CN106403283A - 热水型热泵系统 - Google Patents
热水型热泵系统 Download PDFInfo
- Publication number
- CN106403283A CN106403283A CN201611047537.9A CN201611047537A CN106403283A CN 106403283 A CN106403283 A CN 106403283A CN 201611047537 A CN201611047537 A CN 201611047537A CN 106403283 A CN106403283 A CN 106403283A
- Authority
- CN
- China
- Prior art keywords
- arm
- condenser
- type heat
- hot
- water type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 123
- 239000006200 vaporizer Substances 0.000 claims description 47
- 230000001105 regulatory effect Effects 0.000 claims description 28
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000017531 blood circulation Effects 0.000 claims description 3
- 230000004087 circulation Effects 0.000 abstract description 5
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 14
- 239000007788 liquid Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 229940059936 lithium bromide Drugs 0.000 description 7
- 239000006096 absorbing agent Substances 0.000 description 6
- 230000005494 condensation Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2007—Arrangement or mounting of control or safety devices for water heaters
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
本发明公开一种热水型热泵系统。该热水型热泵系统包括热源水管路(1)、用户水管路(2)、第一工质循环系统(3)、第二工质循环系统(4)以及换热器(5),第一工质循环系统(3)包括依次连接的膨胀机(6)、第一冷凝器(7)和第一蒸发器(8),第二工质循环系统(4)包括依次连接的压缩机(9)、第二冷凝器(10)和第二蒸发器(11),热源水管路(1)依次经过第一蒸发器(8)、换热器(5)和第二蒸发器(11)换热,用户水管路(2)经过第一冷凝器(7)、换热器(5)和第二冷凝器(10)换热。根据本发明的热水型热泵系统,能够更加充分地利用热源水的热量,提高能源利用率。
Description
技术领域
本发明涉及暖通工程技术领域,具体而言,涉及一种热水型热泵系统。
背景技术
火电、炼钢、化工等行业工业热源充足,尤其是低于120℃温水资源存在较大的浪费。在传统上方式上,供暖季时主要通过板式换热器、溴化锂热泵机组等方式将这部分低品位热源用于工业或居民建筑供暖。
现有的吸收式热泵装置,溴化锂溶液在发生器中与高温热源水换热后,溴化锂溶液被泵入吸收器内,而发生的水蒸气进入冷凝器与用户水换热后被冷凝,冷凝水进入蒸发器与低温热源水换热,产生水蒸气;吸收器中溴化锂溶液吸收水蒸气后浓度降低,被溶液泵泵入发生器,再次发生水蒸气,如此溴化锂溶液在发生器、吸收器循环,制冷剂水在发生器、冷凝器、蒸发器、吸收器中不断循环。水系统方面:高温热源水进入发生器中与溴化锂溶液换热后,温度降低;低温热源水与蒸发器内制冷剂水换热;用户水先进入吸收器中吸收热量,再进入冷凝器中带走冷凝热,温度再次升高,为用户提供热水。
在该热泵装置中,热源水未被充分利用,使得与吸收器换热之后流出的热源水温度仍然较高,降低了热源水的能源利用率。
发明内容
本发明实施例中提供一种热水型热泵系统,能够更加充分地利用热源水的热量,提高能源利用率。
为实现上述目的,本发明实施例提供一种热水型热泵系统,包括热源水管路、用户水管路、第一工质循环系统、第二工质循环系统以及换热器,第一工质循环系统包括依次连接的膨胀机、第一冷凝器和第一蒸发器,第二工质循环系统包括依次连接的压缩机、第二冷凝器和第二蒸发器,热源水管路依次经过第一蒸发器、换热器和第二蒸发器换热,用户水管路经过第一冷凝器、换热器和第二冷凝器换热。
作为优选,换热器为板式换热器,热源水管路和用户水管路在板式换热器内换热。
作为优选,膨胀机和压缩机之间通过联轴器驱动连接。
作为优选,第一冷凝器和第一蒸发器之间设置有增压器。
作为优选,第二冷凝器和第二蒸发器之间设置有节流装置。
作为优选,热源水管路在第一蒸发器和第二蒸发器内均多流程设置。
作为优选,用户水管路在第一冷凝器和第二冷凝器内均多流程设置。
作为优选,用户水管路包括并联设置的第一支管和第二支管,第一支管流经第一冷凝器和第二冷凝器,第二支管流经换热器后在第二冷凝器的出口与第一支管汇合。
作为优选,第一支管上设置有第一流量调节阀,第二支管上设置有第二流量调节阀。
作为优选,用户水管路包括流经第一冷凝器的总管和与总管相连并并联设置的第一支管和第二支管,第一支管从总管的出口流经第二冷凝器,第二支管从总管的出口流经换热器后在第二冷凝器的出口与第一支管汇合。
作为优选,第一支管上设置有第一流量调节阀,第二支管上设置有第二流量调节阀。
作为优选,用户水管路包括流经换热器的总管和与总管相连并并联设置的第一支管和第二支管,第一支管从总管的出口流经第二冷凝器,第二支管从总管的出口流经第一冷凝器后在第二冷凝器的出口与第一支管汇合。
作为优选,第一支管上设置有第一流量调节阀,第二支管上设置有第二流量调节阀。
应用本发明的技术方案,热水型热泵系统包括热源水管路、用户水管路、第一工质循环系统、第二工质循环系统以及换热器,第一工质循环系统包括依次连接的膨胀机、第一冷凝器和第一蒸发器,第二工质循环系统包括依次连接的压缩机、第二冷凝器和第二蒸发器,热源水管路依次经过第一蒸发器、换热器和第二蒸发器换热,用户水管路经过第一冷凝器、换热器和第二冷凝器换热。该热水型热泵系统中,热源水管路不仅通过第一冷凝器和第二冷凝器进行放热,而且也通过换热器与用户水管路之间进行换热,因此使得热源水的热能利用更加充分,节能效果更加明显,可以有效提高能源利用率。
附图说明
图1是本发明第一实施例的热水型热泵系统的结构原理图;
图2是本发明第一实施例的热水型热泵系统的运行结构图;
图3是本发明第二实施例的热水型热泵系统的结构原理图;
图4是本发明第二实施例的热水型热泵系统的运行结构图;
图5是本发明第三实施例的热水型热泵系统的结构原理图;
图6是本发明第三实施例的热水型热泵系统的运行结构图。
附图标记说明:1、热源水管路;2、用户水管路;3、第一工质循环系统;4、第二工质循环系统;5、换热器;6、膨胀机;7、第一冷凝器;8、第一蒸发器;9、压缩机;10、第二冷凝器;11、第二蒸发器;12、联轴器;13、增压器;14、节流装置;15、第一支管;16、第二支管;17、总管;18、第一流量调节阀;19、第二流量调节阀;20、储液装置。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
结合参见图1至图6所示,根据本发明的实施例,热水型热泵系统包括热源水管路1、用户水管路2、第一工质循环系统3、第二工质循环系统4以及换热器5,第一工质循环系统3包括依次连接的膨胀机6、第一冷凝器7和第一蒸发器8,第二工质循环系统4包括依次连接的压缩机9、第二冷凝器10和第二蒸发器11,热源水管路1依次经过第一蒸发器8、换热器5和第二蒸发器11换热,用户水管路2经过第一冷凝器7、换热器5和第二冷凝器10换热。
该热水型热泵系统中,热源水管路1不仅通过第一冷凝器7和第二冷凝器10进行放热,而且也通过换热器5与用户水管路2之间进行换热,因此使得热源水的热能利用更加充分,节能效果更加明显,可以有效提高能源利用率。经实际测量可知,在采用本发明的方案后,热源水出水温度比传统溴化锂机组低10-15%。
在本实施例中,换热器5为板式换热器,热源水管路1和用户水管路2在板式换热器内换热。采用板式换热器换热效率高、热损失小、结构紧凑轻巧、占地面积小、应用广泛、使用寿命长,因此可以使得热源水的热能得到更加充分的利用。
优选地,膨胀机6和压缩机9之间通过联轴器12驱动连接。膨胀机6在工质一的作用下形成转动作用力,然后通过联轴器12将转动作用力传递给压缩机9并带动压缩机9工作,可以充分利用第一蒸发器8吸收热源水所产生的蒸汽做功,并使得压缩机9可以利用膨胀机6的作用工作,降低压缩机的功率损耗,能够更加节省能源。当然,膨胀机6与压缩机9之间不形成驱动连接,压缩机9设置单独的驱动机构驱动转动。
在第一冷凝器7和第一蒸发器8之间还可以设置有增压器13,增压器13可以对从第一冷凝器7流出的工质一进行增压,使得流动至第一蒸发器8内的工质一具有较高压力,可以吸收更多热量,并且能够为膨胀机6提供更大蒸汽压力,使得膨胀机6可以为压缩机9的运转提供更大的驱动作用力。
第二冷凝器10和第二蒸发器11之间还可以设置有节流装置14,当工质二从压缩机9流出至第二冷凝器10与用户水进行换热之后,温度上升,此时工质二为高温高压状态,经过节流装置14节流之后,形成高温低压状态,能够在进入到第二蒸发器11之后吸收更多的热量,使得热源水的热量释放的更加彻底,提高热源水热量的利用效率。
热源水管路1在第一蒸发器8和第二蒸发器11内均多流程设置,能够提高热源水管路1与第一蒸发器8和第二蒸发器11的换热面积,保证热源水管路1与第一蒸发器8和第二蒸发器11换热更加充分。
用户水管路2在第一冷凝器7和第二冷凝器10内均多流程设置,能够提高用户水管路2与第一冷凝器7和第二冷凝器10的换热面积,保证用户水管路2与第一冷凝器7和第二冷凝器10换热更加充分。
结合参见图1和图2所示,根据本发明的第一实施例,用户水管路2包括并联设置的第一支管15和第二支管16,第一支管15流经第一冷凝器7和第二冷凝器10,第二支管16流经换热器5后在第二冷凝器10的出口与第一支管15汇合。
优选地,第一支管15上设置有第一流量调节阀18,第二支管16上设置有第二流量调节阀19。
在本实施例的热水型热泵系统工作时,热源水管路1中的热源水加热高压工质一,得到高温高压的工质一的蒸汽,推动膨胀机6高速转动,膨胀机6的出口形成气态低温低压的工质一,气态低温低压的工质一进入第一冷凝器7中被进一步冷却冷凝得到液态低温低压的工质一,液态低温低压的工质一进入储液装置20后经增压器13增压,然后形成低温高压的液态工质一,并继续被热源水加热,如此,工质一不断往复循环。膨胀机6高速旋转后,通过联轴器12带动储液装置20压缩工质二,得到高温高压的气态工质二,进入第二冷凝器10中被冷却冷凝形成低温高压的液态工质二,经节流装置14节流之后进入第二蒸发器11形成低温的气态工质二,然后进入储液装置20被压缩形成高温高压的蒸汽工质二,如此往复循环。
在本实施例中,热源水从a路进入第一蒸发器8加热工质一后,温度降低,再进入板式换热器与用户水换热,温度再次降低,最后进入第二蒸发器11中加热工质一,再次温度降低,热源水热量可被充分回收利用。用户水从b管路分第一支管15和第二支管16两路进入机组,并通过第一流量调节阀18和第二流量调节阀19来调节两路流量比例,其中第一支管15进入第一冷凝器7被液态工质一加热后进入第二冷凝器10被进一步加热,第二支管16进入板式换热器与热源水换热后在第二冷凝器10的出口与第一支管15汇合,从b路主管出。
在系统工作过程中,温度传感器T1检测热源水进机组水温120℃,经过第一蒸发器8与工质一换热后,温度传感器T2检测到温度降低至94.5℃,再经过板式换热器与用户水换热后,温度传感器T3检测到温度降低至65℃,最后经过第二蒸发器11与工质二换热后,温度传感器T4检测到热源水温度降低至25℃。温度传感器T6检测到用户水进机组水温45℃,分两路后,通过第一流量调节阀18和第二流量调节阀19调节流量分配,第二支管16经板式换热器与热源水换热被加热,最后与第一支管15汇合,温度传感器T7检测到温度60℃左右,第一支管15进入第一冷凝器7冷却工质一,温度传感器T5检测到第一支管15流出第一冷凝器7后的用户水温度53℃,后用户水进入第二冷凝器10与工质二换热,并进一步升温,温度传感器T7检测到出口温度60℃。
结合参见图3和图4所示,根据本发明的第二实施例,用户水管路2包括流经第一冷凝器7的总管17和与总管17相连并并联设置的第一支管15和第二支管16,第一支管15从总管17的出口流经第二冷凝器10,第二支管16从总管17的出口流经换热器5后在第二冷凝器10的出口与第一支管15汇合。
第一支管15上设置有第一流量调节阀18,第二支管16上设置有第二流量调节阀19。
在本实施例中,热源水从a路进入第一蒸发器8加热工质一后,温度降低,再进入板式换热器与用户水换热,温度再次降低,最后进入第二蒸发器11中加热工质一,再次温度降低,热源水热量可被充分回收利用。用户水从b管路经总管17流经第一冷凝器7升温之后,分第一支管15和第二支管16两路进行流动,并通过第一流量调节阀18和第二流量调节阀19来调节两路流量比例,其中第一支管15进入第二冷凝器10被进一步加热,第二支管16进入板式换热器与热源水换热后在第二冷凝器10的出口与第一支管15汇合,从b路主管出。
在系统工作过程中,温度传感器T1检测热源水进机组水温120℃,经过第一蒸发器8与工质一换热后,温度传感器T2检测到温度降低至94.5℃,再经过板式换热器与用户水换热后,温度传感器T3检测到温度降低至65℃,最后经过第二蒸发器11与工质二换热后,温度传感器T4检测到热源水温度降低至25℃。温度传感器T6检测到用户水进机组水温45℃,经总管17与第一冷凝器7换热之后,温度传感器T5检测到从总管17流出的用户水温度升高至50℃。用户水从总管17出口分两路后,通过第一流量调节阀18和第二流量调节阀19调节流量分配,第二支管16经板式换热器与热源水换热被加热,最后与第一支管15汇合,温度传感器T7检测到温度60℃左右,第一支管15进入第二冷凝器10与工质二换热,并进一步升温,温度传感器T7检测到b路用户水出口温度60℃。
结合参见图5和6所示,根据本发明的第三实施例,用户水管路2包括流经换热器5的总管17和与总管17相连并并联设置的第一支管15和第二支管16,第一支管15从总管17的出口流经第二冷凝器10,第二支管16从总管17的出口流经第一冷凝器7后在第二冷凝器10的出口与第一支管15汇合。
第一支管15上设置有第一流量调节阀18,第二支管16上设置有第二流量调节阀19。
在本实施例中,热源水从a路进入第一蒸发器8加热工质一后,温度降低,再进入板式换热器与用户水换热,温度再次降低,最后进入第二蒸发器11中加热工质一,再次温度降低,热源水热量可被充分回收利用。用户水从b管路经总管17流经换热器5与热源水换热升温之后,分第一支管15和第二支管16两路进行流动,并通过第一流量调节阀18和第二流量调节阀19来调节两路流量比例,其中第一支管15进入第二冷凝器10被进一步加热,第二支管16进入第一冷凝器7换热后在第二冷凝器10的出口与第一支管15汇合,从b路主管出。
在系统工作过程中,温度传感器T1检测热源水进机组水温120℃,经过第一蒸发器8与工质一换热后,温度传感器T2检测到温度降低至94.5℃,再经过板式换热器与用户水换热后,温度传感器T3检测到温度降低至65℃,最后经过第二蒸发器11与工质二换热后,温度传感器T4检测到热源水温度降低至25℃。温度传感器T7检测到用户水进机组水温45℃,经总管17与换热器5内的热源水换热之后,温度传感器T5检测到从总管17流出的用户水温度升高至52℃。用户水从总管17出口分两路后,通过第一流量调节阀18和第二流量调节阀19调节流量分配,第二支管16经第一冷凝器7换热并进一步升温,最后与第一支管15汇合,温度传感器T6检测到温度60℃左右,第一支管15进入第二冷凝器10与工质二换热,并进一步升温,最后温度传感器T7检测到b路用户水出口温度60℃。
当然,以上是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明基本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
Claims (13)
1.一种热水型热泵系统,其特征在于,包括热源水管路(1)、用户水管路(2)、第一工质循环系统(3)、第二工质循环系统(4)以及换热器(5),所述第一工质循环系统(3)包括依次连接的膨胀机(6)、第一冷凝器(7)和第一蒸发器(8),所述第二工质循环系统(4)包括依次连接的压缩机(9)、第二冷凝器(10)和第二蒸发器(11),所述热源水管路(1)依次经过所述第一蒸发器(8)、所述换热器(5)和所述第二蒸发器(11)换热,所述用户水管路(2)经过所述第一冷凝器(7)、所述换热器(5)和所述第二冷凝器(10)换热。
2.根据权利要求1所述的热水型热泵系统,其特征在于,所述换热器(5)为板式换热器,所述热源水管路(1)和所述用户水管路(2)在所述板式换热器内换热。
3.根据权利要求1所述的热水型热泵系统,其特征在于,所述膨胀机(6)和所述压缩机(9)之间通过联轴器(12)驱动连接。
4.根据权利要求1所述的热水型热泵系统,其特征在于,所述第一冷凝器(7)和所述第一蒸发器(8)之间设置有增压器(13)。
5.根据权利要求1所述的热水型热泵系统,其特征在于,所述第二冷凝器(10)和所述第二蒸发器(11)之间设置有节流装置(14)。
6.根据权利要求1所述的热水型热泵系统,其特征在于,所述热源水管路(1)在所述第一蒸发器(8)和所述第二蒸发器(11)内均多流程设置。
7.根据权利要求1所述的热水型热泵系统,其特征在于,所述用户水管路(2)在所述第一冷凝器(7)和所述第二冷凝器(10)内均多流程设置。
8.根据权利要求1所述的热水型热泵系统,其特征在于,所述用户水管路(2)包括并联设置的第一支管(15)和第二支管(16),所述第一支管(15)流经所述第一冷凝器(7)和所述第二冷凝器(10),所述第二支管(16)流经所述换热器(5)后在所述第二冷凝器(10)的出口与所述第一支管(15)汇合。
9.根据权利要求8所述的热水型热泵系统,其特征在于,所述第一支管(15)上设置有第一流量调节阀(18),所述第二支管(16)上设置有第二流量调节阀(19)。
10.根据权利要求1所述的热水型热泵系统,其特征在于,所述用户水管路(2)包括流经所述第一冷凝器(7)的总管(17)和与所述总管(17)相连并并联设置的第一支管(15)和第二支管(16),所述第一支管(15)从所述总管(17)的出口流经所述第二冷凝器(10),所述第二支管(16)从所述总管(17)的出口流经所述换热器(5)后在所述第二冷凝器(10)的出口与所述第一支管(15)汇合。
11.根据权利要求10所述的热水型热泵系统,其特征在于,所述第一支管(15)上设置有第一流量调节阀(18),所述第二支管(16)上设置有第二流量调节阀(19)。
12.根据权利要求1所述的热水型热泵系统,其特征在于,所述用户水管路(2)包括流经所述换热器(5)的总管(17)和与所述总管(17)相连并并联设置的第一支管(15)和第二支管(16),所述第一支管(15)从所述总管(17)的出口流经所述第二冷凝器(10),所述第二支管(16)从所述总管(17)的出口流经所述第一冷凝器(7)后在所述第二冷凝器(10)的出口与所述第一支管(15)汇合。
13.根据权利要求12所述的热水型热泵系统,其特征在于,所述第一支管(15)上设置有第一流量调节阀(18),所述第二支管(16)上设置有第二流量调节阀(19)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611047537.9A CN106403283B (zh) | 2016-11-11 | 2016-11-11 | 热水型热泵系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611047537.9A CN106403283B (zh) | 2016-11-11 | 2016-11-11 | 热水型热泵系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106403283A true CN106403283A (zh) | 2017-02-15 |
CN106403283B CN106403283B (zh) | 2021-12-28 |
Family
ID=58081711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611047537.9A Active CN106403283B (zh) | 2016-11-11 | 2016-11-11 | 热水型热泵系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106403283B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109297076A (zh) * | 2018-08-24 | 2019-02-01 | 赖中练 | 自驱动压缩式大温差换热机组 |
CN109708180A (zh) * | 2019-02-21 | 2019-05-03 | 苏州必信空调有限公司 | 一种大温差升温换热器及应用其的换热系统及应用其的热电供暖系统 |
CN110513748A (zh) * | 2019-09-10 | 2019-11-29 | 苏州必信空调有限公司 | 供热系统 |
CN115751713A (zh) * | 2022-10-19 | 2023-03-07 | 珠海格力电器股份有限公司 | 一种流体循环装置、流体循环系统及控制方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003102474A1 (fr) * | 2002-05-31 | 2003-12-11 | Jfe Engineering Corporation | Dispositif de production de bouillie d'hydrate |
CN101158486A (zh) * | 2007-03-28 | 2008-04-09 | 宋学让 | 高能效采暖机 |
CN101957089A (zh) * | 2010-09-30 | 2011-01-26 | 广东美的电器股份有限公司 | 空调器的制冷装置及其家用空调系统 |
US20110309155A1 (en) * | 2010-06-22 | 2011-12-22 | Carrier Corporation | Thermostat Algorithm for Fully Modulating Furnaces |
CN102331025A (zh) * | 2011-07-27 | 2012-01-25 | 双良节能系统股份有限公司 | 热电厂回收主、辅机冷凝废热汽水式供热系统 |
JP2012026620A (ja) * | 2010-07-21 | 2012-02-09 | Kandenko Co Ltd | Dc非常用蓄熱空調システム及びその装置 |
CN103032912A (zh) * | 2013-01-21 | 2013-04-10 | 中国科学院广州能源研究所 | 一种太阳能集成朗肯-朗肯系统地板采暖装置 |
CN103411347A (zh) * | 2013-08-27 | 2013-11-27 | 苏州新华软智能装备有限公司 | 耦合式热泵余热回收系统 |
CN103673035A (zh) * | 2013-11-08 | 2014-03-26 | 清华大学 | 一种复合式换热机组 |
US20150136042A1 (en) * | 2012-05-25 | 2015-05-21 | Tlv Co., Ltd. | Hot Water Generator |
CN104832969A (zh) * | 2015-04-24 | 2015-08-12 | 珠海格力电器股份有限公司 | 基于吸收式热泵的供暖系统 |
CN206320933U (zh) * | 2016-11-11 | 2017-07-11 | 珠海格力电器股份有限公司 | 热水型热泵系统 |
-
2016
- 2016-11-11 CN CN201611047537.9A patent/CN106403283B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003102474A1 (fr) * | 2002-05-31 | 2003-12-11 | Jfe Engineering Corporation | Dispositif de production de bouillie d'hydrate |
CN101158486A (zh) * | 2007-03-28 | 2008-04-09 | 宋学让 | 高能效采暖机 |
US20110309155A1 (en) * | 2010-06-22 | 2011-12-22 | Carrier Corporation | Thermostat Algorithm for Fully Modulating Furnaces |
JP2012026620A (ja) * | 2010-07-21 | 2012-02-09 | Kandenko Co Ltd | Dc非常用蓄熱空調システム及びその装置 |
CN101957089A (zh) * | 2010-09-30 | 2011-01-26 | 广东美的电器股份有限公司 | 空调器的制冷装置及其家用空调系统 |
CN102331025A (zh) * | 2011-07-27 | 2012-01-25 | 双良节能系统股份有限公司 | 热电厂回收主、辅机冷凝废热汽水式供热系统 |
US20150136042A1 (en) * | 2012-05-25 | 2015-05-21 | Tlv Co., Ltd. | Hot Water Generator |
CN103032912A (zh) * | 2013-01-21 | 2013-04-10 | 中国科学院广州能源研究所 | 一种太阳能集成朗肯-朗肯系统地板采暖装置 |
CN103411347A (zh) * | 2013-08-27 | 2013-11-27 | 苏州新华软智能装备有限公司 | 耦合式热泵余热回收系统 |
CN103673035A (zh) * | 2013-11-08 | 2014-03-26 | 清华大学 | 一种复合式换热机组 |
CN104832969A (zh) * | 2015-04-24 | 2015-08-12 | 珠海格力电器股份有限公司 | 基于吸收式热泵的供暖系统 |
CN206320933U (zh) * | 2016-11-11 | 2017-07-11 | 珠海格力电器股份有限公司 | 热水型热泵系统 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109297076A (zh) * | 2018-08-24 | 2019-02-01 | 赖中练 | 自驱动压缩式大温差换热机组 |
CN109708180A (zh) * | 2019-02-21 | 2019-05-03 | 苏州必信空调有限公司 | 一种大温差升温换热器及应用其的换热系统及应用其的热电供暖系统 |
CN110513748A (zh) * | 2019-09-10 | 2019-11-29 | 苏州必信空调有限公司 | 供热系统 |
CN115751713A (zh) * | 2022-10-19 | 2023-03-07 | 珠海格力电器股份有限公司 | 一种流体循环装置、流体循环系统及控制方法 |
CN115751713B (zh) * | 2022-10-19 | 2024-08-23 | 珠海格力电器股份有限公司 | 一种流体循环装置、流体循环系统及控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106403283B (zh) | 2021-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104929706B (zh) | 联合循环供能系统 | |
CN106895603B (zh) | 压缩/吸收闭式并联复合燃气热泵系统运行方法 | |
CN105042931B (zh) | 一种跨临界循环与吸收式热泵联产的复合热泵系统 | |
CN105674558B (zh) | 燃气机驱动蒸气压缩与吸收复合式热泵热水机组运行方法 | |
CN104963732B (zh) | 联合循环供能系统 | |
CN106403283A (zh) | 热水型热泵系统 | |
CN101000180A (zh) | 两级与多级吸收式制冷机 | |
CN106568233A (zh) | 第三类热驱动压缩式热泵 | |
CN102650478A (zh) | 利用低品位热的跨临界/吸收复合制冷装置 | |
CN105004095B (zh) | 一种跨临界循环与两级吸收式热泵联产的复合热泵系统 | |
CN102322705B (zh) | 扩散吸收式制冷与蒸汽压缩制冷联合循环装置 | |
CN105222399B (zh) | 一种太阳能辅助的制冷制热系统 | |
CN104567090A (zh) | 一种跨临界循环提供两级吸收循环发生热的复合制冷系统 | |
CN105953464A (zh) | 第四类热驱动压缩-吸收式热泵 | |
CN208704208U (zh) | 一种复叠制冷式中高温水源热泵机组 | |
CN105019954B (zh) | 联合循环供能系统 | |
CN105041396B (zh) | 联合循环供能系统 | |
CN207006629U (zh) | 一种热泵 | |
CN104963733B (zh) | 联合循环供能系统 | |
CN206320933U (zh) | 热水型热泵系统 | |
CN102338504A (zh) | 吸收-压缩式双温第二类热泵系统 | |
CN205383781U (zh) | 燃气机驱动型蒸气压缩与吸收复合式热泵热水机组 | |
CN204923158U (zh) | 一种适于接暖气片的空气源co2热泵系统 | |
CN204513843U (zh) | 一种跨临界循环提供两级吸收循环发生热的复合制冷系统 | |
CN208567199U (zh) | 一种地热能空气源吸收式热泵装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |