CN106410599B - Brillouin Single Longitudinal Mode Frequency Shifted Fiber Laser - Google Patents
Brillouin Single Longitudinal Mode Frequency Shifted Fiber Laser Download PDFInfo
- Publication number
- CN106410599B CN106410599B CN201611017714.9A CN201611017714A CN106410599B CN 106410599 B CN106410599 B CN 106410599B CN 201611017714 A CN201611017714 A CN 201611017714A CN 106410599 B CN106410599 B CN 106410599B
- Authority
- CN
- China
- Prior art keywords
- fiber
- optical fiber
- frequency
- port
- brillouin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims abstract description 107
- 239000013307 optical fiber Substances 0.000 claims abstract description 82
- 230000003287 optical effect Effects 0.000 claims abstract description 38
- 239000002131 composite material Substances 0.000 claims abstract description 29
- 238000004891 communication Methods 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 abstract description 19
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000005086 pumping Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 238000012546 transfer Methods 0.000 abstract description 3
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000002269 spontaneous effect Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000035559 beat frequency Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- KWMNWMQPPKKDII-UHFFFAOYSA-N erbium ytterbium Chemical compound [Er].[Yb] KWMNWMQPPKKDII-UHFFFAOYSA-N 0.000 description 1
- 230000009123 feedback regulation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/30—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
- H01S3/302—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/1305—Feedback control systems
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Automation & Control Theory (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及到基于自发布里渊散射的分布式光纤传感系统所需的宽带移频技术,尤其是一种布里渊单纵模移频光纤激光器。The invention relates to a broadband frequency shifting technology required by a distributed optical fiber sensing system based on spontaneous Brillouin scattering, in particular to a Brillouin single longitudinal mode frequency shifting fiber laser.
背景技术Background technique
在基于自发布里渊散射的分布式光纤传感(BOTDR)系统中,布里渊自发散射光相对于入射光的频移受到温度和应变的影响,针对通信波段的单模光纤,布里渊自发散射光相对于入射光的频移约为11GHz,其中温度引起布里渊散射光频移量变化的线性系数为1.09±0.08MHz/℃,应变引起布里渊散射光频移量变化的线性系数为0.052±0.004MHz/με,在此11GHz的超高频率基底上实现提取10-4相对频率变化量是BOTDR系统实现温度和应变传感的关键技术。使用宽带移频方案,选择合适的本地拍频光,可使得布里渊自发散射光与本地拍频光的差频信号由11GHz降至100MHz量级,有利于信号的提取和系统器件成本的降低。In the distributed optical fiber sensing (BOTDR) system based on spontaneous Brillouin scattering, the frequency shift of Brillouin spontaneously scattered light relative to the incident light is affected by temperature and strain. For single-mode optical fibers in the communication band, Brillouin The frequency shift of the spontaneous scattered light relative to the incident light is about 11GHz, where the linear coefficient of the change in the frequency shift of the Brillouin scattered light caused by temperature is 1.09±0.08MHz/℃, and the linear coefficient of the change in the frequency shift of the Brillouin scattered light caused by the strain The coefficient is 0.052±0.004MHz/με, and the extraction of 10 -4 relative frequency variation on this 11GHz ultra-high frequency base is the key technology for the BOTDR system to realize temperature and strain sensing. Using the broadband frequency shifting scheme and selecting the appropriate local beat frequency light can reduce the difference frequency signal between the Brillouin spontaneously scattered light and the local beat frequency light from 11GHz to 100MHz, which is conducive to signal extraction and system device cost reduction .
因此,发展有多种宽带移频技术方案,如方案一采用一台与种子光频率差接近布里渊频移的激光器作为本地激光器(参见 Toshio Kurashima, et al, IEICE TRANS.COMMUN., E76-B(4) (1993)),这种技术方案中BOTDR系统需要使用两台激光器,使得成本和结构复杂,同时此方案对于两台激光器的频率及频率差的稳定度都有着极其高的要求;方案二采用声光移频环进行宽带移频(参见 Kaoru Shimizu, et al., J. LightwaveTechnol., 12, 730-736 (1994)),但声光移频器通常一次只能移频一百多MHz,需经上百次的循环移频才可实现11GHz的频率变化,这些都对声光移频器的性能提出了很高的要求。并且,声光移频环路的采用增加了系统中光学部分的复杂度,影响了系统的稳定性和测量精度。方案三采用电光调制器进行宽带电光调制移频(参见 宋牟平, 光学学报, 24,1110-1114 (2004)),电光调制器一次就可以实现移频11GHz,相对简化了光路,但是电光调制器对光路的偏振控制特性提出了很高的要求。同时利用电光调制器实现宽带移频的能量损失过大,获取的移频光功率偏小。Therefore, a variety of broadband frequency shifting technology solutions have been developed. For example, the first solution uses a laser with a frequency difference close to the Brillouin frequency shift of the seed light as the local laser (see Toshio Kurashima, et al, IEICE TRANS.COMMUN., E76- B(4) (1993)), in this technical solution, the BOTDR system needs to use two lasers, which makes the cost and structure complex, and this solution has extremely high requirements for the frequency and frequency difference stability of the two lasers; The second scheme uses the acousto-optic frequency shifting ring for broadband frequency shifting (see Kaoru Shimizu, et al., J. LightwaveTechnol., 12, 730-736 (1994)), but the acousto-optic frequency shifter usually only shifts one hundred times at a time The frequency change of 11 GHz can only be realized after hundreds of cyclic frequency shifts, all of which put forward high requirements on the performance of the acousto-optic frequency shifter. Moreover, the adoption of the acousto-optic frequency shifting loop increases the complexity of the optical part of the system, which affects the stability and measurement accuracy of the system.
与上述这些方案相比,利用布里渊激光器实现宽带移频是一种高效低成本的新技术方案(参见 Jihong Geng, et al., Appl. Opt. 46, 5928-5932 (2007)),吸引了很多研究人员进行相关方面的研究和应用。由于布里渊增益谱宽大约为30MHz,而有源环形腔布里渊激光器的腔长一般为几十米量级(对应腔纵模间隔为2~10MHz),因此很容易出现多纵模运转模式,导致移频量存在较大波动,直接导致BOTDR系统中测量精度的降低。为了避免出现多纵模运转,有研究学者通过激光稳频的方案,将注入泵浦种子光的频率和布里渊激光运转频率同时锁定在谐振腔的某两个腔纵模上,从而实现单纵模运转的布里渊激光输出(参见Jihong Geng, et al., IEEE Photon. Technol. Lett. 18, 1813-1815 (2006)),但这种方案涉及到复杂的反馈控制系统,稳定性不容易做好,在外界扰动下,还容易出现稳频失锁,会使得整个BOTDR系统的稳定性下降,并且成本增加很多。Compared with the above-mentioned schemes, using Brillouin laser to achieve broadband frequency shift is a new technology scheme with high efficiency and low cost (see Jihong Geng, et al., Appl. Opt. 46, 5928-5932 (2007)), attracting Many researchers have carried out related research and application. Since the Brillouin gain spectrum width is about 30MHz, and the cavity length of an active ring cavity Brillouin laser is generally on the order of tens of meters (corresponding to a cavity longitudinal mode interval of 2~10MHz), it is easy to appear multi-longitudinal mode operation mode, resulting in large fluctuations in the amount of frequency shift, which directly leads to the reduction of measurement accuracy in the BOTDR system. In order to avoid multi-longitudinal mode operation, some researchers locked the frequency of the injected pump seed light and the Brillouin laser operating frequency on two cavity longitudinal modes of the resonator at the same time through a laser frequency stabilization scheme, thereby realizing a single longitudinal mode. Brillouin laser output in mode operation (see Jihong Geng, et al., IEEE Photon. Technol. Lett. 18, 1813-1815 (2006)), but this scheme involves a complex feedback control system, and the stability is not easy Done well, under external disturbances, it is easy to lose the frequency stability lock, which will reduce the stability of the entire BOTDR system and increase the cost a lot.
发明内容Contents of the invention
为了克服在先技术的缺点,更好地满足BOTDR系统对宽带移频布里渊激光器的实际需求,本发明提供一种高效低成本的实现单纵模运转的布里渊激光器。In order to overcome the shortcomings of the prior art and better meet the actual requirements of the BOTDR system for a broadband frequency-shifted Brillouin laser, the present invention provides a high-efficiency and low-cost Brillouin laser that realizes single longitudinal mode operation.
本发明的基本原理是:构建一个有源环形腔布里渊激光器,该激光器主要由泵浦光源和有源环形腔构成。泵浦光源需选用线宽小于1MHz的通信C波段的单频激光器。环形腔中包括三端口环形器、光放大器、移频光纤构成的光纤复合腔单元及光纤耦合器。使用环形器的单向特性,构建只能沿单方向传输的环形腔,光放大器用于在腔内提供放大,而移频光纤作为非线性介质为布里渊散射光的放大提供增益,耦合器用于腔内激光的输出。The basic principle of the invention is to construct an active annular cavity Brillouin laser, which is mainly composed of a pumping light source and an active annular cavity. The pump light source needs to be a single-frequency laser with a linewidth of less than 1MHz in the communication C-band. The ring cavity includes a three-port circulator, an optical amplifier, a fiber composite cavity unit composed of a frequency-shifting fiber, and a fiber coupler. Using the unidirectional characteristics of the circulator, a ring cavity that can only transmit in one direction is constructed. The optical amplifier is used to provide amplification in the cavity, and the frequency-shifting fiber is used as a nonlinear medium to provide gain for the amplification of Brillouin scattered light. The coupler is used The output of the intracavity laser.
布里渊型单纵模移频光纤激光器,包括光源模块、光纤环行器、光放大器、光纤隔离器、第一光纤耦合器、第一移频光纤、第二移频光纤、第二光纤耦合器;其中,光源模块的尾纤输出和光纤环行器的第一端口相连,光纤环行器的第二端口和光放大器的输入端口相连,光放大器的输出端口和第一光纤耦合器的第一端口相连;第一光纤耦合器的第二端口和第四端口之间利用光纤连接成一个环路,此环路中接入的器件包括光纤隔离器和第一移频光纤,其中光纤隔离器的正向导通输入端口与第一光纤耦合器的第二端口相连,光纤隔离器的正向导通输出端口与第一移频光纤相连,第一移频光纤的另一端与第一光纤耦合器的第四端口相连;第二移频光纤的一端与第一光纤耦合器的第三端口相连,另一端与第二光纤耦合器的第一端口相连;第二光纤耦合器的第三端口与光纤环行器的第三端口相连,闭合成一个大的光纤环路,第二光纤耦合器的第二端口作为单纵模布里渊激光器的输出端口;基于光纤复合腔的技术方案,利用复合腔的选模特性,使得腔纵模间隔大于布里渊增益谱谱宽,在增益谱范围内有且只有一个腔纵模可以起振并形成激光出射,最终高效低成本实现布里渊型单纵模移频光纤激光输出。Brillouin single longitudinal mode frequency-shifted fiber laser, including light source module, fiber circulator, optical amplifier, fiber isolator, first fiber coupler, first frequency-shifting fiber, second frequency-shifting fiber, second fiber coupler ; Wherein, the pigtail output of the light source module is connected to the first port of the optical fiber circulator, the second port of the optical fiber circulator is connected to the input port of the optical amplifier, and the output port of the optical amplifier is connected to the first port of the first optical fiber coupler; The second port and the fourth port of the first optical fiber coupler are connected to form a loop by optical fiber, and the components connected in this loop include optical fiber isolator and first frequency-shifting optical fiber, wherein the forward conduction of the optical fiber isolator The input port is connected to the second port of the first fiber coupler, the forward conduction output port of the fiber isolator is connected to the first frequency shifting fiber, and the other end of the first frequency shifting fiber is connected to the fourth port of the first fiber coupler ; One end of the second frequency-shifting fiber is connected with the third port of the first fiber coupler, and the other end is connected with the first port of the second fiber coupler; the third port of the second fiber coupler is connected with the third port of the fiber optic circulator The ports are connected and closed into a large fiber loop, and the second port of the second fiber coupler is used as the output port of the single longitudinal mode Brillouin laser; based on the technical scheme of the fiber composite cavity, the mode selection characteristic of the composite cavity is used to make The cavity longitudinal mode interval is greater than the Brillouin gain spectrum width, and within the gain spectrum range, there is only one cavity longitudinal mode that can oscillate and form laser output, and finally achieve high-efficiency and low-cost Brillouin single longitudinal mode frequency-shifted fiber laser output .
进一步地,光源模块为窄线宽激光器,线宽小于1MHz,输出功率可达到20mW。Furthermore, the light source module is a laser with a narrow linewidth, the linewidth is less than 1MHz, and the output power can reach 20mW.
进一步地,所述的光纤环行器,是一个三端口光纤环行器,单向导通,光纤环行器能用接入光纤耦合器和隔离器的方式代替以起到光纤环行器的作用。Furthermore, the optical fiber circulator is a three-port optical fiber circulator with one-way conduction, and the optical fiber circulator can be replaced by connecting a fiber coupler and an isolator to play the role of the fiber optic circulator.
进一步地,所述的光放大器,主要用于放大泵浦光信号和微弱的布里渊散射信号,需要采取光学作用长度短一些的光学放大器,可选用高增益系数掺铒光纤作为增益介质来搭建光纤放大器,或者选用1550nm波段半导体光放大器(SOA)。Further, the optical amplifier is mainly used to amplify the pump light signal and the weak Brillouin scattering signal, and needs to adopt an optical amplifier with a shorter optical action length, which can be constructed by using an erbium-doped optical fiber with a high gain coefficient as the gain medium Optical fiber amplifier, or use 1550nm band semiconductor optical amplifier (SOA).
进一步地,所述的光放大器,可以选用1m长的高增益系数的掺铒光纤搭建掺铒光纤放大器(EDFA)。Further, for the optical amplifier, a 1m-long erbium-doped fiber with a high gain coefficient can be selected to build an erbium-doped fiber amplifier (EDFA).
进一步地,所述的光纤隔离器用于单向导通防止反向谐振,可以采用商用的1550nm波段的光纤隔离器。Further, the optical fiber isolator is used for unidirectional conduction to prevent reverse resonance, and a commercial optical fiber isolator with a wavelength of 1550nm can be used.
进一步地,所述的第一光纤耦合器采用普通单模光纤1550nm波段、端口2×2、分光比为50:50的耦合器。Further, the first optical fiber coupler adopts a common single-mode fiber 1550nm band, 2×2 ports, and a splitting ratio of 50:50.
进一步地,第一移频光纤和第二移频光纤,采用普通通信单模光纤,可以采用商用G652型号的通信单模光纤;第一移频光纤和第二移频光纤的长度选择有两种方式:一是形成复合腔的两个腔长相当或接近;二是形成复合腔的一个腔长是另一个腔长的多倍。Further, the first frequency-shifting optical fiber and the second frequency-shifting optical fiber adopt ordinary communication single-mode optical fiber, and commercial G652 type communication single-mode optical fiber can be used; there are two kinds of length options for the first frequency-shifting optical fiber and the second frequency-shifting optical fiber Ways: one is that the lengths of the two cavities forming the composite cavity are equal or close; the other is that the length of one cavity forming the composite cavity is many times the length of the other cavity.
进一步地,所述的第二光纤耦合器,为1×2的普通单模光纤耦合器,中心波长1550nm,分束比为10:90,其中10%的端口作为布里渊激光器的输出端。Further, the second fiber coupler is a 1×2 common single-mode fiber coupler with a center wavelength of 1550 nm and a beam splitting ratio of 10:90, and 10% of the ports are used as the output ports of the Brillouin laser.
当在输入端没有泵浦光注入时,该激光器相当于掺铒光纤激光器,输出波长取决于腔内净增益分布以及自由振荡建立的最终激光模式。当激光器输入端有泵浦光注入时,且泵浦光强达到腔内受激布里渊散射光谐振的阈值,该激光器将工作于布里渊型光纤激光器模式。当泵浦光从环形器的输入端注入到环形腔经过光放大器的放大后进入移频光纤,在移频光纤中激发后向散射光,泵浦光继续传输至环形器截止。而散射光可以在腔内循环传输,散射光经过光放大器时会被放大,经过移频光纤时,散射光中的布里渊信号光与入射泵浦光相向传输过程中发生非线性布里渊作用,可获得非线性布里渊增益放大,而同样后向传输的瑞利散射光在此处则不能得到放大。如此循环,若布里渊散射光信号在腔内的综合增益大于瑞利散射光和自发辐射噪声光,则在腔内经历多次循环传输放大建立振荡,最终可形成稳定的布里渊激光输出。When no pump light is injected at the input, the laser is equivalent to an erbium-doped fiber laser, and the output wavelength depends on the net gain distribution in the cavity and the final lasing mode established by free oscillation. When pumping light is injected at the input end of the laser, and the pumping light intensity reaches the resonance threshold of stimulated Brillouin scattered light in the cavity, the laser will work in the Brillouin fiber laser mode. When the pump light is injected into the ring cavity from the input end of the circulator, after being amplified by the optical amplifier, it enters the frequency-shifting fiber, and the backscattered light is excited in the frequency-shifting fiber, and the pump light continues to transmit to the circulator to stop. The scattered light can be circulated in the cavity, and the scattered light will be amplified when it passes through the optical amplifier. When passing through the frequency-shifting fiber, the Brillouin signal light in the scattered light and the incident pump light will undergo nonlinear Brillouin in the process of opposite transmission. The role of nonlinear Brillouin gain amplification can be obtained, while the Rayleigh scattered light that is also transmitted backward cannot be amplified here. In such a cycle, if the comprehensive gain of the Brillouin scattered light signal in the cavity is greater than the Rayleigh scattered light and spontaneous emission noise light, it will experience multiple cycles of transmission and amplification in the cavity to establish oscillation, and finally a stable Brillouin laser output can be formed.
与现有技术相比,本发明具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)与传统的宽带移频技术方案相比,本发明是基于光纤布里渊非线性作用的单纵模激光器,其激光频率始终跟随种子光,因此宽带移频效果稳定,结构简单,无复杂控制要求。(1) Compared with the traditional broadband frequency shifting technical scheme, the present invention is a single longitudinal mode laser based on fiber Brillouin nonlinear effect, and its laser frequency always follows the seed light, so the broadband frequency shifting effect is stable, the structure is simple, no Complex control requirements.
(2)与稳频布里渊激光器相比,本发明利用光纤复合腔进行模式选择,使得腔纵模大于布里渊增益谱谱宽,从而在布里渊增益谱范围内有且只有一个腔纵模可以起振并形成激光出射。而稳频布里渊激光器需要搭建误差信号提取和反馈调节种子光的复杂光学结构,来实现稳定单纵模布里渊激光输出。此单纵模布里渊激光技术方案,原理简单,无需复杂的反馈控制,光学结构稳定,成本降低了90%以上,且可以很好的应用于BOTDR传感系统中作为宽带移频本地光源。(2) Compared with the frequency-stabilized Brillouin laser, the present invention utilizes the fiber composite cavity for mode selection, so that the cavity longitudinal mode is larger than the Brillouin gain spectrum spectral width, so that there is only one cavity in the Brillouin gain spectrum range The longitudinal mode can vibrate and form laser emission. The frequency-stabilized Brillouin laser needs to build a complex optical structure for error signal extraction and feedback regulation of seed light to achieve stable single longitudinal mode Brillouin laser output. This single longitudinal mode Brillouin laser technology solution has a simple principle, does not require complex feedback control, has a stable optical structure, reduces the cost by more than 90%, and can be well applied in the BOTDR sensing system as a broadband frequency-shifted local light source.
附图说明Description of drawings
图1实例中一种复合腔纵模选频的示意图;A schematic diagram of a compound cavity longitudinal mode frequency selection in the example of Fig. 1;
图2 实例中的另一种复合腔纵模选频的示意图;The schematic diagram of another composite cavity longitudinal mode frequency selection in the example of Fig. 2;
图3 实例中基于光纤复合腔的单纵模布里渊激光器的结构示意图。The schematic diagram of the structure of the single longitudinal mode Brillouin laser based on the fiber composite cavity in the example in Fig. 3 .
具体实施方式Detailed ways
下面结合实施例和附图对本发明的实施作进一步说明,但本发明的实施和保护不限于此,需指出的是,以下若有未特别详细说明之过程或参数,均是本领域技术人员可参照现有技术实现的。The implementation of the present invention will be further described below in conjunction with the examples and accompanying drawings, but the implementation and protection of the present invention are not limited thereto. Realized with reference to prior art.
本发明为了获得布里渊激光的输出,需要解决两个问题:一、避免光放大器自发辐射噪声建立振荡形成激光;二、避免瑞利散射光谐振形成激光。第一个问题,需要将光放大器的放大性能设置在较低的位置,使得布里渊散射信号获得的综合增益中,光放大器提供的增益所占比例尽可能小一点。此问题通过设置光放大器的增益系数,可以很好的解决;第二个问题,需要尽量提高布里渊非线性增益,使得瑞利散射光仅仅靠光放大器提供的增益无法在腔内竞争超过布里渊散射光,而最终使得瑞利散射无法谐振形成激光出射。In order to obtain the output of the Brillouin laser, the present invention needs to solve two problems: first, avoiding the spontaneous radiation noise of the optical amplifier to establish oscillation to form laser; second, avoiding Rayleigh scattered light resonance to form laser. The first problem is that the amplification performance of the optical amplifier needs to be set at a lower position, so that the proportion of the gain provided by the optical amplifier in the overall gain obtained by the Brillouin scattering signal is as small as possible. This problem can be solved well by setting the gain coefficient of the optical amplifier; the second problem is to increase the Brillouin nonlinear gain as much as possible so that the Rayleigh scattered light cannot compete in the cavity with the gain provided by the optical amplifier alone. Rieouin scatters light, and finally makes Rayleigh scattering unable to resonate to form laser emission.
上述第二个问题,为了抑制瑞利散射光形成激光输出,需要尽量提高布里渊非线性增益,可以通过提高泵浦光源的功率或者增长用于提供布里渊非线性增益的移频光纤长度。单纯依靠提高泵浦光源的功率,会造成能量转移以及利用率降低,且窄线宽激光器的成本也随功率的提升而急剧上升,因此最简单经济的方式就是尽量增长腔内移频光纤的长度。在此情况下,就引入了新的问题:在通信波段单模光纤中(实现移频成本最低的光纤),布里渊增益谱宽大约为30MHz,而有源环形腔布里渊激光器的腔长一般为几十米量级(对应腔纵模间隔为2~10MHz),因此很容易出现多纵模运转模式,为了避免出现多纵模运转,本发明没有采用频率锁定技术,而是提出一种基于光纤复合腔的技术方案,利用复合腔的选模特性,使得腔纵模间隔大于布里渊增益谱谱宽,在增益谱范围内有且只有一个腔纵模可以起振并形成激光出射。因此利用复合腔的方案,可以高效低成本的实现单纵模运转的布里渊激光输出。The second problem above, in order to suppress Rayleigh scattered light to form laser output, it is necessary to increase the Brillouin nonlinear gain as much as possible, which can be achieved by increasing the power of the pump light source or increasing the length of the frequency-shifting fiber used to provide Brillouin nonlinear gain . Relying solely on increasing the power of the pump light source will result in reduced energy transfer and utilization, and the cost of narrow linewidth lasers will rise sharply with the increase in power. Therefore, the simplest and most economical way is to increase the length of the intracavity frequency-shifting fiber as much as possible. . In this case, a new problem is introduced: in the communication band single-mode fiber (the fiber with the lowest cost of frequency shifting), the Brillouin gain spectral width is about 30MHz, and the cavity of the active ring cavity Brillouin laser The length is generally on the order of tens of meters (corresponding to the longitudinal mode interval of the cavity is 2~10MHz), so it is easy to appear multi-longitudinal mode operation mode. In order to avoid multi-longitudinal mode operation, the present invention does not use frequency locking technology, but proposes a A technical solution based on a fiber composite cavity, using the mode selection characteristics of the composite cavity, the cavity longitudinal mode spacing is greater than the Brillouin gain spectrum width, and only one cavity longitudinal mode can be oscillated within the gain spectrum range and form laser output . Therefore, using the composite cavity solution, the Brillouin laser output with single longitudinal mode operation can be realized efficiently and at low cost.
复合腔实现选纵模的基本原理如图1和图2所示,设复合腔的腔长分别为L 1 、L 2 ,则两个腔分别对应的腔纵模序列间隔为△f 1 =c/nL 1 ,△f 2 =c/nL 2 ,两个腔构成复合腔激光器的谐振频率必须同时对准上述的两套纵模间隔的某一阶频率,才能形成有效谐振最终形成激光输出。因此,根据游标卡尺原理,复合腔的腔纵模序列间隔为:The basic principle of the compound cavity to realize the selection of the longitudinal mode is shown in Fig. 1 and Fig. 2. Assuming that the cavity lengths of the compound cavity are L 1 and L 2 respectively, the sequence interval of the cavity longitudinal modes corresponding to the two cavities is △f 1 =c /nL 1 , △f 2 =c/nL 2 , the resonance frequency of the composite cavity laser composed of two cavities must be aligned with a certain order frequency of the above two sets of longitudinal mode intervals at the same time, in order to form an effective resonance and finally form a laser output. Therefore, according to the principle of vernier caliper, the cavity longitudinal mode sequence interval of the composite cavity is:
△f= mΔf = m 11 c/(nLc/(nL 11 )= m) = m 22 c/(n Lc/(n L 22 ); L); 22 / L/ L 11 =m=m 22 /m/m 11
其中,m 1 、m 2 为没有公约数的正整数。Wherein, m 1 and m 2 are positive integers with no common divisor.
这时存在两种情况可以实现较好的纵模选择,一种情况是如图1所示,腔长L 1 与腔长L 2 基本相当,这时复合腔的腔纵模间隔基本上与两个腔的腔长差成反比,也即△f≈c/ (nL 1 -nL 2 ),这时腔长L 1 与腔长L 2 可以选择较长的光纤,充分满足激光器对布里渊非线性增益的要求,同时选择腔长L 1 与腔长L 2 长度接近,这时可以充分保证复合腔的腔纵模间隔远远大于布里渊增益谱宽,进而在增益谱范围内有且只有一个腔纵模可以起振并形成激光出射。At this time, there are two situations that can achieve better longitudinal mode selection. One situation is that, as shown in Figure 1, the cavity length L 1 is basically equal to the cavity length L 2 . The cavity length difference between two cavities is inversely proportional, that is, △f≈c/ (nL 1 -nL 2 ) , at this time, the cavity length L 1 and cavity length L 2 can choose a longer optical fiber, which fully satisfies the laser's Brillouin non-linearity In order to meet the requirements of linear gain, and choose the cavity length L 1 and cavity length L 2 to be close in length, it can fully ensure that the cavity longitudinal mode interval of the composite cavity is much larger than the Brillouin gain spectrum width, and then within the gain spectrum range there is and only A cavity longitudinal mode can be oscillated and form laser output.
另一种情况是如图2所示,一个腔长L 2 比另一个腔长L 1 长很多倍,这时复合腔的腔纵模间隔基本上等于短腔L 1 的腔纵模,也即△f≈c/(n L 1 ),腔长L 1 选择较短,可选择腔长小于4m,从而△f 1 >50MHz,大于布里渊增益谱宽,腔长L 2 可以选择比腔长L 1 长十倍,充分满足激光器对布里渊非线性增益的要求,这种情况也可满足在增益谱范围内有且只有一个腔纵模可以起振并形成激光出射。In another case, as shown in Figure 2, the length L2 of one cavity is many times longer than the length L1 of the other cavity. At this time, the cavity longitudinal mode interval of the composite cavity is basically equal to the cavity longitudinal mode of the short cavity L1 , that is, △f≈c/(n L 1 ) , the cavity length L 1 is selected to be shorter, and the cavity length can be selected to be less than 4m , so that Δf 1 >50MHz, which is greater than the Brillouin gain spectrum width, and the cavity length L 2 can be selected to be longer than the cavity length L 1 is ten times longer, which fully meets the requirements of the laser for Brillouin nonlinear gain. In this case, there is one and only one cavity longitudinal mode in the gain spectrum range that can oscillate and form laser output.
根据以上基本原理,本实例基于光纤复合腔的单纵模布里渊激光器的结构设计如图3所示,包括光源模块(1)、光纤环行器(2)、光放大器(3)、光纤隔离器(4)、第一光纤耦合器(5)、第一移频光纤(6)、第二移频光纤(7)、第二光纤耦合器(8);光源模块1的尾纤输出和光纤环行器2的第一端口201相连,光纤环行器2的第二端口202和光放大器3的输入端口301相连,光放大器3的输出端口302和光纤耦合器5的第一端口501相连,光纤耦合器5的第二端口502和第四端口504之间接入几个光学器件,利用光纤连接成一个环路,此环路中接入的器件包括光纤隔离器4和移频光纤6,其中光纤隔离器4的正向导通输入端口401与光纤耦合器5的第二端口502相连,光纤隔离器4的正向导通输出端口402与移频光纤6相连,移频光纤6的另一端与光纤耦合器5的第四端口504相连。另一段移频光纤7的一端与光纤耦合器5的第三端口503相连,另一端与光纤耦合器8的第一端口801相连,光纤耦合器8的第三端口803与光纤环行器的第三端口203相连,闭合成一个大的光纤环路,光纤耦合器8的第二端口802作为单纵模布里渊激光器的输出端口。According to the above basic principles, the structural design of the single longitudinal mode Brillouin laser based on the fiber composite cavity in this example is shown in Figure 3, including the light source module (1), fiber circulator (2), optical amplifier (3), fiber isolation (4), the first fiber coupler (5), the first frequency-shifting fiber (6), the second frequency-shifting fiber (7), the second fiber coupler (8); the pigtail output of the light source module 1 and the fiber The
各器件模块的具体实施举例说明如下。The specific implementation of each device module is illustrated as follows.
光源模块1,是基于光纤复合腔的单纵模布里渊激光器的泵浦光源。由于布里渊增益谱只有几十MHz量级,因此需要泵浦种子光源的线宽较窄。本实例采用的光源为1550nm波段窄线宽单频光纤激光器,其线宽为2kHz,激光功率可达到100mW;也可以采用其他类型的窄线宽激光器,但线宽不能超过10MHz。The light source module 1 is a pumping light source of a single longitudinal mode Brillouin laser based on a fiber composite cavity. Since the Brillouin gain spectrum is only on the order of tens of MHz, the linewidth of the pump seed light source needs to be narrow. The light source used in this example is a 1550nm narrow-linewidth single-frequency fiber laser with a linewidth of 2kHz and a laser power of 100mW; other types of narrow-linewidth lasers can also be used, but the linewidth cannot exceed 10MHz.
光纤环行器2,是一个三端口光纤环行器,单向导通,也可采用接入光纤耦合器和隔离器的办法,起到光纤环行器的作用。The
光放大器3,主要用于放大环路中的泵浦光信号和微弱的布里渊散射信号,为了不影响布里渊激光输出的性能,需要采取光学作用长度短一些的光学放大器,如可选用2cm长的高增益系数的铒镱共掺磷酸盐玻璃光纤作为增益介质来搭建光纤放大器,或者直接采用商用的1550nm波段的半导体光放大器(SOA)。
光纤隔离器4,主要用于单向导通功能,正向导通输入端口401到正向导通输出端口402导通,反过来则不导通,因此泵浦光不能在光纤耦合器5构成的环路中循环传输,而背向布里渊散射则可以。The optical fiber isolator 4 is mainly used for the one-way conduction function. The forward
光纤耦合器5,普通单模光纤1550nm波段,端口2×2,分光比为50:50的耦合器。Fiber coupler 5, common single-mode fiber 1550nm band, 2×2 ports, coupler with a splitting ratio of 50:50.
第一移频光纤6和第二移频光纤7,此处的移频光纤起到提供自发布里渊散射光和布里渊非线性放大增益的功能,可以采用商用G652型号的通信单模光纤,根据原理部分的讨论,此处关于第一移频光纤6和第二移频光纤7的长度方面具体实施方式有两种:一是形成复合腔的两个腔长接近,此处可以设置第一移频光纤的长度为1m左右,两个腔长的长度可以为差为1m,可以在布里渊增益谱范围内有且只有一个腔纵模;二是形成复合腔的一个腔长是另一个腔长的多倍,此处可以设置第一移频光纤6的长度为30m,而第二移频光纤7的长度为3m左右,则长腔长度是短腔的10倍,复合腔的纵模间隔基本与短腔的纵模间隔一致,可完全满足在布里渊增益谱范围内有且只有一个腔纵模。The first frequency-shifting optical fiber 6 and the second frequency-shifting
光纤耦合器8,普通单模光纤1550nm波段,端口1×2,中心波长1550nm,分束比为10:90,其中10%的端口作为布里渊激光器的输出端。Fiber coupler 8, ordinary single-mode fiber 1550nm band, port 1×2, center wavelength 1550nm, beam splitting ratio 10:90, 10% of the ports are used as the output port of the Brillouin laser.
通过光纤环形器2构建环形腔,环形器内级联有光放大器3、用于隔离反向光的光纤隔离器4、用于构建复合腔的光纤耦合器5、用于耦合输出的光纤耦合器8以及用于提供布里渊非线性增益的移频光纤6和7。种子激光通过环形器的第一端口输入,只能在腔内沿顺时针方向传输,后向布里渊散射光可以在复合腔内循环传输,最终在布里渊增益谱范围内有且只有一个腔纵模起振形成布里渊激光出射。A ring cavity is constructed by a
本发明构建单向有源环形谐振腔,基于光纤复合腔技术方案,利用复合腔的选模特性,使得腔纵模间隔大于布里渊增益谱谱宽,从而在布里渊增益谱范围内有且只有一个腔纵模可以起振并形成激光出射,进而高效低成本实现布里渊型单纵模运转移频光纤激光输出。此布里渊单频激光频率始终跟随泵浦种子光,宽带移频效果稳定,基于复合腔实现单纵模运转,结构简单无复杂控制要求,可充分满足基于自发布里渊散射型的分布式光纤温度应变传感系统对宽带移频技术的苛刻应用需求。The invention constructs a unidirectional active ring resonant cavity, based on the technical scheme of the fiber composite cavity, and utilizes the mode selection characteristics of the composite cavity, so that the longitudinal mode interval of the cavity is greater than the Brillouin gain spectrum width, so that there is a range of Brillouin gain spectrum And only one longitudinal mode of the cavity can oscillate and form laser output, and then realize the Brillouin type single longitudinal mode transmission frequency transfer fiber laser output with high efficiency and low cost. The frequency of this Brillouin single-frequency laser always follows the pump seed light, and the broadband frequency shift effect is stable. Based on the composite cavity, the single longitudinal mode operation is realized. Optical fiber temperature and strain sensing system has strict application requirements for broadband frequency shifting technology.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611017714.9A CN106410599B (en) | 2016-10-31 | 2016-10-31 | Brillouin Single Longitudinal Mode Frequency Shifted Fiber Laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611017714.9A CN106410599B (en) | 2016-10-31 | 2016-10-31 | Brillouin Single Longitudinal Mode Frequency Shifted Fiber Laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106410599A CN106410599A (en) | 2017-02-15 |
CN106410599B true CN106410599B (en) | 2023-05-23 |
Family
ID=58069062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611017714.9A Active CN106410599B (en) | 2016-10-31 | 2016-10-31 | Brillouin Single Longitudinal Mode Frequency Shifted Fiber Laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106410599B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785771B (en) * | 2017-10-27 | 2023-07-04 | 西安深瞳智控技术有限公司 | Single-longitudinal-mode multi-wavelength tunable laser system and method for improving wavelength output efficiency |
CN108923240B (en) * | 2018-07-24 | 2020-07-03 | 太原理工大学 | Wavelength frequency stabilization system based on cascade stimulated Brillouin scattering effect |
CN110970785B (en) * | 2019-11-07 | 2021-12-28 | 中山大学 | Coherent swept-frequency light source with enhanced Fourier domain injection locking |
CN113324652B (en) * | 2021-05-28 | 2022-07-01 | 中电科思仪科技股份有限公司 | Fine frequency sweeping signal generation device and method of Brillouin spectrometer |
CN115102023B (en) * | 2022-08-26 | 2022-12-30 | 苏州大学 | Frequency shift injection locking ultra-narrow linewidth Brillouin laser and system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101975626A (en) * | 2010-10-13 | 2011-02-16 | 华中科技大学 | Brillouin scattering based distributive fiber sensing system |
CN102361210A (en) * | 2011-09-24 | 2012-02-22 | 中国人民解放军国防科技大学 | A single-frequency ultra-narrow linewidth Brillouin-doped fiber laser |
CN102570256A (en) * | 2012-01-16 | 2012-07-11 | 宜春学院 | Method for producing single-longitudinal-mode multi-wavelength broadband-tunable brillouin laser and brillouin laser device |
CN102946041A (en) * | 2012-11-26 | 2013-02-27 | 中国人民解放军国防科学技术大学 | Tunable single-polarization Brillouin erbium-doped optical fiber laser with super narrow linewidth |
CN104617472A (en) * | 2015-02-02 | 2015-05-13 | 中国人民解放军国防科学技术大学 | Brillouin multi-wavelength erbium-doped fiber laser with ultra-narrow linewidth |
CN105428973A (en) * | 2015-12-18 | 2016-03-23 | 华南理工大学 | Wide tunable single-frequency fiber laser light source for coherent optical orthogonal frequency division multiplexing system |
CN105703206A (en) * | 2016-01-05 | 2016-06-22 | 南昌工程学院 | Multi-wavelength Brillouin fiber laser with 44GHZ frequency interval |
CN105758433A (en) * | 2016-03-02 | 2016-07-13 | 南昌工程学院 | Distributed optical fiber sensing device based on Brillouin fiber laser |
CN105958314A (en) * | 2016-06-23 | 2016-09-21 | 华中科技大学 | Single-longitudinal mode narrow linewidth Brillouin laser |
-
2016
- 2016-10-31 CN CN201611017714.9A patent/CN106410599B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101975626A (en) * | 2010-10-13 | 2011-02-16 | 华中科技大学 | Brillouin scattering based distributive fiber sensing system |
CN102361210A (en) * | 2011-09-24 | 2012-02-22 | 中国人民解放军国防科技大学 | A single-frequency ultra-narrow linewidth Brillouin-doped fiber laser |
CN102570256A (en) * | 2012-01-16 | 2012-07-11 | 宜春学院 | Method for producing single-longitudinal-mode multi-wavelength broadband-tunable brillouin laser and brillouin laser device |
CN102946041A (en) * | 2012-11-26 | 2013-02-27 | 中国人民解放军国防科学技术大学 | Tunable single-polarization Brillouin erbium-doped optical fiber laser with super narrow linewidth |
CN104617472A (en) * | 2015-02-02 | 2015-05-13 | 中国人民解放军国防科学技术大学 | Brillouin multi-wavelength erbium-doped fiber laser with ultra-narrow linewidth |
CN105428973A (en) * | 2015-12-18 | 2016-03-23 | 华南理工大学 | Wide tunable single-frequency fiber laser light source for coherent optical orthogonal frequency division multiplexing system |
CN105703206A (en) * | 2016-01-05 | 2016-06-22 | 南昌工程学院 | Multi-wavelength Brillouin fiber laser with 44GHZ frequency interval |
CN105758433A (en) * | 2016-03-02 | 2016-07-13 | 南昌工程学院 | Distributed optical fiber sensing device based on Brillouin fiber laser |
CN105958314A (en) * | 2016-06-23 | 2016-09-21 | 华中科技大学 | Single-longitudinal mode narrow linewidth Brillouin laser |
Also Published As
Publication number | Publication date |
---|---|
CN106410599A (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106410599B (en) | Brillouin Single Longitudinal Mode Frequency Shifted Fiber Laser | |
CN105811225B (en) | The microwave signal generation device and method of optical-electronic oscillator based on liquid-core optical fibre Brillouin scattering effect | |
CN105141258B (en) | A kind of microwave conversion method and device | |
CN202333431U (en) | 22GHz-gap multi-wavelength Brillouin circular cavity optical fiber laser | |
CN105048260B (en) | The multi-wavelength optical fiber laser that wavelength interval is tunable | |
CN104201546A (en) | Fiber laser system with narrow-line-width and high-peak power pulse output | |
CN103247934B (en) | Broadband tunable multi-wavelength Brillouin fiber laser | |
CN102208736A (en) | Tunable multi-wavelength fiber laser | |
CN107465108A (en) | Optical frequency comb generation device and method based on dual wavelength Brillouin laser annular chamber | |
CN106229805A (en) | Multi-frequency-multiplication mode-locked laser based on micro-ring resonant cavity | |
Chen et al. | Low-threshold, single-mode, compact Brillouin/erbium fiber ring laser | |
CN202025977U (en) | Tunable Multiwavelength Fiber Lasers | |
CN107785771B (en) | Single-longitudinal-mode multi-wavelength tunable laser system and method for improving wavelength output efficiency | |
CN204067844U (en) | The fiber laser system that narrow linewidth, high peak power pulse export | |
CN103337773B (en) | The multi-wavelength optical fiber laser of double Brillouin frequency shift interval | |
CN206116862U (en) | Brillouin's single longitudinal mode moves fiber laser frequently | |
Chen et al. | Random lasing with narrow linewidth in a short Er-doped fiber | |
Zhou et al. | Research on stability and uniformity of multi-wavelength Brillouin-erbium fiber laser based on FWM | |
CN110176712B (en) | A random fiber laser generation method and system | |
Abd-Rahman et al. | Self-seeded multiwavelength dual-cavity Brillouin-erbium fiber laser | |
CN205680920U (en) | Microwave signal generation device of photoelectric oscillator based on Brillouin scattering effect of liquid core fiber | |
CN109038195B (en) | Mixed cavity type cascaded multi-wavelength narrow linewidth optical fiber laser | |
CN209200363U (en) | Sub-THz high-power picosecond fiber laser based on MOPA structure | |
CN201263040Y (en) | Multi-wavelength and multi-channel single-wavelength lasers based on AWG and fiber grating | |
CN114552340A (en) | Tunable broadband random photoelectric oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |