CN106403830B - 椭偏仪测量超薄膜层的精度提升方法和装置 - Google Patents

椭偏仪测量超薄膜层的精度提升方法和装置 Download PDF

Info

Publication number
CN106403830B
CN106403830B CN201610852448.5A CN201610852448A CN106403830B CN 106403830 B CN106403830 B CN 106403830B CN 201610852448 A CN201610852448 A CN 201610852448A CN 106403830 B CN106403830 B CN 106403830B
Authority
CN
China
Prior art keywords
ultra
thin film
film layers
ellipsometer
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610852448.5A
Other languages
English (en)
Other versions
CN106403830A (zh
Inventor
胡国行
单尧
贺洪波
赵元安
谷利元
曾爱军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201610852448.5A priority Critical patent/CN106403830B/zh
Publication of CN106403830A publication Critical patent/CN106403830A/zh
Application granted granted Critical
Publication of CN106403830B publication Critical patent/CN106403830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0641Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种提升椭偏仪测量超薄膜层精度的装置,包括直角三棱镜、平凸球面透镜、超薄膜层和玻璃基底。通过在椭偏仪中引入Otto结构激发表面等离子体共振,利用微米尺度光束测试分析椭偏参数随入射波长、入射角度、空气隙厚度的变化曲线,拟合椭偏参数曲线获得超薄膜层的厚度和光学常数。表面等离子体共振对膜层光学常数非常敏感,椭偏技术可以同时获得Ψ和Δ,两者相结合因此可以提升椭偏测试精度。

Description

椭偏仪测量超薄膜层的精度提升方法和装置
技术领域
本发明涉及椭偏仪测量,特别是一种提升椭偏仪测量超薄膜层精度的装置和方法。
背景技术
光学薄膜的厚度和光学常数将直接影响薄膜的力学、光学、电磁学等性质。精确测定超薄薄膜的厚度和光学常数,对于研究其光学、电磁学等性质尤为重要。因此,精确表征和控制薄膜的厚度和光学常数在薄膜的制备、分析和应用中起着关键的作用。
由于超薄薄膜的厚度很小,超薄薄膜的光学常数相对于体材料存在一定差异,而目前人们对超薄薄膜的认识还不够深入,很难对其进行标定,这些原因使得超薄薄膜的表征变得非常困难。
现有的光学薄膜检测技术中,主要是利用薄膜的结构参数对探测光的光学信息入射前后产生的变化检测光学薄膜的厚度和光学常数。比如光谱法、椭偏法、表面等离子体共振法等。
椭偏法是目前常用的一种测量薄膜厚度和光学常数的方法。椭偏法是以测量光的偏振态为基础的测量方法,测量薄膜表面反射光偏振态的变化。椭偏参数(Ψ,Δ满足rp,rs是p和s光的反射系数)与薄膜厚度、光学折射率、消光系数有着对应关系,由此反演得到薄膜的厚度和光学常数。椭偏法具有在线实时测量,测量速度快、测试精度高、对测量环境及样品要求低等优点,目前已经在薄膜厚度和光学常数测量中得到了广泛应用。
椭偏法是无损测量薄膜介电常数和表面性质的通用且强大的光学表征方法,但是单纯采用椭偏法很难实现高精度要求,尤其是对于超薄薄膜的表征时,椭偏法得到的结果误差较大。
另外一种薄膜测量的方法是表面等离子体共振法,其通过测量薄膜表面反射光的光强信息来得到薄膜的光学参数,这种方法利用共振效应对于超薄薄膜测量异常灵敏,但这种方法只能得到光的强度信息,并且需要测量光强的绝对值。
发明内容
本发明提供一种提升椭偏仪测量超薄膜层精度的装置和方法,基于表面等离子体共振和椭偏技术相结合,超薄膜层的精确表征装置和方法,适用于超薄金属薄膜和金属薄膜上镀制的超薄介质薄膜的厚度和光学常数的精确表征。通过在椭偏仪中引入Otto结构激发表面等离子体共振,实现对椭偏参数信息的放大,利用微米尺度光束测试分析表面等离子体共振诱导的椭偏参数随入射波长、入射角度、空气隙厚度的变化曲线,拟合椭偏参数曲线,获得超薄膜层的厚度和光学常数。其特点在于装置操作简便,在线实时非接触性测量,不会破坏待测样品表面,且测量精度高。
为了解决上述技术问题,本发明的技术方案具体如下:
一种提升椭偏仪测量超薄膜层精度的装置,包括直角三棱镜、平凸球面透镜、超薄膜层和玻璃基底,所述的直角三棱镜的斜边通过折射率匹配液与平凸球面透镜的平面连接,该平凸球面透镜的凸面的顶点与位于玻璃基底上的超薄膜层4点接触,所述椭偏仪入射臂的光束垂直射入所述直角三棱镜的一直角边,并经该直角三棱镜的另一直角边垂直射出到椭偏仪出射臂。
所述的直角三棱镜为直角等腰三棱镜。
所述的平凸球面透镜的凸面曲率为3000mm;所述的椭偏仪入射臂的光束尺寸为63μm×70μm。
该装置光路是:由椭偏仪入射臂出射的偏振光入射在直角三棱镜上,该直角三棱镜的斜边通过折射率匹配液连接到平凸球面透镜的平面,该平凸球面透镜的凸面的顶点与位于玻璃基底上的超薄膜层点接触,实现空气隙厚度渐变,激发其下的超薄膜层产生表面等离子体共振,经薄膜表面的反射光由椭偏仪出射臂采集其椭偏信息并传输到计算机中进行处理。
本发明的基本原理主要基于以下几点:
1.椭偏仪的测量原理:偏振光以一定的角度入射到待测样品的表面,反射光或透射光的椭圆偏振度在此过程中会发生改变,即椭圆轴方位角和长短轴比有所改变,而偏振态的变化与待测样品的光学参数密切相关,通过这些变化可以得到被测样品的信息。因此,在已知入射光偏振态的情况下,通过测量椭圆偏振度的变化,计算得出两个基本的椭偏参数(反射或透射光的振幅比Ψ和位相差Δ)。通过拟合椭偏参数曲线,反演计算得到待测样品的厚度和光学常数。
2.表面等离子体共振的原理:当光由光密介质入射到光疏介质,且入射角大于全反射临界角时,在界面处将会发生光的全反射,同时会有部分光波渗入到光疏介质中,形成倏逝波。金属表面的等离子体在外场的作用下,将会产生表面等离子体波,当在表面等离子体波传播方向的入射光的波矢等于金属表面等离子体波的波矢时,表面等离子体振荡波吸收了倏逝波的能量,与入射光形成表面等离子体共振,使反射光的能量发生剧烈衰减。
3.在椭偏仪中嵌入可激发表面等离子体共振的Otto结构,充分利用两者优点,克服缺点,利用椭偏仪提取探测光的振幅和相位信息,利用Otto结构通过共振技术放大其振幅和相位信息,提升椭偏仪对超薄膜层厚度和光学常数的敏感度,从而提升测试精度。
利用所述的提升椭偏仪测量超薄膜层精度的装置,获得超薄膜层厚度和光学常数的测量方法,该方法包括下列步骤:
1)转动椭偏仪的入射臂和出射臂至测试角度为45度,调整Otto结构使入射到直角三棱镜直角面后的反射光线与入射光线重合;
2)沿X轴方向移动Otto结构,使平凸球面透镜的凸面与超薄膜层的接触点相对探测光斑偏离1.0mm,设置椭偏仪入射角度测试范围为40度到42度,每隔0.1度测量一次,入射波长测试范围为600nm-1300nm,测试获得此空气隙厚度对应不同波长、不同入射角度的Ψ和Δ值;
3)沿X轴方向移动Otto结构,使平凸球面透镜的凸面与超薄膜层接触点相对探测光斑偏离1.2mm、1.4mm、1.6mm,与步骤2)相同分别获得不同波长、不同入射角度的Ψ和Δ值;
4)拟合步骤2)、3)中Ψ、Δ值与空气隙厚度、入射波长、入射角度的对应关系曲线,获得超薄膜层的厚度和光学常数。
本发明与在先技术相比较具有以下技术效果:
(1)通过在椭偏仪中嵌入可激发表面等离子体共振的Otto结构,灵活利用椭偏技术和等离子体共振技术的优点,椭偏仪可提取振幅和相位信息,并且不需要测量绝对光强,Otto结构通过等离子体共振技术放大振幅和相位信息,从而提升超薄膜层厚度和光学常数的测试精度。
(2)椭偏仪的探测光束为微米尺度光束,由于光束尺度很小,在计算过程中,可以认为光束辐照位置处各点的空气隙厚度固定,从而确定空气隙厚度,简化求解过程。
(3)利用振幅和相位变化信息,同时拟合椭偏参数随入射波长、入射角度、空气隙厚度的对应关系曲线,反演得到超薄膜层的厚度和光学常数,降低解的多重性并提升测试精度。
附图说明
图1是本发明提升椭偏仪测量超薄膜层精度的装置的框图。
图中:1-椭偏仪入射臂,2-直角三棱镜,3-平凸球面透镜,4-超薄膜层,5-玻璃基底,6-椭偏仪出射臂
图2是厚度约为8nm的金膜样品Ψ随入射波长变化曲线的拟合结果
图3是厚度约为8nm的金膜样品Δ随入射波长变化曲线的拟合结果
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
先请参阅图1,图1是本发明提升椭偏仪测量超薄膜层精度的装置的框图,由图可见,本发明提升椭偏仪测量超薄膜层精度的装置,包含椭偏仪入射臂1,沿此入射臂1的输出方向依次是直角三棱镜2、平凸球面透镜3、超薄膜层4,玻璃基底5和椭偏仪出射臂6。
激发表面等离子体共振的Otto结构由图1中的2、3、4部分构成。
该装置光路是:由椭偏仪入射臂1出射的偏振光入射在直角三棱镜2上,该直角三棱镜2的斜边通过折射率匹配液连接到平凸球面透镜3的平面,该平凸球面透镜3的凸面的顶点与位于玻璃基底5上的超薄膜层4点接触,实现空气隙厚度渐变,椭圆偏振光激发玻璃基底5上的超薄膜层4,产生表面等离子体共振,出射光的信息通过椭偏仪出射臂6采集。
本发明采用一种结合表面等离子体共振和椭偏法的技术,利用椭偏仪中嵌入可激发表面等离子体共振的Otto结构,通过椭偏仪测量得到包含等离子体共振信息的椭偏参数(Ψ,Δ)的曲线,拟合椭偏参数曲线,从而实现对超薄膜层的厚度和光学常数的精确测量。
提升椭偏仪测量超薄膜层精度的测试步骤如下:
1)转动椭偏仪的入射臂和出射臂至测试角度为45度,调整Otto结构使入射到直角三棱镜2直角面后的反射光线与入射光线重合;
2)沿X轴方向移动Otto结构,使平凸球面透镜3的凸面与超薄膜层(4)的接触点相对探测光斑偏离1.0mm。设置椭偏仪角度测试范围为40度到42度,每隔0.1度测量一次,波长测试范围为600nm-1300nm。测试获得此空气隙厚度对应不同波长、不同入射角度的Ψ和Δ值;
3)沿X轴方向移动Otto结构,使平凸球面透镜(3)的凸面与超薄膜层(4)接触点相对探测光斑偏离1.2mm、1.4mm、1.6mm。与步骤2)相同分别获得不同波长、不同入射角度的Ψ和Δ值;
4)拟合步骤2)、3)中提取的Ψ、Δ值与空气隙厚度、入射波长、入射角度的对应关系曲线,获得超薄膜层的厚度和光学常数。
光斑偏离距离、入射波长和入射角度的变化范围如表1所示。厚度约为8nm的金膜样品,其Ψ和Δ随入射波长变化曲线的拟合结果分别如图2、图3所示。
实验表明,本发明具有装置操作简便,在线实时非接触性测量,不会破坏待测样品表面和测量精度高的特点。
表1
参数 最小值 最大值 间隔
光斑偏离距离 1.0mm 1.6mm 0.2mm
入射波长 600nm 1300nm 1nm
入射角度 40° 42° 0.1°

Claims (1)

1.一种利用提升椭偏仪测量超薄膜层精度的装置获得超薄膜层厚度和光学常数的测量方法,所述的提升椭偏仪测量超薄膜层精度的装置,包括直角三棱镜(2)、平凸球面透镜(3)、超薄膜层(4)和玻璃基底(5),所述的直角三棱镜(2)的斜边通过折射率匹配液与平凸球面透镜(3)的平面连接,该平凸球面透镜(3)的凸面的顶点与位于玻璃基底(5)上的超薄膜层(4)点接触,所述椭偏仪入射臂(1)的光束垂直射入所述直角三棱镜(2)的一直角边,并经该直角三棱镜(2)的另一直角边垂直射出到椭偏仪出射臂;其特征在于该方法包括下列步骤:
1)转动椭偏仪的入射臂和出射臂至测试角度为45度,调整Otto结构使入射到直角三棱镜(2)直角面后的反射光线与入射光线重合;
2)沿水平方向移动Otto结构,使平凸球面透镜(3)的凸面与超薄膜层(4)的接触点相对探测光斑偏离1.0mm,设置椭偏仪入射角度测试范围为40度到42度,每隔0.1度测量一次,入射波长测试范围为600nm-1300nm,测试获得此空气隙厚度对应不同波长、不同入射角度的振幅比Ψ和位相差Δ值;
3)沿水平方向移动Otto结构,使平凸球面透镜(3)的凸面与超薄膜层(4)接触点相对探测光斑偏离1.2mm、1.4mm、1.6mm,与步骤2)相同分别获得不同波长、不同入射角度的Ψ和Δ值;
4)拟合步骤2)、3)中振幅比Ψ和位相差Δ值与空气隙厚度、入射波长、入射角度的对应关系曲线,获得超薄膜层的厚度和光学常数。
CN201610852448.5A 2016-09-26 2016-09-26 椭偏仪测量超薄膜层的精度提升方法和装置 Active CN106403830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610852448.5A CN106403830B (zh) 2016-09-26 2016-09-26 椭偏仪测量超薄膜层的精度提升方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610852448.5A CN106403830B (zh) 2016-09-26 2016-09-26 椭偏仪测量超薄膜层的精度提升方法和装置

Publications (2)

Publication Number Publication Date
CN106403830A CN106403830A (zh) 2017-02-15
CN106403830B true CN106403830B (zh) 2018-11-20

Family

ID=57997588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610852448.5A Active CN106403830B (zh) 2016-09-26 2016-09-26 椭偏仪测量超薄膜层的精度提升方法和装置

Country Status (1)

Country Link
CN (1) CN106403830B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504912B (zh) * 2017-09-22 2020-04-17 京东方科技集团股份有限公司 厚度测试方法及装置
CN108169183B (zh) * 2017-12-11 2021-02-02 中国科学院上海光学精密机械研究所 基于表面等离子体共振的金属膜测量装置及测量方法
CN107917672B (zh) * 2018-01-05 2023-06-13 中国计量大学 一种用于提高超薄金属薄膜测试灵敏度的测试方法
CN110896037A (zh) * 2018-09-12 2020-03-20 东泰高科装备科技(北京)有限公司 一种膜层厚度检测装置、在线检测系统及方法
CN110542541B (zh) * 2019-08-08 2021-04-09 歌尔光学科技有限公司 一种镜片反射率测量方法及测量装置
CN110823945A (zh) * 2019-11-14 2020-02-21 中国科学院光电技术研究所 一种基于椭偏仪的光学薄膜热膨胀系数测量装置及其测量方法
US20230037873A1 (en) * 2020-04-30 2023-02-09 Lumus Ltd. Optical Sample Characterization
CN112964647B (zh) * 2021-01-22 2022-11-01 国家纳米科学中心 一种利用光谱椭偏仪检测超薄金属膜的方法及装置
CN113267454A (zh) * 2021-05-26 2021-08-17 中国工程物理研究院激光聚变研究中心 薄膜品质检测方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208422B1 (en) * 1998-04-28 2001-03-27 Fuji Photo Film Co., Ltd. Surface plasmon sensor
CN101113887A (zh) * 2006-07-24 2008-01-30 吴宝同 表面等离子共振测量装置和方法
CN105181604A (zh) * 2015-05-11 2015-12-23 福州大学 一种多角度入射单发椭偏测量方法
CN105403514A (zh) * 2015-11-25 2016-03-16 福州大学 一种多波长入射单发椭偏测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208422B1 (en) * 1998-04-28 2001-03-27 Fuji Photo Film Co., Ltd. Surface plasmon sensor
CN101113887A (zh) * 2006-07-24 2008-01-30 吴宝同 表面等离子共振测量装置和方法
CN105181604A (zh) * 2015-05-11 2015-12-23 福州大学 一种多角度入射单发椭偏测量方法
CN105403514A (zh) * 2015-11-25 2016-03-16 福州大学 一种多波长入射单发椭偏测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance;Tetsuo Iwata et.al;《OPTICS EXPRESS》;20100705;第18卷(第14期);第14480-14487页 *
Precise Measurement of the Thickness of a Dielectric Layer on a Metal Surface by Use of a Modified Otto Optical Configuration;Yoshiki Kaneoka et.al;《International Journal of Optomechatronics》;20151231(第9期);第48-61页 *
基于椭偏成像光路和表面等离子体共振效应的金属薄膜参数测量方法研究;胡仕玉 等;《中国激光》;20151130;第42卷(第11期);第1108001-1至1108001-6页 *

Also Published As

Publication number Publication date
CN106403830A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106403830B (zh) 椭偏仪测量超薄膜层的精度提升方法和装置
Wu et al. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry
CN102279094B (zh) 一种标定偏振片透光轴的装置及方法
CN107504907A (zh) 超薄薄膜厚度和光学常数的测量装置和测量方法
CN107703103B (zh) 用于检测折射率的ghSPR传感器及检测方法
CN101261116A (zh) 一种薄膜厚度和折射率的光学测量方法及其装置
JP2001228123A (ja) 試料の物理的性質の測定装置
CN109115690A (zh) 实时偏振敏感的太赫兹时域椭偏仪及光学常数测量方法
JP2008076159A (ja) 内部欠陥検査方法及び内部欠陥検査装置
CN104964932A (zh) 一种测量太赫兹垂直透射谱和反射谱的一体化系统及应用
Lin et al. Measurement of small displacement based on surface plasmon resonance heterodyne interferometry
CN107917672A (zh) 一种用于提高超薄金属薄膜测试灵敏度的测试方法
CN102243174B (zh) 基于相位检测的表面等离子体共振传感装置
CN106091954B (zh) 利用介质薄膜控制Otto结构中空气隙厚度的方法
JP2001228122A (ja) 試料の物理的性質の測定装置
CN208847653U (zh) 一种实时偏振敏感的太赫兹时域椭偏仪
CN104359412A (zh) 光刻掩模版铬膜厚度测量方法
JP2001228121A (ja) 試料の物理的性質の測定装置
CN104482886B (zh) 一种偏光棱镜胶合误差的测量装置及方法
RU2694167C1 (ru) Устройство для измерения толщины и диэлектрической проницаемости тонких пленок
CN107462188A (zh) 高精度检测平面光学元件面形的方法
Zhou et al. 3D Profile Reconstruction and Internal Defect Detection of Silicon Wafers Using Cascaded Fiber Optic Fabry-Pérot Interferometer and Leaky Field Detection Technologies
TWI239389B (en) Normal incidence index of refraction measuring device
CN117288686A (zh) 基于光自旋霍尔效应旋转的溶液参数测量方法及装置
Liu et al. Research of SPR phase detection for measuring ultra thin metal film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant