SNR0 should be a linear relationship of a straight line 700 . For example, when the real signal-to-noise characteristic value SNR0 is equal to the value u11, the correct value of the initial signal-to-noise characteristic value SNRi[k] should be equal to the value h10; however, as shown in Figure 5, under the same real signal-to-noise characteristic value SNR0, The more bits the modulation setting ms[k] carries per unit time, the larger the gap between SNR0 between the initial signal-to-noise characteristic value SNRi[k] and the real signal-to-noise characteristic value will be. For example, when the real signal-to-noise characteristic value SNR0 is equal to the value h10, if the modulation setting ms[k] is 256QAM to carry symbols of 6 bits per unit time, the initial signal-to-noise characteristic value SNRi[k] will be erroneously overestimated as the value h1a; if the modulation setting ms[k] is 4096QAM to carry 12-bit symbols per unit time, the initial signal-to-noise eigenvalue SNRi[k] will be erroneously overestimated is the value h1b, and the value h1b>h1a>h10. The higher the number of bits carried per unit time, the shorter the shortest distance between adjacent constellation points, and the smaller the size of the non-boundary decision interval; when the value of the real signal-to-noise characteristic value SNR0 is not too small (for example greater than the value u11), the noise vector misestimated by the estimation circuit 28 is more likely to fall in the same non-boundary decision interval, the smaller the non-boundary decision interval, the smaller the initial signal-to-noise eigenvalue SNRi[k] provided by the estimation circuit 28 will be overestimated, and the gap between the true signal-to-noise eigenvalue SNR0 will be larger.
另一方面,当真实信噪特征值SNR0的值更小时(例如小于值u11),估计电路28错估的噪声向量比较容易落在边界决策区间内。如前面曾描述的,在固定边界的决策区间划分下,不同预设调制设定MS[p1]与MS[p2]的非边界决策区间边长分别等于星座点间距离a[p1]与a[p2],而边界决策区间至少有一较长边,其边长分别大于星座点间距离a[p1]与a[p2]。举例而言,假设预设调制设定MS[p1]与MS[p2]分别为256QAM与4096QAM,非边界决策区间的边长比a[p1]与a[p2]约为4:1,但边界决策区间的较长边长却大略相等。因此,当真实讯杂特征值SNR0较大时,此两预设调制设定下的初始信噪特征值的差距较大(如值h1a与h2a间的差距),因其与非边界决策区间的边长较为相关,而两者的非边界决策区间的边长有较大差异。另一方面,若真实讯杂特征值SNR0较小,此两预设调制设定下的初始信噪特征值的差距较小而互相趋近,因其与边界决策区间的较长边的长度较为相关,而两者的边界决策区间的较长边的长度差异较小。On the other hand, when the value of the real signal-to-noise characteristic value SNR0 is smaller (for example, smaller than the value u11), the noise vector misestimated by the estimation circuit 28 is more likely to fall within the boundary decision interval. As described above, under the division of decision intervals with fixed boundaries, the side lengths of the non-boundary decision intervals of different preset modulation settings MS[p1] and MS[p2] are respectively equal to the distances a[p1] and a[ p2], and the boundary decision interval has at least one longer side, whose side lengths are respectively greater than the distances a[p1] and a[p2] between the constellation points. For example, assuming that the default modulation settings MS[p1] and MS[p2] are 256QAM and 4096QAM respectively, the side length ratio a[p1] and a[p2] of the non-boundary decision interval is about 4:1, but the boundary The longer sides of the decision interval are roughly equal in length. Therefore, when the actual noise characteristic value SNR0 is large, the difference between the initial signal-to-noise characteristic values under the two preset modulation settings is relatively large (such as the difference between values h1a and h2a), because it is different from the non-boundary decision interval The side lengths are relatively correlated, but the side lengths of the non-boundary decision intervals of the two are quite different. On the other hand, if the real signal-to-noise eigenvalue SNR0 is small, the difference between the initial signal-to-noise eigenvalues under the two preset modulation settings is small and they approach each other, because the length of the longer side of the boundary decision interval is relatively small. are correlated, and the difference in the length of the longer side of the boundary decision interval between the two is small.
为了修正初始信噪特征值SNRi[k]与真实信噪特征值SNR0的差异,发射电路30中设有校正电路30。请再度参考图1;在发射电路30中,校正电路30耦接估计电路28,可依据各载波s1[k]的初始信噪特征值SNRi[k]的数值而为各载波s1[k]提供一对应修正值r[k],并依据对应修正值r[k]修正初始信噪特征值SNRi[k],以便为各载波s1[k]产生一修正信噪特征值SNRc[k],对k=1至K。In order to correct the difference between the initial signal-to-noise characteristic value SNRi[k] and the real signal-to-noise characteristic value SNR0, a correction circuit 30 is provided in the transmitting circuit 30 . Please refer to FIG. 1 again; in the transmitting circuit 30, the correction circuit 30 is coupled to the estimation circuit 28, and can provide each carrier s1[k] according to the value of the initial signal-to-noise characteristic value SNRi[k] of each carrier s1[k]. A corresponding correction value r[k], and modify the initial signal-to-noise characteristic value SNRi[k] according to the corresponding correction value r[k], so as to generate a revised signal-to-noise characteristic value SNRc[k] for each carrier s1[k], for k=1 to K.
一范例中,校正电路30可包括一查表电路34与一乘法器32;乘法器32耦接查表电路34与校正电路30。延续图1,请一并参考图6,其所示意的是依据本发明一范例的表格800。本案的一范例中,查表电路34可记录表格800,为各预设调制设定MS[p]储存多个预设修正值e[p,1]至e[p,N](对p=1至P),并依据各载波s1[k]的对应调制设定ms[k]、各载波s1[k]的初始信噪特征值SNRi[k]与各预设调制设定MS[p](对p=1至P)的预设修正值e[p,1]至e[p,N]而为各载波s1[k]提供对应修正值r[k],对k=1至K。其中,各预设调制设定MS[p]的各该预设修正值e[p,n]是关连于多个预设信噪特征值SNRt[1]至SNRt[N]的其中之一SNRt[n]。一实施例中,网络系统可以只使用一种调制设定(即K=1),例如预设调制设定MS[1];因此,表格800可以只有一栏(column),记录预设修正值e[1,1]至e[1,N]。In one example, the calibration circuit 30 may include a table lookup circuit 34 and a multiplier 32 ; the multiplier 32 is coupled to the table lookup circuit 34 and the calibration circuit 30 . Continuing with FIG. 1 , please also refer to FIG. 6 , which shows a table 800 according to an example of the present invention. In an example of this case, the look-up table circuit 34 can record the table 800, and store a plurality of preset correction values e[p,1] to e[p,N] for each preset modulation setting MS[p] (for p= 1 to P), and according to the corresponding modulation setting ms[k] of each carrier s1[k], the initial signal-to-noise characteristic value SNRi[k] of each carrier s1[k] and each preset modulation setting MS[p] The preset correction values e[p,1] to e[p,N] (for p=1 to P) provide a corresponding correction value r[k] for each carrier s1[k], for k=1 to K. Wherein, each preset correction value e[p,n] of each preset modulation setting MS[p] is related to one of a plurality of preset signal-to-noise characteristic values SNRt[1] to SNRt[N] SNRt [n]. In one embodiment, the network system may only use one modulation setting (that is, K=1), such as the default modulation setting MS[1]; therefore, the table 800 may only have one column (column) to record the default correction value e[1,1] to e[1,N].
一范例中,查表电路34是由预设调制设定MS[1]至MS[P]中找出一个符合载波s1[k]对应的调制设定ms[k](例如QPSK)的预设调制设定MS[p1](例如QPSK)。一范例中,查表电路34会由预设信噪特征值SNRt[1]至SNRt[N]中为载波s1[k]寻得一个最接近初始信噪特征值SNRi[k](例如-3.6db)的预设信噪特征值SNRt[n1](例如-4db);如此,查表电路34便根据预设调制设定MS[p1]与预设信噪特征值SNRt[n1]找出对应的预设修正值e[p1,n1]作为载波s1[k]的对应修正值r[k]。另一范例中,查表电路34会由预设信噪特征值SNRt[1]至SNRt[N]中为载波s1[k]寻得两个最接近初始信噪特征值SNRi[k](例如-3.6db)的上下界的预设信噪特征值SNRt[n1]与SNRt[n2](例如-3db与-4db);如此,查表电路34便可根据预设调制设定MS[p1]与预设信噪特征值SNRt[n1]与SNRt[n2]找出对应的预设修正值e[p1,n1]与值e[p1,n2],并根据初始信噪特征值SNRi[k]、其上下界的预设信噪特征值SNRt[n1]与SNRt[n2]对e[p1,n1]与值e[p1,n2]进行内插运算,并将运算后的结果作为载波s1[k]的对应修正值r[k]。In one example, the look-up table circuit 34 finds a preset modulation setting ms[k] (such as QPSK) corresponding to the carrier s1[k] from the preset modulation settings MS[1] to MS[P] Modulation set MS[p1] (eg QPSK). In an example, the look-up table circuit 34 will find a signal-to-noise characteristic value SNRi[k] closest to the initial signal-to-noise characteristic value SNRi[k] (for example, -3.6 db) preset signal-to-noise characteristic value SNRt[n1] (for example-4db); thus, the look-up table circuit 34 finds the correspondence between the preset modulation setting MS[p1] and the preset signal-to-noise characteristic value SNRt[n1] The preset correction value e[p1,n1] of is used as the corresponding correction value r[k] of the carrier s1[k]. In another example, the look-up table circuit 34 will find the two closest initial signal-to-noise characteristic values SNRi[k] for the carrier s1[k] from the preset signal-to-noise characteristic values SNRt[1] to SNRt[N] (for example The preset signal-to-noise characteristic values SNRt[n1] and SNRt[n2] (such as -3db and -4db) of the upper and lower bounds of -3.6db); in this way, the look-up table circuit 34 can set MS[p1] according to the preset modulation Find the corresponding preset correction value e[p1,n1] and value e[p1,n2] with the preset signal-to-noise characteristic value SNRt[n1] and SNRt[n2], and according to the initial signal-to-noise characteristic value SNRi[k] , the preset signal-to-noise eigenvalues SNRt[n1] and SNRt[n2] of its upper and lower bounds interpolate e[p1,n1] and value e[p1,n2], and use the calculated result as carrier s1[ The corresponding correction value r[k] of k].
利用估计电路28与查表电路34提供的初始信噪特征值SNRi[k]与对应修正值r[k],乘法器32(图1)可将初始信噪特征值SNRi[k]乘以该对应修正值r[k],并依据乘积r[k]*SNRi[k]产生修正信噪特征值SNRc[k]。Utilize the initial signal-to-noise characteristic value SNRi[k] and the corresponding correction value r[k] that estimation circuit 28 and look-up circuit 34 provide, multiplier 32 (Fig. 1) can be multiplied by the initial signal-to-noise characteristic value SNRi[k] Corresponding to the corrected value r[k], the corrected signal-to-noise characteristic value SNRc[k] is generated according to the product r[k]*SNRi[k].
表格800(图6)中的各预设修正值e[p,n]可用数值模拟来计算求得。举例而言,若要修正图4b与图5中于固定边界决策区间划分下被错估的初始信噪特征值SNRi[k],可在真实信噪特征值SNR0等于某一预设信噪特征值SNRt[n]且调制设定ms[k]等于某一预设调制设定MS[p]的条件下模拟出受噪声(如叠加性白色高斯噪声)影响的载波s2[k],并模拟截剪器26在固定边界决策区间划分下对载波s2[k]的硬决策运作与估计电路28对载波s2[k]与s3[k]的信噪特征值估算运作,据以模拟出估计电路28所产生的初始信噪特征值SNRi[k];如此,便可依据比值SNRt[n]/SNRi[k]来计算预设修正值e[p,n]。Each preset correction value e[p,n] in the table 800 ( FIG. 6 ) can be calculated by numerical simulation. For example, in order to correct the misestimated initial signal-to-noise characteristic value SNRi[k] under fixed-boundary decision-making interval division in Fig. Under the condition that the value SNRt[n] and the modulation setting ms[k] are equal to a preset modulation setting MS[p], the carrier s2[k] affected by noise (such as superimposed white Gaussian noise) is simulated, and the simulation The clipper 26 performs the hard decision operation on the carrier s2[k] and the estimation circuit 28 on the signal-to-noise characteristic value estimation operation of the carrier s2[k] and s3[k] under the division of the fixed boundary decision interval, and simulates the estimation circuit accordingly 28 to generate the initial signal-to-noise characteristic value SNRi[k]; thus, the preset correction value e[p,n] can be calculated according to the ratio SNRt[n]/SNRi[k].
以下列出表格800的一范例,其是用以修正固定边界决策区间划分下的初始信噪特征值;在此范例中,预设调制设定MS[1]至MS[P]分别为BPSK、QPSK、8QAM、16QAM、64QAM、256QAM、1024QAM与4096QAM(数量P可等于8),预设信噪特征值SNRt[1]至SNRt[N]是由小至大排列,由-6分贝至41分贝(数量N可等于48)。An example of the table 800 is listed below, which is used to modify the initial signal-to-noise characteristic value under the fixed boundary decision interval division; in this example, the default modulation settings MS[1] to MS[P] are BPSK, QPSK, 8QAM, 16QAM, 64QAM, 256QAM, 1024QAM and 4096QAM (number P can be equal to 8), the preset signal-to-noise characteristic values SNRt[1] to SNRt[N] are arranged from small to large, from -6dB to 41dB (Number N may be equal to 48).
上述表格范例亦可绘示于图7,其横轴为预设信噪特征值SNRt[1]至SNRt[N](可为对数尺度,如以分贝为单位),纵轴代表各预设修正值e[p,n]的值(可为线性尺度);图7中,曲线901示意的是预设调制设定MS[1](即BPSK)所关连的预设修正值e[1,1]至e[1,N],曲线902示意的是预设调制设定MS[2](即QPSK)所关连的预设修正值e[2,1]至e[2,N],曲线903示意的是预设调制设定MS[3](即8QAM)所关连的预设修正值e[3,1]至e[3,N],曲线904示意的是预设调制设定MS[4](即16QAM)所关连的预设修正值e[4,1]至e[4,N],曲线905示意的是预设调制设定MS[5](即64QAM)所关连的预设修正值e[5,1]至e[5,N],曲线906示意的是预设调制设定MS[6](即256QAM)所关连的预设修正值e[6,1]至e[6,N],曲线907示意的是预设调制设定MS[7](即1024QAM)所关连的预设修正值e[7,1]至e[7,N],曲线908示意的则是预设调制设定MS[8](即4096QAM)所关连的预设修正值e[8,1]至e[8,N]。An example of the above table can also be shown in Figure 7, the horizontal axis represents the preset signal-to-noise characteristic values SNRt[1] to SNRt[N] (it can be a logarithmic scale, such as in decibels), and the vertical axis represents each preset The value of the correction value e[p,n] (may be a linear scale); in FIG. 7, the curve 901 shows the preset correction value e[1, 1] to e[1,N], the curve 902 shows the preset correction values e[2,1] to e[2,N] associated with the preset modulation setting MS[2] (ie QPSK), the curve 903 shows the default correction values e[3,1] to e[3,N] related to the default modulation setting MS[3] (ie 8QAM), and the curve 904 shows the default modulation setting MS[ 4] (i.e. 16QAM) associated with the preset correction values e[4,1] to e[4,N], the curve 905 shows the preset associated with the default modulation setting MS[5] (i.e. 64QAM) The correction values e[5,1] to e[5,N], the curve 906 shows the default correction values e[6,1] to e[ 6,N], the curve 907 shows the preset correction values e[7,1] to e[7,N] related to the preset modulation setting MS[7] (ie 1024QAM), and the curve 908 shows the The default correction values e[8,1] to e[8,N] associated with the default modulation setting MS[8] (ie 4096QAM).
由上述表格范例与图7可看出,随着预设信噪特征值SNRt[1]至SNRt[N]由小至大排列,同一预设调制设定MS[p]的预设修正值e[p,1]至e[p,N]中至少有部分数目个预设修正值会先呈一第一增减趋势变化(例如单调递减或严格递减),再呈一第二增减趋势变化(例如单调递增或严格递增),且该第一增减趋势与该第二增减趋势相反。若初始信噪特征值SNRi[k]的偏移较大,校正电路30(图1)要选用一个数值较小预设修正值e[p,n]作为对应修正值r[k],才能用乘法器32将较大的初始信噪特征值SNRi[k]乘为较小的修正信噪特征值SNRc[k]。因此,随预设信噪特征值SNRt[1]变大为SNRt[N],至少有部分数目个预设修正值e[p,n]会先由大变小(渐减),再由小变大(渐增)。It can be seen from the above table example and Figure 7 that, with the preset signal-to-noise characteristic values SNRt[1] to SNRt[N] arranged from small to large, the preset correction value e of the same preset modulation setting MS[p] [p,1] to e[p,N], at least some of the preset correction values will first show a first increasing-decreasing trend (such as monotonically decreasing or strictly decreasing), and then show a second increasing-decreasing trend (eg, monotonically increasing or strictly increasing), and the first increasing-decreasing trend is opposite to the second increasing-decreasing trend. If the offset of the initial signal-to-noise characteristic value SNRi[k] is relatively large, the correction circuit 30 (FIG. 1) needs to select a preset correction value e[p,n] with a smaller value as the corresponding correction value r[k] to use The multiplier 32 multiplies the larger initial signal-to-noise characteristic value SNRi[k] to the smaller corrected signal-to-noise characteristic value SNRc[k]. Therefore, as the preset signal-to-noise characteristic value SNRt[1] increases to SNRt[N], at least some of the preset correction values e[p,n] will first change from large to small (gradually decrease), and then from small to small Get bigger (increasing).
在上述表格与图7的范例中,随着预设调制设定MS[1]至MS[P]在单位时间内携载的比特数由小至大排列,在关连于同一预设信噪特征值SNRt[n]且属于不同预设调制设定的预设修正值e[1,n]至e[P,n]中,至少有部分数目个会呈现渐减的趋势。举例而言,在同一预设信噪特征值SNRt[12]下,预设修正值e[1,12]至e[8,12]是呈渐减趋势。类似地,在同一预设信噪特征值SNRt[21]下,预设修正值e[1,21]至e[8,21]是呈渐减趋势。如图5所示,在同一真实信噪特征值SNR0(例如值h1)下,单位时间内携载比特数较多的预设调制设定MS[p1](如曲线708的4096QAM)会比比特数较少的预设调制设定MS[p2](如曲线706的256QAM)更远离真实信噪特征值SNR0,故单位时间内携载比特数较多的预设调制设定MS[p1]需要数值较小的预设信噪特征值e[p1,n]以便在乘算时做较多的下修。延续上述表格与图7,请参考图8,其所示意的是未校正的初始信噪特征值SNRi[k]与校正后的修正信噪特征值SNRc[k],其横轴为接收电路20接收时的真实信噪特征值SNR0(可为对数座标,单位为分贝),纵轴则代表初始信噪特征值SNRi[k]或修正信噪特征值SNRc[k]的值。若接收电路20是依据探测封包(sounding packet)的接收来估计信噪特征值,则该信噪特征值对真实信噪特征值SNR0的变化关系可由曲线1000示意;由于探测封包的内容是接收电路20可预先得知的,故曲线1000可代表信噪特征值估计的理想情形。相对地,若接收电路20是依据资料讯框(data frame)的接收来估计出初始信噪特征值SNRi[k],则初始信噪特征值SNRi[k]对真实信噪特征值SNR0的关系可由曲线1001代表;由于资料讯框中的数字信息是接收电路20无法预先得知的,故初始信噪特征值SNRi[k]会错误地被高估,使曲线1001较为偏离曲线1000。相较的下,曲线1002示意的则是经校正电路30补偿后的修正信噪特征值SNRc[k]对真实信噪特征值SNR0的关系;由图8可看出,相较于曲线1001的初始信噪特征值,曲线1002的修正信噪特征值会十分趋近曲线1000,代表校正电路30的确能修正被错估的初始信噪特征值,使修正信噪特征值能趋近理想情形。In the above table and the example in Fig. 7, as the number of bits carried by the preset modulation settings MS[1] to MS[P] per unit time is arranged from small to large, when related to the same preset signal-to-noise characteristic Among the preset correction values e[1,n] to e[P,n] with the value SNRt[n] and belonging to different preset modulation settings, at least some of them show a decreasing trend. For example, under the same preset signal-to-noise characteristic value SNRt[12], the preset correction values e[1,12] to e[8,12] show a decreasing trend. Similarly, under the same preset signal-to-noise characteristic value SNRt[21], the preset correction values e[1, 21] to e[8, 21] show a decreasing trend. As shown in Figure 5, under the same real signal-to-noise characteristic value SNR0 (for example, value h1), the preset modulation setting MS[p1] (such as 4096QAM of curve 708) carrying more bits per unit time will be higher than the bit number The preset modulation setting MS[p2] with a small number (such as 256QAM of the curve 706) is farther away from the real signal-to-noise characteristic value SNR0, so the preset modulation setting MS[p1] that carries a larger number of bits per unit time needs The preset signal-to-noise eigenvalue e[p1,n] with a smaller value is used for more downward revision during multiplication. Continuing the above table and FIG. 7, please refer to FIG. 8, which shows the uncorrected initial signal-to-noise characteristic value SNRi[k] and the corrected corrected signal-to-noise characteristic value SNRc[k], and the horizontal axis is the receiving circuit 20 The actual signal-to-noise eigenvalue SNR0 at the time of reception (it can be a logarithmic coordinate, and the unit is decibel), and the vertical axis represents the value of the initial signal-to-noise eigenvalue SNRi[k] or the corrected signal-to-noise eigenvalue SNRc[k]. If the receiving circuit 20 estimates the signal-to-noise characteristic value based on the reception of the sounding packet, the variation relationship of the signal-to-noise characteristic value to the real signal-to-noise characteristic value SNR0 can be represented by a curve 1000; since the content of the sounding packet is the receiving circuit 20 can be known in advance, so the curve 1000 can represent the ideal situation of signal-to-noise eigenvalue estimation. In contrast, if the receiving circuit 20 estimates the initial signal-to-noise characteristic value SNRi[k] based on the reception of the data frame, then the relationship between the initial signal-to-noise characteristic value SNRi[k] and the real signal-to-noise characteristic value SNR0 It can be represented by curve 1001; since the digital information in the data frame cannot be known in advance by the receiving circuit 20, the initial signal-to-noise characteristic value SNRi[k] will be wrongly overestimated, so that the curve 1001 deviates from the curve 1000. In contrast, the curve 1002 shows the relationship between the corrected signal-to-noise characteristic value SNRc[k] after compensation by the correction circuit 30 and the real signal-to-noise characteristic value SNR0; it can be seen from FIG. 8 that compared with the curve 1001 The initial SNR characteristic value, the corrected SNR characteristic value of the curve 1002 is very close to the curve 1000, which means that the correction circuit 30 can indeed correct the misestimated initial SNR characteristic value, so that the corrected SNR characteristic value can approach the ideal situation.
请再度参考图1。在先进的现代化网络系统中,可依据接收电路20估计的信噪特征值来适应性地调整信号发射及/或接收的运作。接收电路20中的应用电路36即可依据修正信噪特征值SNRc[1]至SNRc[K]来辅助上述的适应性运作。举例而言,应用电路36可包括一比特负载设定电路38,耦接校正电路30,用以依据各载波s1[k]的修正信噪特征值SNRc[k]更新各载波s0[k]的对应调制设定ms[k],对k=1至K。更新后的对应调制设定ms[k]可由一回授信号s4回授至发射电路10,而发射电路10便可依据更新后的对应调制设定ms[k]在各载波s0[k]上携载后续数字信息。举例而言,假设发射电路10先采用某一预设调制设定MS[p1]作为载波s0[k]的对应调制设定ms[k],若接收电路20在接收后得出数值较佳(较高)的修正信噪特征值SNRc[k],代表信道12在当下的信息传输情况良好,故比特负载设定电路38可回授通知发射电路10,使发射电路10改采另一预设调制设定MS[p2]作为载波s0[k]的对应调制设定ms[k];其中,预设调制设定MS[p2]在单位时间内携载的比特数(即比特负载)可高于先前采用的预设调制设定MS[p1]。如此,便能有效地增加信息传输的流量(throughput)。举例而言,接收电路20可向发射电路10回授一频调图谱(tone-map),其可描述载波s0[1]至s0[K]应采用的对应调制设定ms[1]至ms[K]。Please refer to Figure 1 again. In an advanced modern network system, the operation of signal transmission and/or reception can be adaptively adjusted according to the signal-to-noise characteristic value estimated by the receiving circuit 20 . The application circuit 36 in the receiving circuit 20 can assist the above-mentioned adaptive operation according to the corrected signal-to-noise characteristic values SNRc[1] to SNRc[K]. For example, the application circuit 36 may include a bit load setting circuit 38, coupled to the correction circuit 30, for updating the signal-to-noise characteristic value SNRc[k] of each carrier s1[k] to update the Corresponding modulation sets ms[k] for k=1 to K. The updated corresponding modulation setting ms[k] can be fed back to the transmitting circuit 10 by a feedback signal s4, and the transmitting circuit 10 can transmit on each carrier s0[k] according to the updated corresponding modulation setting ms[k] Carry subsequent digital information. For example, assuming that the transmitting circuit 10 first adopts a certain preset modulation setting MS[p1] as the corresponding modulation setting ms[k] of the carrier s0[k], if the receiving circuit 20 obtains a better value ( The corrected signal-to-noise eigenvalue SNRc[k] that is higher) represents that the current information transmission condition of the channel 12 is good, so the bit load setting circuit 38 can feed back and notify the transmitting circuit 10 to make the transmitting circuit 10 change to another preset The modulation setting MS[p2] is used as the corresponding modulation setting ms[k] of the carrier s0[k]; wherein, the number of bits carried by the preset modulation setting MS[p2] in unit time (ie bit load) can be as high as The default modulation setting MS[p1] used previously. In this way, the throughput of information transmission can be effectively increased. For example, the receiving circuit 20 can feed back a tone-map to the transmitting circuit 10, which can describe the corresponding modulation settings ms[1] to ms that the carriers s0[1] to s0[K] should adopt. [K].
相对地,若接收电路20在接收后得出数值较差(较低)的修正信噪特征值SNRc[k],代表信道12在当下的信息传输情况不佳,故比特负载设定电路38可回授通知发射电路10,使发射电路10可以沿用先前预设调制设定MS[p1],或改采另一预设调制设定MS[p3],以作为载波s0[k]的对应调制设定ms[k];其中,预设调制设定MS[p3]的比特负载可低于先前采用的预设调制设定MS[p1]。如此,便能避免高噪声影响数字资料传输的正确性。Relatively, if the receiving circuit 20 obtains a poorer (lower) corrected signal-to-noise characteristic value SNRc[k] after receiving, it means that the current information transmission condition of the channel 12 is not good, so the bit load setting circuit 38 can The feedback notifies the transmitting circuit 10, so that the transmitting circuit 10 can continue to use the previous preset modulation setting MS[p1], or change to another preset modulation setting MS[p3] as the corresponding modulation setting of the carrier s0[k]. ms[k]; wherein, the bit loading of the default modulation setting MS[p3] may be lower than that of the previously used default modulation setting MS[p1]. In this way, high noise can be prevented from affecting the accuracy of digital data transmission.
不过,上述适应性运作的前提是接收电路30估计的信噪特征值必须接近真实信噪特征值;若接收电路30估计出的信噪特征值与真实信噪特征值的差异过大,网络系统依据估计信噪特征值所进行的适应性运作反而会影响网络系统的正确运作。举例而言,若应用电路36中的比特负载设定电路38依据的是初始信噪特征值SNRi[k]而非修正信噪特征值SNRc[k],由于初始信噪特征值SNRi[k]会比较为乐观而高于真实信噪特征值,故比特负载设定电路38会误使发射电路10改采比特负载较高的调制设定以增加信息传输的流量;虽信息传输流量高,但错误率也会较高,因为接收电路20真正接收到的信号s1[k]其实已经受到高噪声的干扰,能正确有效传递的信息量反而减少。However, the premise of the above adaptive operation is that the signal-to-noise characteristic value estimated by the receiving circuit 30 must be close to the real signal-to-noise characteristic value; if the difference between the signal-to-noise characteristic value estimated by the receiving circuit 30 and the real signal-to-noise characteristic value is too large, the The adaptive operation based on the estimated signal-to-noise characteristic value will affect the correct operation of the network system. For example, if the bit load setting circuit 38 in the application circuit 36 is based on the initial signal-to-noise characteristic value SNRi[k] rather than the corrected signal-to-noise characteristic value SNRc[k], since the initial signal-to-noise characteristic value SNRi[k] Will be more optimistic and higher than the real signal-to-noise characteristic value, so the bit load setting circuit 38 will mistakenly make the transmitting circuit 10 change the modulation setting with higher bit load to increase the flow of information transmission; although the flow of information transmission is high, but The error rate will also be higher, because the signal s1[k] actually received by the receiving circuit 20 has actually been interfered by high noise, and the amount of information that can be correctly and effectively transmitted is actually reduced.
不限于适应性比特负载特性,接收电路20估计的信噪特征值还可用于其他先进功能,像是软比特(soft-bit)解码、软决策(soft-decision)解码、适应性调制与编码(AMC,adaptive modulation and coding)、涡轮(turbo)解码及/或动态功率控制等;这些先进功能都需要优良的信噪特征值估计才能正确有效地运作。经本发明校正电路30修正后的修正信噪特征值SNRc[k]正可满足这些先进功能所需;对应地,图1中应用电路36也可包括支援上述先进功能的电路,例如说是软比特解码电路(未图示)等,其可耦接校正电路30,以运用校正电路30产生的修正信噪特征值SNRc[k]。Not limited to adaptive bit-loading characteristics, the signal-to-noise eigenvalues estimated by the receiving circuit 20 can also be used for other advanced functions, such as soft-bit decoding, soft-decision decoding, adaptive modulation and coding ( AMC (adaptive modulation and coding), turbo (turbo) decoding and/or dynamic power control, etc.; these advanced functions require excellent signal-to-noise eigenvalue estimation in order to operate correctly and effectively. The corrected signal-to-noise characteristic value SNRc[k] corrected by the correcting circuit 30 of the present invention can just meet the needs of these advanced functions; correspondingly, the application circuit 36 in FIG. A bit decoding circuit (not shown), etc., can be coupled to the correction circuit 30 to use the corrected signal-to-noise characteristic value SNRc[k] generated by the correction circuit 30 .
延续图1,请参考图9,其所示意的是依据本发明一范例的流程1200;图1中的接收电路20可实施流程1200以修正信噪特征值估计。流程1200的主要步骤可描述如下。Continuing with FIG. 1 , please refer to FIG. 9 , which shows a process 1200 according to an example of the present invention; the receiving circuit 20 in FIG. 1 can implement the process 1200 to modify the signal-to-noise characteristic value estimation. The main steps of the process 1200 can be described as follows.
步骤1202:由接收电路20中的均衡器24依据一接收信号s1提供一均衡信号s2。其中,接收信号s1包含K(大于等于1)个载波s1[1]至s1[K],并于各载波s1[k]上依据一对应调制设定ms[k]携载对应数字信息;对应调制设定ms[k]则是由P(大于等于1)个预设调制设定MS[1]至MS[P]中所选出。均衡器24可对各载波s1[k]进行均衡运作,以产生均衡信号s2中的载波s2[k]。Step 1202: The equalizer 24 in the receiving circuit 20 provides an equalized signal s2 according to a received signal s1. Wherein, the received signal s1 includes K (greater than or equal to 1) carriers s1[1] to s1[K], and corresponding digital information is carried on each carrier s1[k] according to a corresponding modulation setting ms[k]; corresponding The modulation setting ms[k] is selected from P (greater than or equal to 1) preset modulation settings MS[1] to MS[P]. The equalizer 24 can perform an equalization operation on each carrier s1[k] to generate a carrier s2[k] in the equalized signal s2.
步骤1204:由截剪器26进行一截剪步骤,以由该均衡信号s2中判读各载波s1[k]携载的数字信息smb[k],并据以提供一截剪信号s3,其包括载波s3[1]至s3[K]。举例而言,若载波s2[k]的对应调制设定ms[k]符合预设调制设定MS[p],则截剪器26可采用图3所示的决策区间划分D[p],以依据载波s2[k]在散射图上的位置判断出其座落的决策区间d[p,i,q],并将载波s2[k]携载的数字信息smb[k]判读为关连星座点c[p,i,q]所对应的预设信息SMB[p,i,q],以反映于载波s3[k]。如前面讨论过的(如图3),截剪器26采用的决策区间划分D[p]可以是固定边界的决策区间划分。Step 1204: Perform a clipping step by the clipper 26 to judge the digital information smb[k] carried by each carrier s1[k] from the equalized signal s2, and provide a clipped signal s3 accordingly, which includes Carriers s3[1] to s3[K]. For example, if the corresponding modulation setting ms[k] of the carrier s2[k] conforms to the default modulation setting MS[p], the clipper 26 may adopt the decision interval division D[p] shown in FIG. 3 , Based on the position of carrier s2[k] on the scatter diagram, the decision interval d[p,i,q] of its location is judged, and the digital information smb[k] carried by carrier s2[k] is interpreted as the associated constellation The preset information SMB[p,i,q] corresponding to the point c[p,i,q] is reflected in the carrier s3[k]. As discussed above (as shown in FIG. 3 ), the decision interval division D[p] adopted by the clipper 26 may be a decision interval division with a fixed boundary.
步骤1206:由估计电路28进行一估计步骤,以依据均衡信号s2与截剪信号s3的差异为各载波s1[k]提供一初始信噪特征值SNRi[k]。举例而言,若截剪器26将载波s2[k]判读为星座点c[p,i,q],估计电路28可依据载波s2[k]与星座点c[p,i,q]间的散射图差异向量估计出初始信噪特征值SNRi[k]。Step 1206: The estimation circuit 28 performs an estimation step to provide an initial SNR characteristic value SNRi[k] for each carrier s1[k] according to the difference between the equalized signal s2 and the clipped signal s3. For example, if the clipper 26 interprets the carrier s2[k] as a constellation point c[p,i,q], the estimation circuit 28 can base the distance between the carrier s2[k] and the constellation point c[p,i,q] The difference vectors of the scatter plots estimate the initial signal-to-noise eigenvalue SNRi[k].
步骤1208:由校正电路30进行一校正步骤,以依据各载波s1[k]的初始信噪特征值SNRi[k]的数值提供一对应修正值r[k],并依据各载波s1[k]的对应修正值r[k]修正各载波s1[k]的初始信噪特征值SNRi[k],以便为各载波s1[k]产生一修正信噪特征值SNRc[k]。举例而言。可由查表电路34为各预设调制设定MS[p]储存N(大于1)个预设修正值e[p,1]至e[p,N],并依据各载波s1[k]的对应调制设定ms[k]、各载波s1[k]的初始信噪特征值SNR[k]与各预设调制设定MS[1]至MS[P]的预设修正值e[1,1]至e[P,N]而为各载波s1[k]提供对应修正值r[k];并且,由乘法器32将各载波s1[k]的初始信噪特征值SNRi[k]乘以各载波s1[k]的对应修正值r[k],据以产生各载波s1[k]的修正信噪特征值SNRc[k]。其中,各预设调制设定MS[p]的各预设修正值e[p,n]是关连于N个预设信噪特征值SNRt[1]至SNRt[N]的其中之一SNRt[n]。Step 1208: Perform a correction step by the correction circuit 30 to provide a corresponding correction value r[k] according to the initial signal-to-noise characteristic value SNRi[k] of each carrier s1[k], and provide a corresponding correction value r[k] according to each carrier s1[k] The corresponding correction value r[k] modifies the initial signal-to-noise characteristic value SNRi[k] of each carrier s1[k], so as to generate a corrected signal-to-noise characteristic value SNRc[k] for each carrier s1[k]. For example. N (greater than 1) preset correction values e[p,1] to e[p,N] can be stored for each preset modulation setting MS[p] by the look-up table circuit 34, and according to each carrier s1[k] Corresponding to the modulation setting ms[k], the initial signal-to-noise characteristic value SNR[k] of each carrier s1[k] and the preset correction value e[1] of each preset modulation setting MS[1] to MS[P], 1] to e[P, N] and provide the corresponding correction value r[k] for each carrier s1[k]; The corrected signal-to-noise characteristic value SNRc[k] of each carrier s1[k] is generated based on the corresponding correction value r[k] of each carrier s1[k]. Wherein, each preset correction value e[p,n] of each preset modulation setting MS[p] is related to one of N preset signal-to-noise characteristic values SNRt[1] to SNRt[N] SNRt[ n].
当查表电路34为各载波s1[k]提供对应修正值r[k]时,是由预设调制设定MS[1]至MS[P]中找出与对应调制设定ms[k]相符合的预设调制设定MS[p],并由预设信噪特征值SNRt[1]至SNRt[N]中寻得一个与各载波s1[k]的初始信噪特征值SNRi[k]最接近的预设信噪特征值SNRt[n],以在预设调制设定MS[p]的预设修正值e[p,1]至e[p,N]中将预设信噪特征值SNRt[n]所关连的预设修正值e[p,n]作为各载波s1[k]的对应修正值r[k]。When the table look-up circuit 34 provides the corresponding correction value r[k] for each carrier s1[k], the corresponding modulation setting ms[k] is found from the preset modulation settings MS[1] to MS[P]. The corresponding preset modulation setting MS[p], and from the preset signal-to-noise characteristic values SNRt[1] to SNRt[N], find an initial signal-to-noise characteristic value SNRi[k] corresponding to each carrier s1[k] ] the closest preset signal-to-noise characteristic value SNRt[n], so that the preset signal-to-noise The preset correction value e[p,n] associated with the characteristic value SNRt[n] is used as the corresponding correction value r[k] of each carrier s1[k].
流程1200可用硬件、软件、固件或三者的任意组合来实施。举例而言,步骤1208可用硬件的校正电路30实施,查表电路34可包括静态随机存取存储器(SRAM)以储存表格800(图6);或者,步骤1208可由处理器(未图示)执行软件及/或固件来实施,并以动态随机存取存储器(DRAM)储存表格800。The process 1200 can be implemented by hardware, software, firmware or any combination of the three. For example, step 1208 can be implemented by the hardware correction circuit 30, and the look-up table circuit 34 can include a static random access memory (SRAM) to store the table 800 (FIG. 6); or, step 1208 can be executed by a processor (not shown) Implemented in software and/or firmware, and store table 800 in dynamic random access memory (DRAM).
总结来说,本发明可改善(修正)接收端对信噪特征值的估计;例如,接收端会因截剪器的硬决策运作而错误地高估信噪特征值,而本发明技术则可适当地将高估的初始信噪特征值下修为较为正确的修正信噪特征值,使网络系统能依据修正信噪特征值来正确地判断通信(例如信道)状况,并正确地进行适应性的收发调整,例如说是调整各载波的比特负载设定。In summary, the present invention can improve (modify) the estimate of the signal-to-noise characteristic value at the receiving end; for example, the receiving end will mistakenly overestimate the signal-to-noise characteristic value due to the hard decision operation of the clipper, and the technology of the present invention can Appropriately modify the overestimated initial signal-to-noise eigenvalues to more correct corrected signal-to-noise eigenvalues, so that the network system can correctly judge the communication (such as channel) conditions based on the corrected signal-to-noise eigenvalues, and correctly perform adaptive Transceiver adjustment, for example, adjusting the bit load setting of each carrier.
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some modifications and improvements without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should be defined by the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510458314.0A CN106411338A (en) | 2015-07-30 | 2015-07-30 | Receiving circuit capable of correcting signal-to-noise characteristic value estimation and related method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510458314.0A CN106411338A (en) | 2015-07-30 | 2015-07-30 | Receiving circuit capable of correcting signal-to-noise characteristic value estimation and related method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106411338A true CN106411338A (en) | 2017-02-15 |
Family
ID=58009140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510458314.0A Pending CN106411338A (en) | 2015-07-30 | 2015-07-30 | Receiving circuit capable of correcting signal-to-noise characteristic value estimation and related method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106411338A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102664859A (en) * | 2012-05-22 | 2012-09-12 | 天津工业大学 | Synchronization and channel estimation scheme for multi-band orthogonal frequency division multiplexing (OFDM) ultra wideband receiver |
WO2013125174A1 (en) * | 2012-02-20 | 2013-08-29 | 日本電気株式会社 | Device for processing received signal, and method for processing received signal |
CN103532905A (en) * | 2012-07-05 | 2014-01-22 | 北京新岸线移动通信技术有限公司 | Signal-to-noise-ratio estimation method and device based on hard decisions |
-
2015
- 2015-07-30 CN CN201510458314.0A patent/CN106411338A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013125174A1 (en) * | 2012-02-20 | 2013-08-29 | 日本電気株式会社 | Device for processing received signal, and method for processing received signal |
CN102664859A (en) * | 2012-05-22 | 2012-09-12 | 天津工业大学 | Synchronization and channel estimation scheme for multi-band orthogonal frequency division multiplexing (OFDM) ultra wideband receiver |
CN103532905A (en) * | 2012-07-05 | 2014-01-22 | 北京新岸线移动通信技术有限公司 | Signal-to-noise-ratio estimation method and device based on hard decisions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100742448B1 (en) | How to optimize transmission mode | |
EP3573300B1 (en) | Method and apparatus for transmitting information | |
KR102772581B1 (en) | Apparatus and method for compensating phase noise in a wireless communication system | |
US8194558B2 (en) | Method of estimating signal-to-noise ratio, method of adjusting feedback information transmission, adaptive modulation and coding method using the same, and transceiver thereof | |
US20030039317A1 (en) | Method and apparatus for constructing a sub-carrier map | |
JP4624417B2 (en) | Wireless device | |
US8270507B2 (en) | Optimum BER adjustment for adaptive multi-carrier modulation | |
EP1618695A1 (en) | Quality determination for a wireless communications link | |
CN1395779A (en) | Adaptive precding | |
AU2016350896A1 (en) | Preamble for non-linearity estimation | |
US20070047431A1 (en) | Radio transmission apparatus and peak power suppression method in multicarrier communication | |
JP2008536378A (en) | Adaptive modulation using non-pilot symbols | |
CN106688293B (en) | System and method for link adaptation | |
US8879647B2 (en) | Methods of allocating resources in a system and systems implementing the same | |
US20150256377A1 (en) | System and method for providing channel equalization in orthogonal frequency division multiplexing (ofdm) wireless systems | |
TWI565271B (en) | Receiver circuit and associated method capable of correcting estimation of signal-noise characteristic value | |
US10361897B2 (en) | Peak-to-average power ratio reduction in a multi-carrier signal | |
CN106411338A (en) | Receiving circuit capable of correcting signal-to-noise characteristic value estimation and related method | |
JP4860211B2 (en) | Wireless communication system, base station | |
KR102086452B1 (en) | Wireless communication system with channel-quality indicator mechanism and method of operation thereof | |
WO2010013584A1 (en) | Radio transmitter/receiver, modulation control method, and program | |
KR101430609B1 (en) | Channel estimation apparatus and method in a wireless communication system | |
WO2011075889A1 (en) | Method and apparatus for mapping data streams to resource block in wireless communication system | |
US9716560B2 (en) | Wireless receiving device and signal processing method thereof | |
TWI721980B (en) | Apparatus and method for reducing peak to average power ratio in a signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20191025 |