CN106404620A - 地统计插值与卫星遥感联合反演地面pm2.5的方法及系统 - Google Patents

地统计插值与卫星遥感联合反演地面pm2.5的方法及系统 Download PDF

Info

Publication number
CN106404620A
CN106404620A CN201510461380.3A CN201510461380A CN106404620A CN 106404620 A CN106404620 A CN 106404620A CN 201510461380 A CN201510461380 A CN 201510461380A CN 106404620 A CN106404620 A CN 106404620A
Authority
CN
China
Prior art keywords
concentration value
ground
model
data
inverting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510461380.3A
Other languages
English (en)
Other versions
CN106404620B (zh
Inventor
陈良富
李�荣
陶明辉
王子峰
陶金花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Remote Sensing and Digital Earth of CAS
Original Assignee
Institute of Remote Sensing and Digital Earth of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Remote Sensing and Digital Earth of CAS filed Critical Institute of Remote Sensing and Digital Earth of CAS
Priority to CN201510461380.3A priority Critical patent/CN106404620B/zh
Publication of CN106404620A publication Critical patent/CN106404620A/zh
Application granted granted Critical
Publication of CN106404620B publication Critical patent/CN106404620B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

本发明提供一种地统计插值与卫星遥感联合反演地面PM2.5的方法及系统,其中的方法包括:基于时空克里金插值模型和构建的时空变异函数模型,获取待反演地区的地面PM2.5的第一浓度值;基于构建的卫星AOD反演模型,获取待反演地区的地面PM2.5的第二浓度值;将第一浓度值与第二浓度值进行融合,估算待反演地区的地面PM2.5的最终浓度值;其中,根据第一浓度值和第二浓度值的均方根误差建立权重关系,根据权重关系融合第一浓度值与第二浓度值,以估算待反演地区的地面PM2.5的最终浓度值。通过本发明既可以提高地面监测站点较少情况下的PM2.5的估算精度,又可以弥补AOD数据缺失处PM2.5无法估算的缺点。

Description

地统计插值与卫星遥感 联合反演地面PM2.5的方法及系统
技术领域
本发明涉及气溶胶监测技术领域,更为具体地,涉及一种地统计插值与卫星遥感联合反演地面PM2.5的方法及系统。
背景技术
随着经济的快速发展,工业活动与机动车尾气等人为排放的有害气体的急剧增加,导致空气质量持续恶化。PM2.5是指空气中空气动力学粒径小于2.5微米的颗粒物。与大粒径颗粒物相比,PM2.5粒径小,富含大量的有毒有害物质且在大气中的停留时间长、输送距离远,因而对人体和大气环境质量的影响很大。大量的流行病学研究证明,PM2.5与哮喘、呼吸道感染、肺癌、心血管疾病等存在一定的关联性。因此,对区域PM2.5的监测成为研究大气环境的关键点之一。
目前,国内外对区域PM2.5的估算方法按照估算尺度可以分为两大类,一类是区域尺度的PM2.5浓度估算方法,此类方法主要是利用卫星遥感估算PM2.5浓度分布,另一类是对城市尺度污染物浓度进行估算的方法,此类方法主要基于土地覆盖数据、PM2.5观测站点、路网分布、气象数据等辅助数据,通过地统计插值、土地利用回归模型等方法获取PM2.5浓度的时空分布。
卫星遥感很早就被应用于大气污染监测,但真正应用于定量估算颗粒物浓度主要始于MODIS(moderate-resolution Imaging Spectroradiometer,中分辨率成像光谱仪)、MISR(Multi-angle Imaging Spectrometer,多角度成像光谱仪)等可提供较高精度气溶胶数据的传感器升空以后。其中,卫星气溶胶光学厚度(Aerosol Optical Depth,AOD)在国际上被广泛用来估算区域PM2.5浓度。然而,卫星AOD代表气溶胶在整层大气上的垂直消光贡献,PM2.5则为近地面颗粒物干燥条件下的单位体积内的质量浓度,二者之间的关系受气溶胶垂直分布、气象条件、下垫面等影响较大。利用AOD估算PM2.5浓度目前还没有广泛适用的方法;同时,卫星AOD的反演精度、以及区域的云覆盖、高地表反射率、重霾污染等造成的值缺失也会对PM2.5的估算结果带来很多不确定性。
地统计插值的方法可以有效的利用已知空间数据估算邻近区域的未知值,广泛应用在城市尺度的空气污染研究中。其中,变异函数分析工具可以有效的对PM2.5的时空变异特征进行分析。克里金插值是最常用的地统计插值方法,它可以有效的将少量的监测站点扩展到整个研究区域。但是,地统计插值方法受监测站点的分布特征以及密度影响较大,当监测站点间隔较远、采样密度降低时,可能无法较好的反映PM2.5的时空分布特征,造成插值结果精度较低。
如上所述,目前在对区域PM2.5进行估算的方法中,卫星遥感与地统计插值这两大类方法基本上完全独立,且两类方法各自存在缺点。例如,在利用卫星遥感对区域PM2.5进行估算时,则无法估算出卫星AOD缺失处的PM2.5浓度;在利用地统计插值对区域PM2.5进行估算时,若地面监测站点较少则会降低PM2.5的估算精度。因此有必要将两类方法融合,以研究出一种精度更高的空间插值模型。
发明内容
鉴于上述问题,本发明的目的是提供一种地统计插值与卫星遥感联合反演地面PM2.5的方法及系统,以解决现有的估算方法对区域PM2.5的估算精度不高的问题。
根据本发明的一个方面,提供一种地统计插值与卫星遥感联合反演地面PM2.5的方法,包括:
基于时空克里金插值模型和构建的时空变异函数模型,获取待反演地区的地面PM2.5的第一浓度值;其中,获取第一浓度值的过程包括:根据待反演地区的地面PM2.5数据构建时空变异函数模型并拟合,根据对时空变异函数模型的拟合结果,采用时空克里金插值模型估算待反演地区的地面PM2.5的第一浓度值;
基于构建的卫星AOD反演模型,获取待反演地区的地面PM2.5的第二浓度值;其中,卫星AOD反演模型包括混合效应模型和地理加权回归模型,获取第二浓度值的过程包括:根据待反演地区的地面PM2.5数据、AOD数据和气象数据构建随时间变化的混合效应模型,并根据混合效应模型对待反演地区的地面PM2.5进行初步估算,以及根据待反演地区的地理坐标构建地理加权回归模型,根据地理加权回归模型获取混合效应模型的残差,根据混合效应模型的初步估算结果和残差估算待反演地区的地面PM2.5的第二浓度值;
将第一浓度值与第二浓度值进行融合,估算待反演地区的地面PM2.5的最终浓度值;其中,根据第一浓度值和第二浓度值的均方根误差建立权重关系,根据权重关系融合第一浓度值与第二浓度值,以估算待反演地区的地面PM2.5的最终浓度值。
另一方面,本发明提供一种地统计插值与卫星遥感联合反演地面PM2.5的系统,包括:
第一浓度值获取单元,用于基于时空克里金插值模型和构建的时空变异函数模型,获取待反演地区的地面PM2.5的第一浓度值;其中,获取第一浓度值的过程包括:根据待反演地区的地面PM2.5数据构建时空变异函数模型并拟合,根据对时空变异函数模型的拟合结果,采用时空克里金插值模型估算待反演地区的地面PM2.5的第一浓度值;
第二浓度值获取单元,用于基于构建的卫星AOD反演模型获取待反演地区的地面PM2.5的第二浓度值;其中,卫星AOD反演模型包括混合效应模型和地理加权回归模型,获取第二浓度值的过程包括:根据待反演地区的地面PM2.5数据、AOD数据和气象数据构建随时间变化的混合效应模型,并根据混合效应模型对待反演地区的地面PM2.5进行初步估算,以及根据待反演地区的地理坐标构建地理加权回归模型,根据地理加权回归模型获取混合效应模型的残差,根据混合效应模型的初步估算结果和残差估算待反演地区的地面PM2.5的第二浓度值;
PM2.5浓度值估算单元,用于将第一浓度值与第二浓度值进行融合,估算待反演地区的地面PM2.5的最终浓度值;其中,根据第一浓度值和第二浓度值的均方根误差建立权重关系,根据权重关系融合第一浓度值与第二浓度值,估算待反演地区的地面PM2.5的最终浓度值。
利用上述根据本发明提供的地统计插值与卫星遥感联合反演地面PM2.5的方法及系统,将地统计插值方法中的时空克里金插值模型与卫星遥感方法相融合,从而既可以提高地面监测站点较少情况下的PM2.5的估算精度,又可以弥补AOD数据缺失处PM2.5无法估算的缺点。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为根据本发明实施例的地统计插值与卫星遥感联合反演地面PM2.5的方法流程示意图;
图2为根据本发明实施例的地统计插值与卫星遥感联合反演地面PM2.5的系统的逻辑结构框图。
在所有附图中相同的标号指示相似或相应的特征或功能。
具体实施方式
以下将结合附图对本发明的具体实施例进行详细描述。
针对前述现有的估算方法对区域PM2.5的估算精度不高的问题,本发明通过将地统计插值模型中的时空克里金插值模型与卫星遥感相结合,根据误差权重将两种模型的估算结果进行融合,从而既能保证PM2.5的估算精度,又可以弥补AOD缺失处PM2.5无法估算的缺点。
在对本发明进行说明前,先对本发明中涉及的概念和术语进行说明。
在本发明中采用美国宇航局Aqua卫星上的中分辨率成像光谱仪(MODerate-resolution Imaging Spectroradiometer,简称MODIS)第六版(C6)卫星遥感AOD数据与PM2.5地面监测站点数据相结合,以估算并反演我国全国尺度的PM2.5浓度分布。
为了说明本发明提供的地统计插值与卫星遥感联合反演地面PM2.5的方法,图1示出了根据本发明实施例的地统计插值与卫星遥感联合反演地面PM2.5的方法流程。
如图1所示,本发明提供的地统计插值与卫星遥感联合反演地面PM2.5的方法包括:
S110:基于时空克里金插值模型和构建的时空变异函数模型,获取待反演地区的地面PM2.5的第一浓度值;其中,获取第一浓度值的过程包括:根据待反演地区的地面PM2.5数据构建时空变异函数模型并拟合,根据对时空变异函数模型的拟合结果,采用时空克里金插值模型估算待反演地区的地面PM2.5的第一浓度值。
进一步地,在获取第一浓度值之前,还可以根据搜集到的地面PM2.5站点监测到的PM2.5数据,利用空间变异函数与时间相关函数计算各PM2.5站点所监测到的PM2.5数据的时间相关特性与空间相关特性。如果PM2.5站点所监测到的PM2.5数据之间具有时空相关性,则可采用地统计插值模型中的时空克里金插值模型估算待反演地区的PM2.5的浓度值(即第一浓度值)。
S120:基于构建的卫星AOD反演模型,获取待反演地区的地面PM2.5的第二浓度值;其中,卫星AOD反演模型包括混合效应模型和地理加权回归模型,获取第二浓度值的过程包括:根据待反演地区的地面PM2.5数据、AOD数据和气象数据构建随时间变化的混合效应模型,并根据混合效应模型对待反演地区的地面PM2.5进行初步估算,以及根据待反演地区的地理坐标构建地理加权回归模型,根据地理加权回归模型获取混合效应模型的残差,根据混合效应模型的初步估算结果和地理加权回归模型所获取的残差估算待反演地区的地面PM2.5的第二浓度值。
具体地,在构建混合效应模型的过程中,搜集待反演地区的地面气象数据、AOD数据、地面PM2.5数据,将搜集到的上述数据重采样到创建的与AOD数据分辨率相当的网格后进行数据匹配。其中,上述网格由若干网格单元构成。
上述数据匹配过程包括:构建AOD数据像元点的泰森多边形,与网格进行空间叠置分析,将AOD数据分配到网格中的每个网格单元中;将网格中的某个网格单元内所有PM2.5站点同一天采集到的地面PM2.5数据进行平均后赋值给对应的网格单元;将高于待反演地区所对应的网格单元的分辨率的气象数据进行平均后赋值给对应的网格单元,将不高于待反演地区所对应的网格单元的分辨率的气象数据,采用距离反比加权的插值方法将气象数据插值并重采样到与网格单元的分辨率一致。根据上述AOD数据、PM2.5数据和气象数据构建随时间变化的混合效应模型。
为了进一步提高PM2.5的估算精度,还需根据待反演地区的地理坐标构建地理加权回归模型,以获取上述混合效应模型的残差。
具体地,构建地理加权回归模型的过程包括:根据待反演地区的每个PM2.5站点的位置坐标,获取地理加权回归模型的回归参数;根据回归参数、与PM2.5站点对应的AOD数据、PM2.5站点的位置坐标的截距与斜率获取混合效应模型的残差。
为了进一步提高估算精度,对上述混合效应模型和地理加权回归模型进行交叉验证,根据交叉验证结果调整混合效应模型和地理加权回归模型,或确定最终的混合效应模型和地理加权回归模型。根据确定的最终的混合效应模型和地理加权回归模型的估算结果相加,获取待反演地区的地面PM2.5的第二浓度值。
具体地,当交叉验证结果显示混合效应模型和地理加权回归模型存在过度拟合时,通过调整AOD数据、气象数据对混合效应模型和地理加权模型进行调整,然后对调整后的混合效应模型和地理加权模型再次进行交叉验证,直到交叉验证结果显示调整后的混合效应模型和地理加权模型的过度拟合在预设的范围内时,根据调整后的混合效应模型和地理加权模型估算待反演地区的地面PM2.5的浓度值(即将确定的最终的混合效应模型和地理加权回归模型的估算结果相加,估算待反演地区的地面PM2.5的第二浓度值)。
S130:将第一浓度值与第二浓度值进行融合,估算待反演地区的地面PM2.5的最终浓度值;其中,根据第一浓度值和第二浓度值的均方根误差建立权重关系,根据权重关系融合第一浓度值与第二浓度值,以估算待反演地区的地面PM2.5的最终浓度值。
具体地,在将第一浓度值与第二浓度值进行融合的过程中,获取第一浓度值、第二浓度值的均方根误差权重,以及第二浓度值与第一浓度值的均方根误差差值;当差值在预设范围内时,根据第一浓度值与第一浓度值的均方根误差权重、第二浓度值与第二浓度值的均方根误差权重对第一浓度值与第二浓度值进行融合;当差值不在预设范围内时,不对第一浓度值与第二浓度值进行融合。
下面对本发明提供的地统计插值与卫星遥感联合反演地面PM2.5的方法进行示例性说明。
具体地,本发明提供的地统计插值与卫星遥感联合反演地面PM2.5的方法包括如下步骤:
1、搜集地面PM2.5监测站点数据,利用空间变异函数与时间相关函数计算其时间相关特性与空间相关特性,如果PM2.5站点数据之间具有较强的时空相关性,则可选择用时空克里金插值方法进行后续计算。空间变异特征计算方法如公式1所示,时间相关特征计算方法如公式2、公式3所示:
(公式1)
(公式2)
(公式3)
其中,公式1中γ(h)为区域化变量在si与si+h处的值Z(si)与Z(si+h)的差的方差之半;h为两点间距离,又称为滞后距离,N(h)为距离h之间用来计算变异函数值的样本对数。
公式2,3中,n是时间序列变量yn的数目,yn-t是与yn时间间隔t距离的变量,是时间距离t的自相关函数,为均值。
2、进行实验时空变异函数计算,针对计算结果选择合适的时空变异函数模型,拟合时空变异函数模型,根据时空变异函数模型的拟合结果,并利用时空克里金模型对待反演地区的地面PM2.5进行插值估算(即基于时空克里金插值模型对PM2.5进行估算)。
3、搜集地面气象数据,将数据重采样到创建的网格中,提取PM2.5站点对应网格的AOD数据与气象数据,利用混合效应模型拟合能反映AOD数据与PM2.5数据时间变化特征的模型。首先确定PM2.5估算网格的分辨率。搜集的气象数据若分辨率过高,则对网格内的气象数据计算平均值;若气象数据分辨率过低,则利用距离反比加权的插值方法,将气象数据插值并重采样到与格网分辨率一致。建立AOD数据、PM2.5数据、气象数据随时间变化的混合效应模型,对于时间序列较长的数据,选择分季节建模。
由于AOD数据与PM2.5之间关系受气象等各种因子影响,每天都存在变化,仅仅使用简单的多元线性回归模型无法很好的反应这种时间差异性。本过程中使用利用带有随机截距和坡度的混合效应模型建立AOD数据与PM2.5数据之间的关系。针对PM2.5数据与AOD数据之间的相关特性,建立的混合效应模型如下所示:
(公式4)
PMs,t表示在第s个站点第t天的PM2.5浓度观测值;AODs,t表示格网中对应第s个观测站点在第t天的AOD值;b0和b0,t分别表示固定截距和随机截距;b1和b1,t分别表示AOD的固定斜率和随机斜率;b2-b5表示相应气象数据的随机斜率。st表示站点的随机效应的影响,εs,t为系统误差。PM_Ms,t表示CMAQ模式模拟的第s个站点第t天的PM2.5浓度值,PBLs,t表示第s个站点第t天的边界层高度,RHs,t表示第s个站点第t天的相对湿度,Winds,t表示第s个站点第t天的二维风速。统计模型中AOD固定效应代表所有研究时间段内AOD对PM2.5的平均影响,而AOD的随机效应解释了AOD数据与PM2.5数据之间的逐日变化性。
4、利用地理加权回归模型建立混合效应模型的残差与AOD数据之间随空间变化的模型。在该步骤中,根据每个PM2.5站点位置的坐标,求取地理加权回归模型的回归参数,在该模型中选用高斯核函数法以及交叉确认法选择核函数和带宽。地理加权回归在时间尺度上是单一的,也就是说每次地理加权回归只能针对一个时间截面,因此,针对全国的数据每天分别使用地理加权回归做一次回归。建立的地理加权回归模型如下所示:
PM_resist=β0,s1,sAODstst (公式5)
其中PM_resist表示上一步骤中利用混合效应模型得到的第t天,站点s的残差部分,AODst表示第t天站点s的AOD值,β0,s与β1,s表示特定地理位置的截距与斜率,β基于高斯权重函数计算的每个地理坐标点的回归参数;εst表示网格单元s在第t天的误差项。
5、将第4步与第5步的拟合结果相加,即为利用卫星AOD反演模型(即利用混合效应模型和地理加权回归模型)估算得到的PM2.5浓度值。并利用交叉验证的方法对混合效应模型和地理加权回归模型进行交叉验证。至于如何进行验证不在本发明所述步骤之内,在此不再赘述。
6、将基于时空克里金插值模型与基于卫星AOD反演模型此两种模型的估算结果进行融合。计算基于时空克里金插值模型与卫星AOD反演模型的均方根误差RMSE,根据两种模型误差建立权重关系,并将两种模型结果进行融合。在该步骤中根据每天交叉验证的RMSE作为权重来将两种模型结果进行融合。RMSESTK表示基于时空克里金插值模型验证的均方根误差,RMSERS表示基于卫星AOD反演模型验证得到的均方根误差。基于时空克里金插值模型与卫星AOD反演模型的权重分别如以下所示:
WeightSTK=RMSERS/(RMSERS+RMSESTK) (公式6)
WeightRS=RMSESTK/(RMSERS+RMSESTK) (公式7)
Change=RMSERS-RMSESTK (公式8)
其中,weightSTK表示基于时空克里金插值模型的均方根误差权重;weightRS表示基于卫星AOD反演模型的均方根误差权重;Change表示两种模型的RMSE差值,当Change在-5到+5μg/m3以内时,则认为两种模型估算精度接近,则利用公式9将两个模型的估算结果进行整合。公式9如下所示:
PMMerge=PMSTK*WeightSTK+PMRS*WeightRS (公式9)
其中,PMMerge表示估算的待反演地区的地面PM2.5的最终浓度值;PMSTK表示基于时空克里金插值模型估算得到的PM2.5浓度值;PMRS表示基于卫星AOD反演模型估算得到的PM2.5浓度值。
具体地,当Change>5μg/m3时,说明在该天,基于时空克里金插值模型的估算结果明显优于卫星AOD反演模型的估算结果,因此两者不进行融合,直接利用基于时空克里金插值模型的估算结果作为最终PM2.5的估算结果。当Change<-5μg/m3时,说明基于卫星AOD反演模型的估算结果明显优于基于时空克里金插值模型的估算结果,但AOD由于云覆盖等原因存在较多缺失值,此时AOD缺失处利用基于时空克里金插值模型的估算结果作为补充,将最终的结果输出成.GIFf格式栅格数据。
与上述方法相对应,本发明还提供一种地统计插值与卫星遥感联合反演地面PM2.5的系统,图2示出了根据本发明实施例的地统计插值与卫星遥感联合反演地面PM2.5的系统的逻辑结构。
如图2所示,本发明提供的地统计插值与卫星遥感联合反演地面PM2.5的系统200包括第一浓度值获取单元210、第二浓度值获取单元220和PM2.5浓度值估算单元230。
其中,第一浓度值获取单元210用于基于时空克里金插值模型和构建的时空变异函数模型,获取待反演地区的地面PM2.5的第一浓度值;其中,获取第一浓度值的过程包括:根据待反演地区的地面PM2.5数据构建时空变异函数模型并拟合,根据对时空变异函数模型的拟合结果,采用时空克里金插值模型估算待反演地区的地面PM2.5的第一浓度值。
此外,在获取第一浓度值之前,还可以根据搜集到的地面PM2.5站点监测到的PM2.5数据,利用空间变异函数与时间相关函数计算各PM2.5站点所监测到的PM2.5数据的时间相关特性与空间相关特性。如果PM2.5站点所监测到的PM2.5数据之间具有时空相关性,则可采用地统计插值模型中的时空克里金插值模型估算待反演地区的PM2.5的浓度值(即第一浓度值)。
第二浓度值获取单元220用于基于构建的卫星AOD反演模型,获取待反演地区的地面PM2.5的第二浓度值;其中,卫星AOD反演模型包括混合效应模型和地理加权回归模型,获取第二浓度值的过程包括:根据待反演地区的地面PM2.5数据、AOD数据和气象数据构建随时间变化的混合效应模型,并根据混合效应模型对待反演地区的地面PM2.5进行初步估算,以及根据待反演地区的地理坐标构建地理加权回归模型,根据地理加权回归模型获取混合效应模型的残差,根据混合效应模型的初步估算结果和地理加权回归模型所获取的残差估算待反演地区的地面PM2.5的第二浓度值。
具体地,在构建混合效应模型的过程中,搜集待反演地区的地面气象数据、AOD数据、地面PM2.5数据,将搜集到的上述数据重采样到创建的与AOD数据分辨率相当的网格后进行数据匹配。其中,上述网格由若干网格单元构成。
上述数据匹配过程包括:构建AOD数据像元点的泰森多边形,与网格进行空间叠置分析,将AOD数据分配到网格中的每个网格单元中;将网格中的某个网格单元内所有PM2.5站点同一天采集到的地面PM2.5数据进行平均后赋值给对应的网格单元;将高于待反演地区所对应的网格单元的分辨率的气象数据进行平均后赋值给对应的网格单元,将不高于待反演地区所对应的网格单元的分辨率的气象数据,采用距离反比加权的插值方法将气象数据插值并重采样到与网格单元的分辨率一致。根据上述AOD数据、PM2.5数据和气象数据构建随时间变化的混合效应模型。
为了进一步提高PM2.5的估算精度,还需根据待反演地区的地理坐标构建地理加权回归模型,以获取上述混合效应模型的残差。
具体地,构建地理加权回归模型的过程包括:根据待反演地区的每个PM2.5站点的位置坐标,获取地理加权回归模型的回归参数;根据回归参数、与PM2.5站点对应的AOD数据、PM2.5站点的位置坐标的截距与斜率获取混合效应模型的残差。
为了进一步提高估算精度,对上述混合效应模型和地理加权回归模型进行交叉验证,根据交叉验证结果调整混合效应模型和地理加权回归模型,或确定最终的混合效应模型和地理加权回归模型。将确定的最终的混合效应模型的估算结果和地理加权回归模型所获取的残差相加,获取待反演地区的地面PM2.5的第二浓度值。
具体地,当交叉验证结果显示混合效应模型和地理加权回归模型存在过度拟合时,通过调整AOD数据、气象数据对混合效应模型和地理加权模型进行调整,然后对调整后的混合效应模型和地理加权模型再次进行交叉验证,直到交叉验证结果显示调整后的混合效应模型和地理加权模型的过度拟合在预设的范围内时,根据调整后的混合效应模型和地理加权模型估算待反演地区的地面PM2.5的浓度值(即根据确定的最终的混合效应模型和地理加权回归模型估算待反演地区的地面PM2.5的第二浓度值)。
PM2.5浓度值估算单元230用于将第一浓度值与第二浓度值进行融合,估算待反演地区的地面PM2.5的最终浓度值;其中,根据第一浓度值和第二浓度值的均方根误差建立权重关系,根据权重关系融合所述第一浓度值与第二浓度值以估算待反演地区的地面PM2.5的最终浓度值。
此外,PM2.5浓度值估算单元230进一步包括误差权重获取单元231、差值获取单元232和融合单元233。其中,误差权重获取单元231用于分别获取第一浓度值、第二浓度值的均方根误差权重;差值获取单元232用于获取第二浓度值与第一浓度值的均方根误差差值;融合单元233用于根据误差权重获取单元231所获取的第一浓度值与第一浓度值的均方根误差权重、差值获取单元232所获取的第二浓度值与第二浓度值的均方根误差权重对第一浓度值与第二浓度值进行融合。
通过上述可知,本发明提供的地统计插值与卫星遥感联合反演地面PM2.5的方法及系统,将时空克里金插值模型与卫星AOD反演模型相结合,根据误差权重将两种模型的估算结果进行融合,既可以保证PM2.5的估算精度,又可以弥补AOD缺失处PM2.5无法估算的缺点。
如上参照附图以示例的方式描述了根据本发明的地统计插值与卫星遥感联合反演地面PM2.5的方法及系统。但是,本领域技术人员应当理解,对于上述本发明所提出的地统计插值与卫星遥感联合反演地面PM2.5的方法及系统,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。

Claims (9)

1.一种地统计插值与卫星遥感联合反演地面PM2.5的方法,包括:
基于时空克里金插值模型和构建的时空变异函数模型,获取待反演地区的地面PM2.5的第一浓度值;其中,获取所述第一浓度值的过程包括:根据待反演地区的地面PM2.5数据构建时空变异函数模型并拟合,根据对所述时空变异函数模型的拟合结果,采用时空克里金插值模型估算待反演地区的地面PM2.5的第一浓度值;
基于构建的卫星AOD反演模型,获取待反演地区的地面PM2.5的第二浓度值;其中,所述卫星AOD反演模型包括混合效应模型和地理加权回归模型,获取所述第二浓度值的过程包括:根据待反演地区的地面PM2.5数据、AOD数据和气象数据构建随时间变化的混合效应模型,并根据所述混合效应模型对待反演地区的地面PM2.5进行初步估算,以及根据待反演地区的地理坐标构建地理加权回归模型,根据所述地理加权回归模型获取所述混合效应模型的残差,根据所述混合效应模型的初步估算结果和所述残差估算待反演地区的地面PM2.5的第二浓度值;
将所述第一浓度值与第二浓度值进行融合,估算待反演地区的地面PM2.5的最终浓度值;其中,根据所述第一浓度值和第二浓度值的均方根误差建立权重关系,根据所述权重关系融合所述第一浓度值与第二浓度值,以估算待反演地区的地面PM2.5的最终浓度值。
2.如权利要求1所述的地统计插值与卫星遥感联合反演地面PM2.5的方法,在获取待反演地区的地面PM2.5的第一浓度值之前,还包括:
根据空间变异函数与时间相关函数获取待反演地区内各PM2.5站点所监测到的PM2.5观测数据的时空相关性;其中,
当各PM2.5站点所监测到的PM2.5观测数据之间存在时空相关性时,采用时空克里金插值模型估算待反演地区的地面PM2.5的第一浓度值。
3.如权利要求1所述的地统计插值与卫星遥感联合反演地面PM2.5的方法,其中,在构建混合效应模型的过程中,
将待反演地区的AOD数据、地面PM2.5数据和气象数据重采样到创建的与AOD数据分辨率相当的网格后进行数据匹配;其中,所述网格由若干网格单元构成;所述数据匹配过程包括:
构建所述AOD数据像元点的泰森多边形,与所述网格进行空间叠置分析,将AOD数据分配到所述网格中的每个网格单元中;
将所述网格中的某个网格单元内所有PM2.5站点同一天采集到的地面PM2.5数据进行平均后赋值给对应的网格单元;
将高于待反演地区所对应的网格单元的分辨率的气象数据进行平均后赋值给对应的网格单元,将不高于待反演地区所对应的网格单元的分辨率的气象数据,采用距离反比加权的插值方法将所述气象数据插值并重采样到与所述网格单元的分辨率一致。
4.如权利要求3所述的地统计插值与卫星遥感联合反演地面PM2.5的方法,其中,在根据地理加权回归模型获取所述混合效应模型的残差的过程中,
根据待反演地区的每个PM2.5站点的位置坐标,获取所述地理加权回归模型的回归参数;
根据所述回归参数、与所述PM2.5站点对应的AOD数据、所述PM2.5站点的位置坐标的截距与斜率获取所述混合效应模型的残差。
5.如权利要求4所述的地统计插值与卫星遥感联合反演地面PM2.5的方法,其中,对所述混合效应模型和所述地理加权回归模型进行交叉验证,根据交叉验证结果调整所述混合效应模型和地理加权回归模型,或确定最终的混合效应模型和地理加权回归模型。
6.如权利要求5所述的地统计插值与卫星遥感联合反演地面PM2.5的方法,其中,将确定的最终的混合效应模型和地理加权回归模型的估算结果相加,估算所述待反演地区的地面PM2.5的第二浓度值。
7.如权利要求1所述的地统计插值与卫星遥感联合反演地面PM2.5的方法,其中,将所述第一浓度值与第二浓度值进行融合的过程中,
获取所述第一浓度值、第二浓度值的均方根误差权重,以及所述第二浓度值与所述第一浓度值的均方根误差差值;
当所述差值在预设范围内时,根据所述第一浓度值与所述第一浓度值的均方根误差权重、所述第二浓度值与所述第二浓度值的均方根误差权重对所述第一浓度值与第二浓度值进行融合;
当所述差值不在预设范围内时,不对所述第一浓度值与第二浓度值进行融合。
8.一种地统计插值与卫星遥感联合反演地面PM2.5的系统,包括:
第一浓度值获取单元,用于基于时空克里金插值模型和构建的时空变异函数模型,获取待反演地区的地面PM2.5的第一浓度值;其中,获取的所述第一浓度值的过程包括:根据待反演地区的地面PM2.5数据构建时空变异函数模型并拟合,根据对所述时空变异函数模型的拟合结果,采用时空克里金插值模型估算待反演地区的地面PM2.5的第一浓度值;
第二浓度值获取单元,用于基于构建的卫星AOD反演模型获取待反演地区的地面PM2.5的第二浓度值;其中,所述卫星AOD反演模型包括混合效应模型和地理加权回归模型,获取所述第二浓度值的过程包括:根据待反演地区的地面PM2.5数据、AOD数据和气象数据构建随时间变化的混合效应模型,并根据混合效应模型对待反演地区的地面PM2.5进行初步估算,以及根据待反演地区的地理坐标构建地理加权回归模型,根据所述地理加权回归模型获取所述混合效应模型的残差,根据所述混合效应模型的初步估算结果和所述残差估算待反演地区的地面PM2.5的第二浓度值;
PM2.5浓度值估算单元,用于将所述第一浓度值与所述第二浓度值进行融合,估算待反演地区的地面PM2.5的最终浓度值;其中,根据所述第一浓度值和第二浓度值的均方根误差建立权重关系,根据所述权重关系融合所述第一浓度值与第二浓度值,估算待反演地区的地面PM2.5的最终浓度值。
9.如权利要求8所述的地统计插值与卫星遥感联合反演地面PM2.5的系统,所述PM2.5浓度值估算单元进一步包括:
误差权重获取单元,用于分别获取所述第一浓度值、第二浓度值的均方根误差权重;
差值获取单元,用于获取所述第二浓度值与所述第一浓度值的均方根误差差值;
融合单元,用于根据所述误差权重获取单元所获取的第一浓度值与第一浓度值的均方根误差权重、所述差值获取单元所获取的第二浓度值与第二浓度值的均方根误差权重对所述第一浓度值与第二浓度值进行融合。
CN201510461380.3A 2015-07-30 2015-07-30 地统计插值与卫星遥感联合反演地面pm2.5的方法及系统 Expired - Fee Related CN106404620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510461380.3A CN106404620B (zh) 2015-07-30 2015-07-30 地统计插值与卫星遥感联合反演地面pm2.5的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510461380.3A CN106404620B (zh) 2015-07-30 2015-07-30 地统计插值与卫星遥感联合反演地面pm2.5的方法及系统

Publications (2)

Publication Number Publication Date
CN106404620A true CN106404620A (zh) 2017-02-15
CN106404620B CN106404620B (zh) 2019-08-13

Family

ID=58007505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510461380.3A Expired - Fee Related CN106404620B (zh) 2015-07-30 2015-07-30 地统计插值与卫星遥感联合反演地面pm2.5的方法及系统

Country Status (1)

Country Link
CN (1) CN106404620B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845026A (zh) * 2017-03-02 2017-06-13 中南大学 一种大气污染统计建模变量最优空间尺度选取方法
CN108491667A (zh) * 2018-04-13 2018-09-04 武汉大学 一种基于Himawar-8 AOD的PM2.5遥感监测反演方法
CN108763756A (zh) * 2018-05-28 2018-11-06 河南工业大学 一种气溶胶光学厚度与pm2.5反演订正方法及其系统
CN109272053A (zh) * 2018-10-12 2019-01-25 国网湖南省电力有限公司 极轨卫星监测气溶胶光学厚度的数据融合方法及系统
CN109507367A (zh) * 2018-11-02 2019-03-22 北京英视睿达科技有限公司 确定大气污染物精细化分布的方法及装置
CN109583516A (zh) * 2018-12-24 2019-04-05 天津珞雍空间信息研究院有限公司 一种基于地基和卫星观测的时空连续pm2.5反演方法
CN109657363A (zh) * 2018-12-24 2019-04-19 天津珞雍空间信息研究院有限公司 一种时空连续的pm2.5反演方法
CN110059419A (zh) * 2019-04-23 2019-07-26 中国人民解放军63921部队 高精度区域对流层折射率三维反演方法
CN110389087A (zh) * 2019-08-02 2019-10-29 中国科学院遥感与数字地球研究所 一种污染天气下的pm2.5浓度卫星遥感估算方法
CN110793896A (zh) * 2019-12-03 2020-02-14 承德石油高等专科学校 一种尾气中粉尘浓度短期预测方法
CN111104639A (zh) * 2019-12-24 2020-05-05 福州大学 一种点面融合的时序pm2.5空间分布估算方法
CN111125885A (zh) * 2019-12-03 2020-05-08 杭州电子科技大学 一种基于改进克里金插值算法的asf修正表构建方法
CN111323544A (zh) * 2020-03-27 2020-06-23 沈阳沃尔鑫环保科技有限公司 一种基于微型空气质量监测仪器的校准方法及系统
CN111738600A (zh) * 2020-06-23 2020-10-02 南通大学 一种基于高精度pm2.5反演结果的城市道路空气质量评价方法
CN111859054A (zh) * 2020-07-23 2020-10-30 中国科学院计算机网络信息中心 气象卫星数据的处理方法及装置
CN112179850A (zh) * 2020-11-09 2021-01-05 南京信息工程大学 基于地面实测的gf-4 aod产品高时间分辨率检验
CN112214877A (zh) * 2020-09-15 2021-01-12 南通大学 一种基于量化指标的pm2.5反演方法
CN112434935A (zh) * 2020-11-20 2021-03-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种可选的pm2.5浓度估算方法
CN113297528A (zh) * 2021-06-10 2021-08-24 四川大学 一种基于多源大数据的no2高分辨率时空分布计算方法
CN113609940A (zh) * 2021-07-26 2021-11-05 南通智能感知研究院 一种广覆盖的土壤重金属遥感混合制图方法
CN113654959A (zh) * 2021-07-29 2021-11-16 中国科学院合肥物质科学研究院 一种烟云浓度时空分布快速反演方法及系统
CN114974459A (zh) * 2022-05-25 2022-08-30 武汉大学 Pm2.5浓度估算模型的构建方法
CN115859026A (zh) * 2022-11-18 2023-03-28 二十一世纪空间技术应用股份有限公司 一种高分辨率近地面pm2.5浓度遥感反演方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198342A (zh) * 2014-08-27 2014-12-10 北京市环境保护监测中心 一种融合地面监测与卫星影像的建筑裸地大气颗粒物测算方法
KR20150056676A (ko) * 2013-11-14 2015-05-27 광주과학기술원 국가 간 입자상 대기 오염물질의 수송 여부 판단방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150056676A (ko) * 2013-11-14 2015-05-27 광주과학기술원 국가 간 입자상 대기 오염물질의 수송 여부 판단방법
CN104198342A (zh) * 2014-08-27 2014-12-10 北京市环境保护监测中心 一种融合地面监测与卫星影像的建筑裸地大气颗粒物测算方法

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845026B (zh) * 2017-03-02 2019-11-05 中南大学 一种大气污染统计建模变量最优空间尺度选取方法
CN106845026A (zh) * 2017-03-02 2017-06-13 中南大学 一种大气污染统计建模变量最优空间尺度选取方法
CN108491667A (zh) * 2018-04-13 2018-09-04 武汉大学 一种基于Himawar-8 AOD的PM2.5遥感监测反演方法
CN108491667B (zh) * 2018-04-13 2021-11-26 武汉大学 一种基于Himawari-8 AOD的PM2.5遥感监测反演方法
CN108763756A (zh) * 2018-05-28 2018-11-06 河南工业大学 一种气溶胶光学厚度与pm2.5反演订正方法及其系统
CN109272053A (zh) * 2018-10-12 2019-01-25 国网湖南省电力有限公司 极轨卫星监测气溶胶光学厚度的数据融合方法及系统
CN109272053B (zh) * 2018-10-12 2021-11-02 国网湖南省电力有限公司 极轨卫星监测气溶胶光学厚度的数据融合方法及系统
CN109507367A (zh) * 2018-11-02 2019-03-22 北京英视睿达科技有限公司 确定大气污染物精细化分布的方法及装置
CN109657363A (zh) * 2018-12-24 2019-04-19 天津珞雍空间信息研究院有限公司 一种时空连续的pm2.5反演方法
CN109657363B (zh) * 2018-12-24 2023-11-24 武汉大学 一种时空连续的pm2.5反演方法
CN109583516A (zh) * 2018-12-24 2019-04-05 天津珞雍空间信息研究院有限公司 一种基于地基和卫星观测的时空连续pm2.5反演方法
CN110059419A (zh) * 2019-04-23 2019-07-26 中国人民解放军63921部队 高精度区域对流层折射率三维反演方法
CN110059419B (zh) * 2019-04-23 2023-06-30 中国人民解放军63921部队 高精度区域对流层折射率三维反演方法
CN110389087A (zh) * 2019-08-02 2019-10-29 中国科学院遥感与数字地球研究所 一种污染天气下的pm2.5浓度卫星遥感估算方法
CN111125885A (zh) * 2019-12-03 2020-05-08 杭州电子科技大学 一种基于改进克里金插值算法的asf修正表构建方法
CN110793896B (zh) * 2019-12-03 2022-04-08 承德石油高等专科学校 一种尾气中粉尘浓度短期预测方法
CN110793896A (zh) * 2019-12-03 2020-02-14 承德石油高等专科学校 一种尾气中粉尘浓度短期预测方法
CN111104639B (zh) * 2019-12-24 2022-06-10 福州大学 一种点面融合的时序pm2.5空间分布估算方法
CN111104639A (zh) * 2019-12-24 2020-05-05 福州大学 一种点面融合的时序pm2.5空间分布估算方法
CN111323544A (zh) * 2020-03-27 2020-06-23 沈阳沃尔鑫环保科技有限公司 一种基于微型空气质量监测仪器的校准方法及系统
CN111323544B (zh) * 2020-03-27 2022-09-20 沈阳沃尔鑫环保科技有限公司 一种基于微型空气质量监测仪器的校准方法及系统
CN111738600A (zh) * 2020-06-23 2020-10-02 南通大学 一种基于高精度pm2.5反演结果的城市道路空气质量评价方法
CN111859054B (zh) * 2020-07-23 2023-12-26 中国科学院计算机网络信息中心 气象卫星数据的处理方法及装置
CN111859054A (zh) * 2020-07-23 2020-10-30 中国科学院计算机网络信息中心 气象卫星数据的处理方法及装置
CN112214877B (zh) * 2020-09-15 2024-02-13 南通大学 一种基于量化指标的pm2.5反演方法
CN112214877A (zh) * 2020-09-15 2021-01-12 南通大学 一种基于量化指标的pm2.5反演方法
CN112179850A (zh) * 2020-11-09 2021-01-05 南京信息工程大学 基于地面实测的gf-4 aod产品高时间分辨率检验
CN112434935A (zh) * 2020-11-20 2021-03-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种可选的pm2.5浓度估算方法
CN113297528B (zh) * 2021-06-10 2022-07-01 四川大学 一种基于多源大数据的no2高分辨率时空分布计算方法
CN113297528A (zh) * 2021-06-10 2021-08-24 四川大学 一种基于多源大数据的no2高分辨率时空分布计算方法
CN113609940A (zh) * 2021-07-26 2021-11-05 南通智能感知研究院 一种广覆盖的土壤重金属遥感混合制图方法
CN113654959B (zh) * 2021-07-29 2023-11-17 中国科学院合肥物质科学研究院 一种烟云浓度时空分布快速反演方法及系统
CN113654959A (zh) * 2021-07-29 2021-11-16 中国科学院合肥物质科学研究院 一种烟云浓度时空分布快速反演方法及系统
CN114974459A (zh) * 2022-05-25 2022-08-30 武汉大学 Pm2.5浓度估算模型的构建方法
CN114974459B (zh) * 2022-05-25 2024-04-16 武汉大学 Pm2.5浓度估算模型的构建方法
CN115859026A (zh) * 2022-11-18 2023-03-28 二十一世纪空间技术应用股份有限公司 一种高分辨率近地面pm2.5浓度遥感反演方法及装置
CN115859026B (zh) * 2022-11-18 2023-12-05 二十一世纪空间技术应用股份有限公司 一种高分辨率近地面pm2.5浓度遥感反演方法及装置

Also Published As

Publication number Publication date
CN106404620B (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
CN106404620A (zh) 地统计插值与卫星遥感联合反演地面pm2.5的方法及系统
Reitz et al. Annual estimates of recharge, quick‐flow runoff, and evapotranspiration for the contiguous US using empirical regression equations
Kent et al. Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas
Moreno et al. Spatial downscaling of European climate data.
Bernard et al. Urban heat island temporal and spatial variations: Empirical modeling from geographical and meteorological data
Zhang et al. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings
Sherman et al. Recalibrating aeolian sand transport models
Kim et al. Evaluation of the Weather Research and Forecast/urban model over Greater Paris
Kumari et al. Geographically weighted regression based quantification of rainfall–topography relationship and rainfall gradient in Central Himalayas
CN106779061B (zh) 一种地形平缓区土壤重金属镉空间分布预测方法
Li et al. The impact of observation nudging on simulated meteorology and ozone concentrations during DISCOVER-AQ 2013 Texas campaign
CN106442236A (zh) 基于卫星遥感的地面pm2.5反演方法及系统
Ochoa et al. Evaluation of downscaled estimates of monthly temperature and precipitation for a Southern Ecuador case study
Dellwik et al. Observed and modeled near-wake flow behind a solitary tree
Hamdi et al. Evaluating the performance of SURFEXv5 as a new land surface scheme for the ALADINcy36 and ALARO-0 models
CN110334404A (zh) 一种流域尺度骤发干旱精准识别方法
El-Samra et al. What model resolution is required in climatological downscaling over complex terrain?
Lanfredi et al. A geostatistics-assisted approach to the deterministic approximation of climate data
Trini Castelli et al. Experimental investigation of surface‐layer parameters in low wind‐speed conditions in a suburban area
Steiger et al. A pseudoproxy assessment of data assimilation for reconstructing the atmosphere–ocean dynamics of hydroclimate extremes
de Lima Moraes et al. Steady infiltration rate spatial modeling from remote sensing data and terrain attributes in southeast Brazil
Xu et al. The performance of a scale‐aware nonlocal pbl scheme for the subkilometer simulation of a deep cbl over the taklimakan desert
Wei et al. Spatial interpolation of PM2. 5 concentrations during holidays in south-central China considering multiple factors
Simões et al. Application of the SWAT hydrological model in flow and solid discharge simulation as a management tool of the Indaia River Basin, Alto São Francisco, Minas Gerais
Tao et al. Multi-year surface radiative properties and vegetation parameters for hydrologic modeling in regions of complex terrain—Methodology and evaluation over the Integrated Precipitation and Hydrology Experiment 2014 domain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190813

Termination date: 20200730

CF01 Termination of patent right due to non-payment of annual fee