CN106404740A - 基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法 - Google Patents

基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法 Download PDF

Info

Publication number
CN106404740A
CN106404740A CN201610887789.6A CN201610887789A CN106404740A CN 106404740 A CN106404740 A CN 106404740A CN 201610887789 A CN201610887789 A CN 201610887789A CN 106404740 A CN106404740 A CN 106404740A
Authority
CN
China
Prior art keywords
hollow
liquid
core fiber
laser
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610887789.6A
Other languages
English (en)
Other versions
CN106404740B (zh
Inventor
祝连庆
张雯
姚齐峰
娄小平
董明利
何巍
李红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201610887789.6A priority Critical patent/CN106404740B/zh
Publication of CN106404740A publication Critical patent/CN106404740A/zh
Application granted granted Critical
Publication of CN106404740B publication Critical patent/CN106404740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Abstract

本发明提供了基于线形腔内倍频及空芯光纤的拉曼光谱液体探测方法,该方法使用波长为915纳米或976纳米的连续激光器作为光源且采用环形激光谐振腔,进一步通过有源光纤和三硼酸锂倍频晶体获取窄线宽的532纳米激光并激发待测液体产生拉曼散射光,同时本发明液体探测方法具有纵模少、相干性好、结构紧凑、倍频效率高以及可靠性高等优点。

Description

基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法
技术领域
本发明涉及一种拉曼光谱探测方法,特别涉及基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法。
背景技术
拉曼光谱探测法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。拉曼光谱技术在液体检测方面具有分析周期短、装置简单、可同时探测多种液体等技术优势,被作为重要的物质分析检测手段,在生物医学、物理化学、材料分析、微纳测试等领域得到广泛的应用。
然而,拉曼散射是一种弱散射,在实际操作中存在灵敏度不足的问题,目前较典型的是采用多次反射增强的方式,尽管多次反射腔可极大地提高拉曼散射强度,但多次反射腔采用两个高反射率腔镜进行增强,对光路调节和系统稳定性要求较高。同时,若测量对象是透明的有机物液体,很容易由于对焦不准而将焦点聚焦在载玻片上。
因此,需要采用一种基于腔内倍频的拉曼光谱探测方法来对液体进行成分分析。
发明内容
本发明的目的在于提供基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法,该方法包括如下步骤:
(a)使用波长为915纳米或976纳米的连续激光器作为光源,通过波分复用器将所述连续激光器发出的激光耦合进入环形谐振腔,其中所述环形谐振腔包括首尾依次相连的所述波分复用器、有源光纤、光纤环形器、光纤布拉格光栅、三硼酸锂倍频晶体、聚光透镜、空芯光纤和收集光路透镜;
(b)所述连续激光器发出的激光经过所述有源光纤放大后并在所述环形谐振腔内振荡产生为1微米波长激光;
(c)所述1微米波长激光再经过所述三硼酸锂倍频晶体产生倍频并输出532纳米窄线宽激光,进一步通过所述聚光透镜将所述532纳米窄线宽激光聚焦至内部装有待测液体的所述空芯光纤;
(d)所述532纳米窄线宽激光激发所述待测液体并产生拉曼散射光,再经所述收集光路透镜将所述拉曼散射光聚焦至耦合器并进一步返回至光谱仪;
(e)所述光谱仪经分析获得所述待测液体的拉曼光谱,从而实现对所述待测液体的成分分析。
优选地,所述空芯光纤为空芯石英光纤且外部包层的两端部由焊锡进行固定。
优选地,所述空芯光纤的内壁均镀有高反介质膜。
优选地,所述有源光纤为掺镱光纤。
优选地,所述连续激光器采用蝶形激光光源。
优选地,所述光纤布拉格光栅采用反射率大于90%、3dB线宽小于0.2纳米且反射波长为1060纳米的光纤光栅。
优选地,所述拉曼光谱的强度与所述空芯光纤的长度之间的变化以下遵循方程:
所述激发光和所述拉曼散射光在所述空芯光纤内的液体中呈e指数衰减,且具有相同的损耗系数,其中PR为拉曼散射光强度,PL为激发光强度,α为所述空芯光纤内液体的损耗系数,χ为所述空芯光纤的长度,K为所述空芯光纤内液体的散射截面和光纤数值孔径相关的常数。
本发明液体探测方法具有纵模少、相干性好、结构紧凑、倍频效率高以及可靠性高等优点
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示意性示出本发明液体探测方法的系统组成示意图;
图2示意性示出本发明液体探测方法的操作流程图;
图3为本发明液体探测方法针对不同样本所测试数据的拉曼光谱图。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
图1和图2分别示出了本发明基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法的系统组成图100和步骤流程图200。本发明液体探测方法的系统组成图100依次包括:连续激光器101、波分复用器(WDM)102、有源光纤(YDF)103、光纤环形器(Circulator)104、光纤布拉格光栅(FBG)105、三硼酸锂倍频晶体(LBO)106、聚光透镜107、空芯光纤108、收集光路透镜109、耦合器(OC)110以及光谱仪(OSA)111。
此外,系统中的波分复用器102、有源光纤103、光纤环形器104、光纤布拉格光栅105、三硼酸锂倍频晶体106、聚光透镜107、空芯光纤108和收集光路透镜109依次首尾相连构成了激光器的环形谐振腔,所述光纤环形器104与所述光纤布拉格光栅105相连接后构成了环形谐振腔的波长选择端。
如图2所示,本发明液体探测方法的步骤流程图200包括如下步骤:
(a)使用波长为915纳米或976纳米的连续激光器101作为光源,通过波分复用器102将连续激光器101发出的激光耦合进入所述环形谐振腔中(步骤201)。优选地,所述连续激光器101采用蝶形激光光源,所述光纤布拉格光栅105采用反射率大于90%、3dB线宽小于0.2纳米且反射波长为1060纳米的光纤光栅。
(b)连续激光器101发出的激光经过有源光纤103放大后并在所述环形谐振腔内振荡产生为1微米波长激光(步骤202),其中有源光纤103为掺镱光纤。
(c)所述1微米波长激光再经过所述三硼酸锂倍频晶体106产生倍频并输出532纳米窄线宽激光(步骤203),进一步通过聚光透镜107将所述532纳米窄线宽激光聚焦至内部装有待测液体的空芯光纤108(步骤204)。激光的线宽越窄,则其纵模越少且相干性也就越好。所述空芯光纤108为空芯石英光纤且外部包层的两端部由焊锡进行固定。
常见的空芯石英光纤一般外部包层含有硅胶层或环氧树脂层使其柔软且不易折断,但硅胶层或环氧树脂层均为有机材料层且易溶于有机溶液,这将对探测有机液体带来不利的影响。
为避免上述不利影响,本发明中空芯光纤108外部包层的两个端部采用焊锡进行固定。具体地,根据光纤头的长度用酒精灯烧除一段,让石英裸露并将光纤头插入熔融的焊锡中进行固定,冷却后再用1:1混合的AB无机胶封严并晾干,从而有效防止注入液体后发生外泄现象。
进一步将参考液体和待测液体从空芯光纤108的一端注入、同时放低空芯光纤108另一端使液体沿空芯光纤108流入直至充满,但不可太满,在空芯光纤108头处留置空间,便于封光纤头,保证密封后有空间缓冲溶液受热的液体膨胀。
优选地,空芯光纤108的内壁均镀有高反介质膜,该高反介质膜为金属层膜,例如镀银膜;这种高反介质膜可以有效增强拉曼光谱信号强度。
(d)所述532纳米窄线宽激光激发所述待测液体并产生拉曼散射光(步骤204),再经收集光路透镜109将所述拉曼散射光聚焦至耦合器110并进一步返回至光谱仪111(步骤205),所述耦合器110的分光比30:70,其中30%端作为输出端。
(e)所述光谱仪111经分析获得所述待测液体的拉曼光谱,从而实现对所述待测液体的成分分析(步骤205)。
图3示出了根据实测数据对待测液体进行判断的实施例,其中样本A与B是两种不同液体,且A是纯净水并作为已知的参考液体,液体A的拉曼谱线构成参考拉曼光谱的主貌。
对比图3中两种液体的拉曼光谱测试曲线可知,液体B与液体A的具有相近的拉曼谱线,但两者特征峰的强度值不同,且液体B的拉曼特征峰值低于液体A的峰值。将待测液体的拉曼光谱与已知参考液体的拉曼光谱进行比较分析,一方面可直接从拉曼谱线的形貌判断出样品与已知参考液体之间的差异;另一方面,还可以从特征峰值的大小判断出样品中含有微量矿物质成分的多少。通过对比分析可有效降低因标准光谱数据库不能及时更新而带来的误差,极大地提高了测量效率和可靠性。
假设激发光和拉曼散射光在空芯光纤108内的液体中呈e指数衰减,且具有相同的损耗系数,则在背向散射几何中,拉曼散射光强度与空芯光纤108的长度之间的变化还遵循以下方程:
其中PR为拉曼散射光强度,PL为激发光强度,α为空芯光纤108内液体的损耗系数,χ为空芯光纤108的长度,K为空芯光纤108内液体的散射截面和光纤数值孔径相关的常数。
综上所述,本发明基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法采用环形谐振腔内倍频同时使用空芯光纤探测机构,不仅获得了窄线宽的探测激光还简化了探测结构,故本发明液体探测方法具有纵模少、相干性好、结构紧凑、倍频效率高以及可靠性高等优点。
所述附图仅为示意性的并且未按比例画出。虽然已经结合优选实施例对本发明进行了描述,但应当理解本发明的保护范围并不局限于这里所描述的实施例。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (7)

1.基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法,该方法包括如下步骤:
(a)使用波长为915纳米或976纳米的连续激光器作为光源,通过波分复用器将所述连续激光器发出的激光耦合进入环形谐振腔,其中所述环形谐振腔包括首尾依次相连的所述波分复用器、有源光纤、光纤环形器、光纤布拉格光栅、三硼酸锂倍频晶体、聚光透镜、空芯光纤和收集光路透镜;
(b)所述连续激光器发出的激光经过所述有源光纤放大后并在所述环形谐振腔内振荡产生为1微米波长激光;
(c)所述1微米波长激光再经过所述三硼酸锂倍频晶体产生倍频并输出532纳米窄线宽激光,进一步通过所述聚光透镜将所述532纳米窄线宽激光聚焦至内部装有待测液体的所述空芯光纤;
(d)所述532纳米窄线宽激光激发所述待测液体并产生拉曼散射光,再经所述收集光路透镜将所述拉曼散射光聚焦至耦合器并进一步返回至光谱仪;
(e)所述光谱仪经分析获得所述待测液体的拉曼光谱,从而实现对所述待测液体的成分分析。
2.根据权利要求1所述的液体探测方法,其特征在于:所述空芯光纤为空芯石英光纤且外部包层的两端部由焊锡进行固定。
3.根据权利要求2所述的液体探测方法,其特征在于:所述空芯光纤的内壁均镀有高反介质膜。
4.根据权利要求3所述的液体探测方法,其特征在于:所述有源光纤为掺镱光纤。
5.根据权利要求4所述的液体探测方法,其特征在于:所述连续激光器采用蝶形激光光源。
6.根据权利要求5所述的液体探测方法,其特征在于:所述光纤布拉格光栅采用反射率大于90%、3dB线宽小于0.2纳米且反射波长为1060纳米的光纤光栅。
7.根据权利要求1至6中任一项所述的液体探测方法,其特征在于:所述拉曼光谱的强度与所述空芯光纤的长度之间的变化以下遵循方程:
P R = P L K 2 α ( 1 - e - 2 α x )
所述激发光和所述拉曼散射光在所述空芯光纤内的液体中呈e指数衰减,且具有相同的损耗系数,其中PR为拉曼散射光强度,PL为激发光强度,α为所述空芯光纤内液体的损耗系数,χ为所述空芯光纤的长度,K为所述空芯光纤内液体的散射截面和光纤数值孔径相关的常数。
CN201610887789.6A 2016-10-11 2016-10-11 基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法 Active CN106404740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610887789.6A CN106404740B (zh) 2016-10-11 2016-10-11 基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610887789.6A CN106404740B (zh) 2016-10-11 2016-10-11 基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法

Publications (2)

Publication Number Publication Date
CN106404740A true CN106404740A (zh) 2017-02-15
CN106404740B CN106404740B (zh) 2019-03-01

Family

ID=59229008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610887789.6A Active CN106404740B (zh) 2016-10-11 2016-10-11 基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法

Country Status (1)

Country Link
CN (1) CN106404740B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796800A (zh) * 2017-11-29 2018-03-13 合肥利弗莫尔仪器科技有限公司 一种水环境在线监测装置及方法
CN109030380A (zh) * 2018-07-25 2018-12-18 佛山科学技术学院 一种钙钛矿纳米晶随机激光发射机制的探测方法及装置
CN109560448A (zh) * 2018-12-27 2019-04-02 北京信息科技大学 基于飞秒激光直写fbg的c+l波段掺铒光纤激光器
CN114136890A (zh) * 2021-12-10 2022-03-04 重庆大学 一种适用于空芯毛细管液体光谱传感的适配装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748848B1 (en) * 2013-07-02 2014-06-10 Macau University Of Science And Technology Method of generating raman laser for inducing fluorescence of fluoranthene and a system thereof
CN104568897A (zh) * 2013-10-29 2015-04-29 苏州拉曼检测技术有限公司 基于腔外谐振腔技术的拉曼光谱增强装置、系统及方法
CN104597030A (zh) * 2015-01-21 2015-05-06 杭州电子科技大学 一种基于空心光子晶体光纤的物质检测装置
CN105181674A (zh) * 2015-10-21 2015-12-23 南京工业大学 基于光子晶体光纤谐振腔的拉曼光谱增强系统及增强方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748848B1 (en) * 2013-07-02 2014-06-10 Macau University Of Science And Technology Method of generating raman laser for inducing fluorescence of fluoranthene and a system thereof
CN104568897A (zh) * 2013-10-29 2015-04-29 苏州拉曼检测技术有限公司 基于腔外谐振腔技术的拉曼光谱增强装置、系统及方法
CN104597030A (zh) * 2015-01-21 2015-05-06 杭州电子科技大学 一种基于空心光子晶体光纤的物质检测装置
CN105181674A (zh) * 2015-10-21 2015-12-23 南京工业大学 基于光子晶体光纤谐振腔的拉曼光谱增强系统及增强方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
何巍等: "基于光纤环形滤波器的双波长掺铒光纤激光器", 《光子学报》 *
宋广君等: "环形增强腔半导体激光器倍频蓝光技术研究", 《赤峰学院学报(自然科学版)》 *
王为等: "食用油和煎炸油空芯光纤拉曼检测系统研究", 《光学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796800A (zh) * 2017-11-29 2018-03-13 合肥利弗莫尔仪器科技有限公司 一种水环境在线监测装置及方法
CN109030380A (zh) * 2018-07-25 2018-12-18 佛山科学技术学院 一种钙钛矿纳米晶随机激光发射机制的探测方法及装置
CN109030380B (zh) * 2018-07-25 2023-08-22 佛山科学技术学院 一种钙钛矿纳米晶随机激光发射机制的探测方法及装置
CN109560448A (zh) * 2018-12-27 2019-04-02 北京信息科技大学 基于飞秒激光直写fbg的c+l波段掺铒光纤激光器
CN114136890A (zh) * 2021-12-10 2022-03-04 重庆大学 一种适用于空芯毛细管液体光谱传感的适配装置
CN114136890B (zh) * 2021-12-10 2024-03-29 重庆大学 一种适用于空芯毛细管液体光谱传感的适配装置

Also Published As

Publication number Publication date
CN106404740B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Brown et al. Fiber-loop ring-down spectroscopy
US7483598B2 (en) Phase shift optical loop spectroscopy
Berden et al. Cavity ring-down spectroscopy: techniques and applications
Gong et al. Reproducible fiber optofluidic laser for disposable and array applications
CN106404740A (zh) 基于环形腔内倍频及空芯光纤的拉曼光谱液体探测方法
Gerosa et al. All-fiber high repetition rate microfluidic dye laser
US3770350A (en) Method utilizing an optical fiber raman cell
US6842548B2 (en) Optical loop ring-down
JP2008529049A (ja) ファイバ端にスプライスされる中空コアファイバ気体セルの光学アセンブリおよびその製造方法
Loock Ring-down absorption spectroscopy for analytical microdevices
Waclawek et al. Balanced-detection interferometric cavity-assisted photothermal spectroscopy employing an all-fiber-coupled probe laser configuration
CN106370643B (zh) 基于线形腔内倍频及空芯光纤的拉曼光谱液体探测方法
Falconieri et al. Characterization of supercontinuum generation in a photonic crystal fiber for uses in multiplex CARS microspectroscopy
CN112751255A (zh) 基于高非线性光子晶体光纤拉曼激光器增强装置及方法
Waechter et al. 405 nm absorption detection in nanoliter volumes
CN106525810B (zh) 基于激光倍频及空芯光纤的拉曼光谱液体探测方法
Tran et al. Characterization of the collinear beam acousto-optic tunable filter and its comparison with the noncollinear and the integrated acousto-optic tunable filter
Xiong et al. High‐resolution continuous‐wave coherent anti‐Stokes Raman spectroscopy in a CO2‐filled hollow‐core photonic crystal fiber
Tosi et al. Optical Fiber Biosensors: Device Platforms, Biorecognition, Applications
CN106645080B (zh) 基于激光倍频及双空芯光纤的拉曼光谱液体探测方法
Loock et al. Absorption detection using optical waveguide cavities
CN111457950A (zh) 一种法布里珀罗谐振腔光学微泡传感器及其制备方法
CN113777073A (zh) 一种基于光学相位放大的气体检测方法和系统
Trefiak et al. Absorption measurements in microfluidic devices using ring-down spectroscopy
DeGrandpre et al. All-fiber spectroscopic probe based on an evanescent wave sensing mechanism

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant