CN106405324B - 一种采用分布式电源的输电线路在线监测系统 - Google Patents

一种采用分布式电源的输电线路在线监测系统 Download PDF

Info

Publication number
CN106405324B
CN106405324B CN201610714954.8A CN201610714954A CN106405324B CN 106405324 B CN106405324 B CN 106405324B CN 201610714954 A CN201610714954 A CN 201610714954A CN 106405324 B CN106405324 B CN 106405324B
Authority
CN
China
Prior art keywords
power supply
relay
wireless communication
communication module
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610714954.8A
Other languages
English (en)
Other versions
CN106405324A (zh
Inventor
赵浩翔
董耀
李龙
陈云
张银亲
莫超
赵秀梅
杨怀建
严冬梅
张功平
李向宇
沈恒山
郭海庆
王成
张兴
田冰
魏延迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIXI POWER SUPPLY COMPANY STATE GRID QINGHAI ELECTRIC POWER Co Ltd
State Grid Corp of China SGCC
State Grid Qinghai Electric Power Co Ltd
Original Assignee
HAIXI POWER SUPPLY COMPANY STATE GRID QINGHAI ELECTRIC POWER Co Ltd
State Grid Corp of China SGCC
State Grid Qinghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIXI POWER SUPPLY COMPANY STATE GRID QINGHAI ELECTRIC POWER Co Ltd, State Grid Corp of China SGCC, State Grid Qinghai Electric Power Co Ltd filed Critical HAIXI POWER SUPPLY COMPANY STATE GRID QINGHAI ELECTRIC POWER Co Ltd
Priority to CN201610714954.8A priority Critical patent/CN106405324B/zh
Publication of CN106405324A publication Critical patent/CN106405324A/zh
Application granted granted Critical
Publication of CN106405324B publication Critical patent/CN106405324B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种采用分布式电源的输电线路在线监测系统,它包括现场监测终端、通信网络和控制中心;现场监测终端用于实时采集输电线路的运行状态信息,并通过通信网路将采集的输电线路运行状态信息发送给控制中心,控制中心用于对接收到的输电线路运行状态信息进行计算分析并存储,现场监测终端包括现场监测主机、监测单元和电源单元,所述现场监测主机包括数据采集电路、微处理器、存储单元、第一无线通信模块、第二无线通信模块、通信切换模块和电源接口电路。本发明通过现场监测终端对输电线路状态进行监测,并通过通信网路将采集的输电线路运行状态信息发送给控制中心,实现了输电线路的远程监测,降低了运维人员的劳动强度,保证了输电线路的安全运行。

Description

一种采用分布式电源的输电线路在线监测系统
技术领域
本发明涉及一种输电线路监测系统,具体地说是一种采用分布式电源的输电线路在线监测系统,属于输电线路在线监测技术领域。
背景技术
我国电网覆盖面广,输电线路距离长,110KV以上电压等级的输电线路总长度超过60万千米,线路所处地貌复杂,气候多样,而气候的变化引起的自然灾害(雨雪冰冻,大风等)和人为损坏(盗窃,破坏)等不确定因素的影响,一直是威胁电网安全运行主要因素。因此,如何有效的保障电力系统的安全性、可靠性一直是电力企业的一个重要课题。对输电线路实施监控,实时掌握输电线路的各种运行参数是实现电力设备状态检修的前提,也是建设智能电网的一个重要组成部分。
目前,对输电线路的检修方式基本采用计划检修和故障检修,即工作人员依据经验来确定检修时间以对输电线路进行定期检修或者当出现故障之后再去进行检修。这种过于简单粗暴的检修策略往往导致维修不足或维修过剩,既浪费了大量的人力物力,也影响了人们的正常生活,已无法满足目前电网的运行需求。
在对输电线路实施监控过程中,现场监测终端需要能够保证及时将现场监测数据传输给控制中心,是实现输电线路在线监测的重要组成部分。因此现场监测终端运行时需要更高的可靠性。
发明内容
针对现有技术的不足,本发明提出了一种采用分布式电源的输电线路在线监测系统,其能够提高现场监测终端的运行可靠性,满足输电线路在线实时监测的要求。
本发明解决其技术问题采取的技术方案是:一种采用分布式电源的输电线路在线监测系统,其特征是,包括现场监测终端、通信网络和控制中心;所述现场监测终端用于实时采集输电线路的运行状态信息,并通过通信网路将采集的输电线路运行状态信息发送给控制中心,所述控制中心用于对接收到的输电线路运行状态信息进行计算分析并存储;
所述现场监测终端包括现场监测主机、监测单元和电源单元,所述现场监测主机包括数据采集电路、微处理器、存储单元、第一无线通信模块、第二无线通信模块、通信切换模块和电源接口电路,所述微处理器通过数据采集电路与监测单元相连,微处理器分别通过RS-232接口与第一无线通信模块和第二无线通信模块相连,第一无线通信模块和第二无线通信模块通过通信网络与控制中心相连,所述存储单元与微处理器相连,所述电源接口电路分别与微处理器、第一无线通信模块和第二无线通信模块连接;
所述通信切换模块包括第一信号采集电路、第二信号采集电路、单片机、第一继电器和第二继电器,所述第一信号采集电路设置在第一无线通信模块与微处理器之间的通信线路中,所述第二信号采集电路置在第二无线通信模块与微处理器之间的通信线路中,所述的第一信号采集电路和第二信号采集电路的输出端分别与单片机的输入端相连,所述单片机的输出端分别与第一继电器和第二继电器的吸附线圈相连,所述第一继电器的常闭触点设置在第一无线通信模块与电源接口电路之间的供电回路中,所述第二继电器的常开触点设置在第二无线通信模块与电源接口电路之间的供电回路中;
所述电源单元包括第一供电模块、第二供电模块、第一切换开关、第二切换开关、主供电电路、蓄电池和第三切换开关,第一供电模块和第二供电模块通过第一切换开关与主供电电路连接,第一供电模块和第二供电模块通过第二切换开关与蓄电池连接,主供电电路和蓄电池通过第三切换开关与电源接口电路连接。
优选地,所述单片机的输出端通过光耦隔离电路分别与第一继电器和第二继电器的吸附线圈相连,所述单片机还连接有晶振电路和延时动作开关。
优选地,所述第一信号采集电路包括第一RS-232转TTL电平转换器,所述第一RS-232转TTL电平转换器的输入端与第一无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接;所述第二信号采集电路包括第二RS-232转TTL电平转换器,所述第二RS-232转TTL电平转换器的输入端与第二无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接。
优选地,所述第一切换开关包括第三继电器,第一供电模块的输出端分别与第三继电器的吸引线圈和第三继电器常开触点的进线侧连接,第二供电模块的输出端与第三继电器常闭触点的进线侧连接,所述第三继电器的常开触点和常闭触点的出线侧同相并联后与主供电电路的输入端连接;
所述第二切换开关包括第四继电器,第一供电模块的输出端分别与第四继电器的吸引线圈和第四继电器常开触点的进线侧连接,第二供电模块的输出端与第四继电器常闭触点的进线侧连接,所述第四继电器的常开触点和常闭触点的出线侧同相并联后与蓄电池的输入端连接;
所述第三切换开关包括第五继电器,主供电电路的输出端分别与第五继电器的吸引线圈和第五继电器常开触点的进线侧连接,蓄电池的输出端与第五继电器常闭触点的进线侧连接,所述第五继电器的常开触点和常闭触点的出线侧同相并联后与电源接口电路连接。
优选地,所述第一无线通信模块和第二无线通信模块均采用GPRS无线通信模块。
优选地,所述第一供电模块包括太阳能电池板,所述第二供电模块包括取能装置。采用太阳能电池板作为主用供电单元(第一供电模块),采用取能装置作为备用供电单元(第一供电模块),不仅节能环保,而且保证了在无太阳辐射能情况下的为现场监测终端提供电源,保证了其足够的工作时间。
优选地,所述取能装置包括稳压器、桥式整流电路和搭设于铁塔上的架空地线,所述桥式整流电路设有两个输入端和两个输出端,桥式整流电路的一个输入端与稳压器的一端连接,桥式整流电路的另一个输入端接地,稳压器的另一端串联一个电感后连接在架空地线上,所述架空地线上连接有避雷器。其中,稳压器和桥式整流电路将线路感应获取的能量处理以后直接为现场监测终端供能,能减小地线电压、电流的波动,电感作为限流器用于限制雷电流流过。该取能装置通过在输电线路中利用地线的感应电压和感应电流为在线监测设备提供电能,在输电线路的中,地线架空,未接地而直接连接在铁塔上,地线与铁塔之间存在电压差,利用该电压差为现场监测终端供能,由于未直接从母线高压端取能,所以绝缘问题能较好解决,具有很好的稳定性和持续性,成本较低,可大规模推广。
优选地,所述取能装置包括取能线圈、桥式整流电路和稳压电路,所述取能线圈套在输电线路上用于取电,取能线圈与桥式整流电路连接用于对电流进行整流处理,稳压电路设置在桥式整流电路的输出端用于对桥式整流电路输出的电源进行稳压处理。该取能装置电源单元通过套在输电线路上取能线圈从输电线路中取电,并经过桥式整流电路对电流进行整流处理,经过稳压电路对输出的电源进行稳压处理后输出,充分利用输电线路环境下的磁场能能量,为现场监测终端供电。
优选地,所述监测单元包括摄像机、导线温度传感器、环境湿度传感器、风速传感器、风向传感器和角度传感器,摄像机用于采集监测点现场的图像信息,导线温度传感器用于测量导线温度,环境湿度传感器用于监测输电线路附近环境的控制湿度,角度传感器用于监测杆塔或绝缘子的倾斜角度,风速传感器和风向传感器用于监测环境气象的风速风向。通过设置摄像机对人为损害现象进行监测,防止线路入侵;导线温度传感器是通过导线随温度变化而改变某种特性来间接测量导线的温度,并且记录所述温度至监测中心进行记录保存,环境湿度传感器,用于监测输电线路附近环境的湿度,对于高压输电线路来说,环境湿度是影响其运行的主要因素之一,因此掌握输电线路附近环境的湿度是很有必要的,监测杆塔或绝缘子的倾斜角度对输电线路的影响非常大,如果倾斜角度过大的话可能会造成金具损坏,因此必须设置角度传感器实时对倾斜角度进行监测,以保障输电线路的安全,风吹在导线、杆塔上,增加了作用在导线和杆塔上的载荷,因此风速风向也是影响高压输电线路的主要因素之一,设置风速风向传感器,监测环境气象的风速风向,并将风速以及风向值发送至监测中心并进行记录是很有必要的。
本发明的有益效果如下:
本发明通过现场监测终端对输电线路状态进行监测,监测范围不仅包括自然影响,也通过摄像机对人为损害进行监测,防止线路入侵,现场监测终端通过通信网路将采集的输电线路运行状态信息发送给控制中心,实现了输电线路的远程监测,降低了运维人员的劳动强度,保证了输电线路的安全运行。
本发明的现场监测主机通过第一无线通信模块和第二无线通信模块接入通信网络与控制中心相连,为输电线路在线监测系统提供了准确、及时、可靠的监测数据,满足了输电线路在线监测的要求。
本发明的现场监测主机采用第一无线通信模块和第二无线通信模块接入通信网络与监控中心相连,第一无线通信模块和第二无线通信模块作为主备用通信模块并采用通信切换模块进行切换,通信切换模块通过第一信号采集电路监听第一无线通信模块与微处理器之间的通信信号,如果发现通信信号中断时发送报警信息给单片机,单片机根据报警信息通过控制第二继电器对第二无线通信模块进行上电工作,同时控制第一继电器对第一无线通信模块进行断电,进行主备用通信模块切换。主备用通信模块切换后,第二无线通信模块作为主用通信模块,第一无线通信模块作为备用通信模块,通信切换模块通过第二信号采集电路监听第二无线通信模块与微处理器之间的通信信号,如果发现通信信号中断时发送报警信息给单片机,单片机根据报警信息通过控制第一继电器对第一无线通信模块进行上电工作,同时控制第二继电器对第二无线通信模块进行断电,再次进行主备用通信模块的切换。这样保证了现场监测终端与控制中心之间的通信的可靠性,不仅便于维护,降低了维护成本,而且保证了现场监测终端与控制中心之间实时传输数据。
本发明的电源模块通过采用切换开关实现了交直流双电源输入供电方式,当一路电源出现故障时,可以通过单刀双掷开关切换到另一路电源,或者通过继电器自动切换到另一路电源,不仅结构简单、具有功耗低和成本低的特点,而且实现了双电源输入,保证了数据采集终端的工作电压,提高了数据采集终端的运行可靠性。
本发明的电源单元通过采用第一切换开关实现了主供电电路的可持续性供电,通过采用第二切换开关实现了蓄电池的可持续性充电,保证了蓄电池的充电要求,通过采用第三切换开关实现了主供电电路和蓄电池的主备用供电方式,当一路电源出现故障时,可以切换到另一路电源不仅结构简单,而且实现了两级双电源输入,保证了现场监测终端的工作电压,提高了现场监测终端的运行可靠性。
采用太阳能电池板作为主用供电单元(第一供电模块),采用取能装置作为备用供电单元(第一供电模块),不仅节能环保,而且保证了在无太阳辐射能情况下的为现场监测终端提供电源,保证了其足够的工作时间。本发明通过设置摄像机对人为损害现象进行监测,防止线路入侵;导线温度传感器是通过导线随温度变化而改变某种特性来间接测量导线的温度,并且记录所述温度至监测中心进行记录保存,环境湿度传感器,用于监测输电线路附近环境的湿度,对于高压输电线路来说,环境湿度是影响其运行的主要因素之一,因此掌握输电线路附近环境的湿度是很有必要的,监测杆塔或绝缘子的倾斜角度对输电线路的影响非常大,如果倾斜角度过大的话可能会造成金具损坏,因此必须设置角度传感器实时对倾斜角度进行监测,以保障输电线路的安全,风吹在导线、杆塔上,增加了作用在导线和杆塔上的载荷,因此风速风向也是影响高压输电线路的主要因素之一,设置风速风向传感器,监测环境气象的风速风向,并将风速以及风向值发送至监测中心并进行记录是很有必要的。
附图说明
图1为本发明的结构示意图;
图2为本发明所述通信切换模块的结构示意图;
图3为本发明所述电源单元的结构示意图;
图4为本发明所述第一切换开关的结构示意图;
图5为本发明所述第二切换开关的结构示意图;
图6为本发明所述第三切换开关的结构示意图;
图7为本发明所述的一种取能装置的结构示意图;
图8为本发明所述的另一种取能装置的结构示意图。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本发明省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本发明。
如图1所示,本发明的一种采用分布式电源的输电线路在线监测系统,它包括现场监测终端、通信网络和控制中心;所述现场监测终端用于实时采集输电线路的运行状态信息,并通过通信网路将采集的输电线路运行状态信息发送给控制中心,所述控制中心用于对接收到的输电线路运行状态信息进行计算分析并存储。
本发明通过现场监测终端对输电线路状态进行监测,监测范围不仅包括自然影响,也通过摄像机对人为损害进行监测,防止线路入侵,现场监测终端通过通信网路将采集的输电线路运行状态信息发送给控制中心,实现了输电线路的远程监测,降低了运维人员的劳动强度,保证了输电线路的安全运行。
所述现场监测终端包括现场监测主机、监测单元和电源单元,所述现场监测主机包括数据采集电路、微处理器、存储单元、第一无线通信模块、第二无线通信模块、通信切换模块和电源接口电路,所述微处理器通过数据采集电路与监测单元相连,微处理器分别通过RS-232接口与第一无线通信模块和第二无线通信模块相连,第一无线通信模块和第二无线通信模块通过通信网络与控制中心相连,所述存储单元与微处理器相连,所述电源接口电路分别与微处理器、第一无线通信模块和第二无线通信模块连接;所述第一无线通信模块和第二无线通信模块均采用GPRS无线通信模块。现场监测主机通过第一无线通信模块和第二无线通信模块接入通信网络与控制中心相连,为输电线路在线监测系统提供了准确、及时、可靠的监测数据,满足了输电线路在线监测的要求。
优选地,所述监测单元包括摄像机、导线温度传感器、环境湿度传感器、风速传感器、风向传感器和角度传感器,摄像机用于采集监测点现场的图像信息,导线温度传感器用于测量导线温度,环境湿度传感器用于监测输电线路附近环境的控制湿度,角度传感器用于监测杆塔或绝缘子的倾斜角度,风速传感器和风向传感器用于监测环境气象的风速风向。
本发明通过设置摄像机对人为损害现象进行监测,防止线路入侵;导线温度传感器是通过导线随温度变化而改变某种特性来间接测量导线的温度,并且记录所述温度至监测中心进行记录保存,环境湿度传感器,用于监测输电线路附近环境的湿度,对于高压输电线路来说,环境湿度是影响其运行的主要因素之一,因此掌握输电线路附近环境的湿度是很有必要的,监测杆塔或绝缘子的倾斜角度对输电线路的影响非常大,如果倾斜角度过大的话可能会造成金具损坏,因此必须设置角度传感器实时对倾斜角度进行监测,以保障输电线路的安全,风吹在导线、杆塔上,增加了作用在导线和杆塔上的载荷,因此风速风向也是影响高压输电线路的主要因素之一,设置风速风向传感器,监测环境气象的风速风向,并将风速以及风向值发送至监测中心并进行记录是很有必要的。
如图2所示,本发明所述的通信切换模块包括第一信号采集电路、第二信号采集电路、单片机、第一继电器和第二继电器,所述第一信号采集电路设置在第一无线通信模块与微处理器之间的通信线路中,所述第二信号采集电路置在第二无线通信模块与微处理器之间的通信线路中,所述的第一信号采集电路和第二信号采集电路的输出端分别与单片机的输入端相连,所述单片机的输出端分别与第一继电器和第二继电器的吸附线圈相连,所述第一继电器的常闭触点设置在第一无线通信模块与电源接口电路之间的供电回路中,所述第二继电器的常开触点设置在第二无线通信模块与电源接口电路之间的供电回路中。
优选地,所述单片机的输出端通过光耦隔离电路分别与第一继电器和第二继电器的吸附线圈相连,所述单片机还连接有晶振电路和延时动作开关。
优选地,所述第一信号采集电路包括第一RS-232转TTL电平转换器,所述第一RS-232转TTL电平转换器的输入端与第一无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接;所述第二信号采集电路包括第二RS-232转TTL电平转换器,所述第二RS-232转TTL电平转换器的输入端与第二无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接。
如图3所示,本发明所述的电源单元包括第一供电模块、第二供电模块、第一切换开关、第二切换开关、主供电电路、蓄电池和第三切换开关,第一供电模块和第二供电模块通过第一切换开关与主供电电路连接,第一供电模块和第二供电模块通过第二切换开关与蓄电池连接,主供电电路和蓄电池通过第三切换开关与电源接口电路连接。本发明的电源单元通过采用第一切换开关实现了主供电电路的可持续性供电,通过采用第二切换开关实现了蓄电池的可持续性充电,保证了蓄电池的充电要求,通过采用第三切换开关实现了主供电电路和蓄电池的主备用供电方式,当一路电源出现故障时,可以切换到另一路电源不仅结构简单,而且实现了两级双电源输入,保证了现场监测终端的工作电压,提高了现场监测终端的运行可靠性。
如图4所示,本发明所述的第一切换开关包括第三继电器,第一供电模块的输出端分别与第三继电器的吸引线圈和第三继电器常开触点的进线侧连接,第二供电模块的输出端与第三继电器常闭触点的进线侧连接,所述第三继电器的常开触点和常闭触点的出线侧同相并联后与主供电电路的输入端连接;
如图5所示,本发明所述的第二切换开关包括第四继电器,第一供电模块的输出端分别与第四继电器的吸引线圈和第四继电器常开触点的进线侧连接,第二供电模块的输出端与第四继电器常闭触点的进线侧连接,所述第四继电器的常开触点和常闭触点的出线侧同相并联后与蓄电池的输入端连接;
如图6所示,本发明所述的第三切换开关包括第五继电器,主供电电路的输出端分别与第五继电器的吸引线圈和第五继电器常开触点的进线侧连接,蓄电池的输出端与第五继电器常闭触点的进线侧连接,所述第五继电器的常开触点和常闭触点的出线侧同相并联后与电源接口电路连接。
优选地,所述第一供电模块包括太阳能电池板,所述第二供电模块包括取能装置。采用太阳能电池板作为主用供电单元(第一供电模块),采用取能装置作为备用供电单元(第一供电模块),不仅节能环保,而且保证了在无太阳辐射能情况下的为现场监测终端提供电源,保证了其足够的工作时间。
如图7所示,本发明所述的一种取能装置包括稳压器、桥式整流电路、架空地线,所述桥式整流电路设有两个输入端和两个输出端,桥式整流电路的一个输入端与稳压器的一端连接,桥式整流电路的另一个输入端接地,稳压器的另一端串联一个电感后连接在架空地线上,所述架空地线上连接有避雷器。其中,稳压器和桥式整流电路将线路感应获取的能量处理以后直接为现场监测终端供能,能减小地线电压、电流的波动,电感作为限流器用于限制雷电流流过。该取能装置通过在输电线路中利用地线的感应电压和感应电流为在线监测设备提供电能,在输电线路的中,地线架空,未接地而直接连接在铁塔上,地线与铁塔之间存在电压差,利用该电压差为现场监测终端供能,由于未直接从母线高压端取能,所以绝缘问题能较好解决,具有很好的稳定性和持续性,成本较低,可大规模推广。
如图8所示,本发明所述的另一种取能装置包括取能线圈、桥式整流电路和稳压电路,所述取能线圈套在输电线路上用于取电,取能线圈与桥式整流电路连接用于对电流进行整流处理,稳压电路设置在桥式整流电路的输出端用于对桥式整流电路输出的电源进行稳压处理。该取能装置电源单元通过套在输电线路上取能线圈从输电线路中取电,并经过桥式整流电路对电流进行整流处理,经过稳压电路对输出的电源进行稳压处理后输出,充分利用输电线路环境下的磁场能能量,为现场监测终端供电。
以上所述只是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视为本发明的保护范围。

Claims (8)

1.一种采用分布式电源的输电线路在线监测系统,其特征是,包括现场监测终端、通信网络和控制中心;所述现场监测终端用于实时采集输电线路的运行状态信息,并通过通信网路将采集的输电线路运行状态信息发送给控制中心,所述控制中心用于对接收到的输电线路运行状态信息进行计算分析并存储;
所述现场监测终端包括现场监测主机、监测单元和电源单元,所述现场监测主机包括数据采集电路、微处理器、存储单元、第一无线通信模块、第二无线通信模块、通信切换模块和电源接口电路,所述微处理器通过数据采集电路与监测单元相连,微处理器分别通过RS-232接口与第一无线通信模块和第二无线通信模块相连,第一无线通信模块和第二无线通信模块通过通信网络与控制中心相连,所述存储单元与微处理器相连,所述电源接口电路分别与微处理器、第一无线通信模块和第二无线通信模块连接;
所述第一无线通信模块和第二无线通信模块均采用GPRS无线通信模块;
所述通信切换模块包括第一信号采集电路、第二信号采集电路、单片机、第一继电器和第二继电器,所述第一信号采集电路设置在第一无线通信模块与微处理器之间的通信线路中,所述第二信号采集电路置在第二无线通信模块与微处理器之间的通信线路中,所述的第一信号采集电路和第二信号采集电路的输出端分别与单片机的输入端相连,所述单片机的输出端分别与第一继电器和第二继电器的吸附线圈相连,所述第一继电器的常闭触点设置在第一无线通信模块与电源接口电路之间的供电回路中,所述第二继电器的常开触点设置在第二无线通信模块与电源接口电路之间的供电回路中;
所述电源单元包括第一供电模块、第二供电模块、第一切换开关、第二切换开关、主供电电路、蓄电池和第三切换开关,第一供电模块和第二供电模块通过第一切换开关与主供电电路连接,第一供电模块和第二供电模块通过第二切换开关与蓄电池连接,主供电电路和蓄电池通过第三切换开关与电源接口电路连接;
所述第一切换开关包括第三继电器,第一供电模块的输出端分别与第三继电器的吸引线圈和第三继电器常开触点的进线侧连接,第二供电模块的输出端与第三继电器常闭触点的进线侧连接,所述第三继电器的常开触点和常闭触点的出线侧同相并联后与主供电电路的输入端连接;
所述第二切换开关包括第四继电器,第一供电模块的输出端分别与第四继电器的吸引线圈和第四继电器常开触点的进线侧连接,第二供电模块的输出端与第四继电器常闭触点的进线侧连接,所述第四继电器的常开触点和常闭触点的出线侧同相并联后与蓄电池的输入端连接;
所述第三切换开关包括第五继电器,主供电电路的输出端分别与第五继电器的吸引线圈和第五继电器常开触点的进线侧连接,蓄电池的输出端与第五继电器常闭触点的进线侧连接,所述第五继电器的常开触点和常闭触点的出线侧同相并联后与电源接口电路连接;
所述第一供电模块包括太阳能电池板,所述第二供电模块包括取能装置;所述取能装置包括稳压器、桥式整流电路、架空地线,所述桥式整流电路设有两个输入端和两个输出端,桥式整流电路的一个输入端与稳压器的一端连接,桥式整流电路的另一个输入端接地,稳压器的另一端串联一个电感后连接在架空地线上,所述架空地线上连接有避雷器。
2.根据权利要求1所述的一种采用分布式电源的输电线路在线监测系统,其特征是,所述单片机的输出端通过光耦隔离电路分别与第一继电器和第二继电器的吸附线圈相连,所述单片机还连接有晶振电路和延时动作开关。
3.根据权利要求1所述的一种采用分布式电源的输电线路在线监测系统,其特征是,所述第一信号采集电路包括第一RS-232转TTL电平转换器,所述第一RS-232转TTL电平转换器的输入端与第一无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接;所述第二信号采集电路包括第二RS-232转TTL电平转换器,所述第二RS-232转TTL电平转换器的输入端与第二无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接。
4.根据权利要求1至3任意一项所述的一种采用分布式电源的输电线路在线监测系统,其特征是,所述监测单元包括摄像机、导线温度传感器、环境湿度传感器、风速传感器、风向传感器和角度传感器,摄像机用于采集监测点现场的图像信息,导线温度传感器用于测量导线温度,环境湿度传感器用于监测输电线路附近环境的控制湿度,角度传感器用于监测杆塔或绝缘子的倾斜角度,风速传感器和风向传感器用于监测环境气象的风速风向。
5.一种采用分布式电源的输电线路在线监测系统,其特征是,包括现场监测终端、通信网络和控制中心;所述现场监测终端用于实时采集输电线路的运行状态信息,并通过通信网路将采集的输电线路运行状态信息发送给控制中心,所述控制中心用于对接收到的输电线路运行状态信息进行计算分析并存储;
所述现场监测终端包括现场监测主机、监测单元和电源单元,所述现场监测主机包括数据采集电路、微处理器、存储单元、第一无线通信模块、第二无线通信模块、通信切换模块和电源接口电路,所述微处理器通过数据采集电路与监测单元相连,微处理器分别通过RS-232接口与第一无线通信模块和第二无线通信模块相连,第一无线通信模块和第二无线通信模块通过通信网络与控制中心相连,所述存储单元与微处理器相连,所述电源接口电路分别与微处理器、第一无线通信模块和第二无线通信模块连接;
所述第一无线通信模块和第二无线通信模块均采用GPRS无线通信模块;
所述通信切换模块包括第一信号采集电路、第二信号采集电路、单片机、第一继电器和第二继电器,所述第一信号采集电路设置在第一无线通信模块与微处理器之间的通信线路中,所述第二信号采集电路置在第二无线通信模块与微处理器之间的通信线路中,所述的第一信号采集电路和第二信号采集电路的输出端分别与单片机的输入端相连,所述单片机的输出端分别与第一继电器和第二继电器的吸附线圈相连,所述第一继电器的常闭触点设置在第一无线通信模块与电源接口电路之间的供电回路中,所述第二继电器的常开触点设置在第二无线通信模块与电源接口电路之间的供电回路中;
所述电源单元包括第一供电模块、第二供电模块、第一切换开关、第二切换开关、主供电电路、蓄电池和第三切换开关,第一供电模块和第二供电模块通过第一切换开关与主供电电路连接,第一供电模块和第二供电模块通过第二切换开关与蓄电池连接,主供电电路和蓄电池通过第三切换开关与电源接口电路连接;
所述第一切换开关包括第三继电器,第一供电模块的输出端分别与第三继电器的吸引线圈和第三继电器常开触点的进线侧连接,第二供电模块的输出端与第三继电器常闭触点的进线侧连接,所述第三继电器的常开触点和常闭触点的出线侧同相并联后与主供电电路的输入端连接;
所述第二切换开关包括第四继电器,第一供电模块的输出端分别与第四继电器的吸引线圈和第四继电器常开触点的进线侧连接,第二供电模块的输出端与第四继电器常闭触点的进线侧连接,所述第四继电器的常开触点和常闭触点的出线侧同相并联后与蓄电池的输入端连接;
所述第三切换开关包括第五继电器,主供电电路的输出端分别与第五继电器的吸引线圈和第五继电器常开触点的进线侧连接,蓄电池的输出端与第五继电器常闭触点的进线侧连接,所述第五继电器的常开触点和常闭触点的出线侧同相并联后与电源接口电路连接;
所述第一供电模块包括太阳能电池板,所述第二供电模块包括取能装置;所述取能装置包括取能线圈、桥式整流电路和稳压电路,所述取能线圈套在输电线路上用于取电,取能线圈与桥式整流电路连接用于对电流进行整流处理,稳压电路设置在桥式整流电路的输出端用于对桥式整流电路输出的电源进行稳压处理。
6.根据权利要求5所述的一种采用分布式电源的输电线路在线监测系统,其特征是,所述单片机的输出端通过光耦隔离电路分别与第一继电器和第二继电器的吸附线圈相连,所述单片机还连接有晶振电路和延时动作开关。
7.根据权利要求5所述的一种采用分布式电源的输电线路在线监测系统,其特征是,所述第一信号采集电路包括第一RS-232转TTL电平转换器,所述第一RS-232转TTL电平转换器的输入端与第一无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接;所述第二信号采集电路包括第二RS-232转TTL电平转换器,所述第二RS-232转TTL电平转换器的输入端与第二无线通信模块到微处理器的下行信号线连接,输出端与微处理器的输入端连接。
8.根据权利要求5至7任意一项所述的一种采用分布式电源的输电线路在线监测系统,其特征是,所述监测单元包括摄像机、导线温度传感器、环境湿度传感器、风速传感器、风向传感器和角度传感器,摄像机用于采集监测点现场的图像信息,导线温度传感器用于测量导线温度,环境湿度传感器用于监测输电线路附近环境的控制湿度,角度传感器用于监测杆塔或绝缘子的倾斜角度,风速传感器和风向传感器用于监测环境气象的风速风向。
CN201610714954.8A 2016-08-24 2016-08-24 一种采用分布式电源的输电线路在线监测系统 Expired - Fee Related CN106405324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610714954.8A CN106405324B (zh) 2016-08-24 2016-08-24 一种采用分布式电源的输电线路在线监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610714954.8A CN106405324B (zh) 2016-08-24 2016-08-24 一种采用分布式电源的输电线路在线监测系统

Publications (2)

Publication Number Publication Date
CN106405324A CN106405324A (zh) 2017-02-15
CN106405324B true CN106405324B (zh) 2019-12-06

Family

ID=58004369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610714954.8A Expired - Fee Related CN106405324B (zh) 2016-08-24 2016-08-24 一种采用分布式电源的输电线路在线监测系统

Country Status (1)

Country Link
CN (1) CN106405324B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123247A (zh) * 2017-04-25 2017-09-01 淮阴师范学院 一种基于压缩感知的大型温室无线监测系统
CN107340017A (zh) * 2017-06-28 2017-11-10 深圳源广安智能科技有限公司 架空送电线路在线监测系统
CN107393279A (zh) * 2017-08-30 2017-11-24 国网四川省电力公司电力科学研究院 一种基于北斗通信的输电线路状态监测系统
CN108090285B (zh) * 2017-12-20 2021-06-01 中国科学院西北生态环境资源研究院 用于复杂地形输电线路风灾监测的微气象观测布点方法
CN108828409A (zh) * 2018-08-03 2018-11-16 南方电网科学研究院有限责任公司 一种基于边缘计算的故障检测系统
CN109738024A (zh) * 2019-02-25 2019-05-10 上海木西电子科技有限公司 一种全功能输出传感器
CN112432667A (zh) * 2020-11-25 2021-03-02 深圳市特发信息股份有限公司 一种输电线路导线状态智能在线监测系统
CN112565705A (zh) * 2020-12-11 2021-03-26 山东极光智能科技有限公司 一种量子通信技术的视频监控系统及其使用方法
CN113092848A (zh) * 2021-02-22 2021-07-09 广州长川科技有限公司 输电线路接地极分布式无线电流同步采集装置、运行方法、计算机存储介质
CN113110184A (zh) * 2021-04-19 2021-07-13 江西清华泰豪三波电机有限公司 一种设备控制装置与系统
CN113393655A (zh) * 2021-06-09 2021-09-14 国网山东省电力公司东平县供电公司 一种融合无线专网通信的输电线路监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586971A (zh) * 2009-06-19 2009-11-25 国网电力科学研究院武汉南瑞有限责任公司 输电线路覆冰预警及动态增容系统的在线监测装置
CN102255375A (zh) * 2010-05-21 2011-11-23 上海欣影电力科技发展有限公司 一种冗余输电线路运行工况在线监测系统
JP5607017B2 (ja) * 2011-12-20 2014-10-15 株式会社日立製作所 故障箇所発見システムおよび故障箇所発見方法
CN104143221A (zh) * 2013-11-15 2014-11-12 国家电网公司 一种新型的电力设备巡检手持终端
CN105871059A (zh) * 2016-03-28 2016-08-17 国网山东省电力公司平阴县供电公司 10kV线路运行状态在线监测系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400150B2 (en) * 2004-08-05 2008-07-15 Cannon Technologies, Inc. Remote fault monitoring in power lines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586971A (zh) * 2009-06-19 2009-11-25 国网电力科学研究院武汉南瑞有限责任公司 输电线路覆冰预警及动态增容系统的在线监测装置
CN102255375A (zh) * 2010-05-21 2011-11-23 上海欣影电力科技发展有限公司 一种冗余输电线路运行工况在线监测系统
JP5607017B2 (ja) * 2011-12-20 2014-10-15 株式会社日立製作所 故障箇所発見システムおよび故障箇所発見方法
CN104143221A (zh) * 2013-11-15 2014-11-12 国家电网公司 一种新型的电力设备巡检手持终端
CN105871059A (zh) * 2016-03-28 2016-08-17 国网山东省电力公司平阴县供电公司 10kV线路运行状态在线监测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
典型架空输电线路地线电磁取能等效电路的分析;蒋兴良 等;《电网技术》;20150731;第39卷(第7期);第2052-2057页 *

Also Published As

Publication number Publication date
CN106405324A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106405324B (zh) 一种采用分布式电源的输电线路在线监测系统
CN101738565B (zh) 自适应故障指示器
CN204012935U (zh) 一种基于层次化无线通信的架空输电线路在线巡监装置
CN206657077U (zh) 智能故障指示器及指示系统
CN107796434A (zh) 一种输电线路舞动在线监测及预警系统
CN204154853U (zh) 一种降低误报警的配网智能故障指示器
CN104638768A (zh) 一种基于居民用电的智能配电安全控制终端
CN110205972B (zh) 一种轨道交通除冰融雪系统
CN107144757B (zh) 一种瓦斯继电器油流流速在线监测装置及方法
CN203398755U (zh) 三相漏电保护及断电自动恢复装置
CN205539320U (zh) 一种电缆终端电弧接地监测装置
CN101706557A (zh) 通信蓄电池自动检测装置
CN203554069U (zh) 一种室外照明配电柜保护控制器
CN205334531U (zh) 输电线路走廊树障及时清理智能预警系统
CN111224465A (zh) 微功耗配电线路智能监测系统
CN106597211A (zh) 一种基于架空线路接地故障定位系统
CN103278733A (zh) 一种电缆接地远程监视方法及远程监视系统
CN211180059U (zh) 防爆型智能故障指示器
CN210639233U (zh) 一种基于移动互联网的配电网故障监测装置
CN209231449U (zh) 一种配电网线路断线故障定位装置
CN204964674U (zh) 接触网绝缘监测信号处理系统
CN203840056U (zh) 一种变电站防覆冰监测系统
CN218331807U (zh) 输电线路边缘智能监控系统
CN103516053B (zh) 一种室外照明配电柜保护控制器
CN205610344U (zh) 一种智能电网的无线监测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191206

Termination date: 20200824