CN106401550A - 致密油体积压裂启动压力梯度渗流规律电模拟装置及测试方法 - Google Patents

致密油体积压裂启动压力梯度渗流规律电模拟装置及测试方法 Download PDF

Info

Publication number
CN106401550A
CN106401550A CN201610903135.8A CN201610903135A CN106401550A CN 106401550 A CN106401550 A CN 106401550A CN 201610903135 A CN201610903135 A CN 201610903135A CN 106401550 A CN106401550 A CN 106401550A
Authority
CN
China
Prior art keywords
horizontal well
copper sheet
pressure
major fracture
volume fracturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610903135.8A
Other languages
English (en)
Other versions
CN106401550B (zh
Inventor
纪国法
张公社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze University
Original Assignee
Yangtze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze University filed Critical Yangtze University
Priority to CN201610903135.8A priority Critical patent/CN106401550B/zh
Publication of CN106401550A publication Critical patent/CN106401550A/zh
Application granted granted Critical
Publication of CN106401550B publication Critical patent/CN106401550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Abstract

本发明公开了一种致密油体积压裂启动压力梯度渗流规律电模拟装置,包括串联形成闭合回路的电源、开关、水平井体积压裂缝网模拟装置及电流表,以及伸入至水平井体积压裂缝网模拟装置内的探针、及并联于探针和水平井体积压裂缝网模拟装置之间的电压表,还包括均串联在闭合回路中的二极管和可调电阻,且电压表的一端与探针相连,电压表的另一端连接在二极管与水平井体积压裂缝网模拟装置之间。采用二极管模拟致密油体积压裂启动压力,更加符合真实情况;采用大铜片模拟主裂缝、小铜片模拟次裂缝,进而构成体积压裂单簇缝网,可近似模拟真实情况下致密油的渗流规律并预测产能。本发明还同时公开了采用这种电模拟装置的测试方法。

Description

致密油体积压裂启动压力梯度渗流规律电模拟装置及测试 方法
技术领域
本发明属于油气田开发技术领域,具体涉及一种致密油体积压裂启动压力渗流规律电模拟装置,本发明还涉及采用这种电模拟装置的测试方法。
背景技术
世界油气需求持续增长,非常规油气成为全球石油勘探开发的新领域。与国外等典型致密油区相比,中国致密油形成条件比较有利,具有较大勘探潜力,地质储量为6440×108桶,技术可采储量为322×108桶,仅次于俄罗斯和美国(张君峰,毕海滨,许浩,等.国外致密油勘探开发新进展及借鉴意义[J].石油学报,2015,36(2):127-137.)。目前我国已有5个盆地中发现致密油,其中鄂尔多斯盆地延长组已进入工业化生产,并形成了关键技术之一——“万方液、千方砂”的大规模水平井体积压裂缝网改造技术,使得致密油单井产量取得初步成效(杜金虎,何海清,杨涛,等.中国致密油勘探进展及面临的挑战[J].中国石油勘探,2014,19(1):1-9.)。
致密油储层具有基质孔隙喉道细小、储层物性差及非均质性强等特点,原油流动表现为不同的渗流机理。水平井压后流体渗流规律的研究一般采用水电模拟实验法,重点考察水平井裂缝的分布、位置、条数、长度等因素。但是通过建立致密油压裂水平井全周期产能预测模型,分析敏感性参数的影响,认为启动压力是重要因素之一(魏漪,冉启全,童敏,等.致密油压裂水平井全周期产能预测模型[J].西南石油大学学报(自然科学版),2016(01):99-106.)。
目前已公开的中国发明专利申请(申请号:201410664365.4、申请日:2014.11.19)提出采用矿物油配方替代传统电解质溶液,来模拟稠油油藏渗流过程中的启动压力,存在一定的局限性,无法推广应用。
发明内容
本发明的第一目的就是要针对传统加工方法的不足,提供一种致密油体积压裂启动压力渗流规律电模拟装置,它能够更加真实的模拟致密油的渗流规律并产能预测。
本发明的第二目的在于提供一种采用这种电模拟装置的测试方法。
为实现上述第一目的,本发明所设计的致密油体积压裂启动压力渗流规律电模拟装置,包括串联形成闭合回路的电源、开关、水平井体积压裂缝网模拟装置及电流表,以及伸入至水平井体积压裂缝网模拟装置内的探针、及并联于探针和水平井体积压裂缝网模拟装置之间的电压表,还包括均串联在闭合回路中的二极管和可调电阻,且电压表的一端与探针相连,电压表的另一端连接在二极管与水平井体积压裂缝网模拟装置之间;所述水平井体积压裂缝网模拟装置包括外壁为绝缘外壁的储液槽、水平设置在储液槽内的水平井井筒铜丝及体积压裂单簇缝网,电源的负极连接至储液槽的内壁,电源的正极连接至水平井井筒铜丝的一端;体积压裂单簇缝网包括沿水平井井筒铜丝长度方向垂直设置并与水平井井筒铜丝相连通的多个主裂缝铜片、及每个主裂缝铜片上设置有沿主裂缝铜片的长度方向按照预设角度并与主裂缝铜片相连通的多个次裂缝铜片。
进一步地,多个所述主裂缝铜片中的一部分主裂缝铜片设置在所述水平井井筒铜丝的一侧,剩余部分主裂缝铜片设置在所述水平井井筒铜丝的另一侧;每个所述主裂缝铜片上的多个次裂缝铜片中的一部分次裂缝铜片设置在所述主裂缝铜片的一侧,剩余部分次裂缝铜片设置在所述主裂缝铜片的另一侧。
进一步地,所述水平井井筒铜丝两侧的主裂缝铜片呈对称分布,且每个所述主裂缝铜片两侧的次裂缝铜片呈对称分布。
进一步地,所述水平井井筒铜丝的直径大于所述主裂缝铜片的厚度,所述主裂缝铜片的厚度大于所述次裂缝铜片的厚度。
进一步地,所述储液槽为有机玻璃槽,且所述储液槽中的电解液为NaCl溶液。
进一步地,所述预设角度α为锐角。
进一步地,所述预设角度α为30°~60°。
为实现上述第二目的,设计一种如上述所述致密油体积压裂启动压力渗流规律电模拟装置的测试方法,包括如下步骤:
1)获取致密油藏压后参数:基质渗透率K、油层长度LF、油层宽度WF、油层厚度hF、生产压差△P、水平井井筒长度L、水平井井眼直径r、压裂段数N、裂缝间距n、主裂缝长度Lmf、主裂缝高度hmf、主裂缝宽度wmf、等效次生裂缝长度Lcf、等效次生裂缝高度hcf、等效次生裂缝宽度wcf及原油黏度μ;
2)确定模型参数:确定几何相似系数Cl=LF/Lm,根据几何相似系数确定致密油藏模型宽度尺寸Wm和电解质溶液深度尺寸hm,分别为Wm=WF/Cl、hm=hF/Cl
确定水平井体积压裂缝网模拟装置参数:根据几何相似系数确定水平井井筒铜丝长度Lms=L/Cl、水平井井筒铜丝直径rms=r/Cl、主裂缝铜片间距mm=n/Cl、主裂缝铜片长度Lmmf=Lmf/Cl、主裂缝铜片宽度wmmf=wmf/Cl、主裂缝铜片厚度hmmf=hmf/Cl、次裂缝铜片长度Lmcf=Lcf/Cl、次裂缝铜片厚度hmcf=hcf/Cl、次裂缝铜片宽度hmcf=hcf/Cl
3)估算电解液电导率:根据致密油体积压裂水平井理论产量公式计算产量Q;设定模型最大额定电流值I,估算流量相似系数Cq=I/Q;设定压力相似系数Cp=ΔU/Δp,由相似参数满足的关系式得到Cr=Cp/Cq;根据相似参数关系式Cρ=1/CrCl及流动相似参数定义式Cρ=ρμ/K得到估算的溶液电导率ρ;
4)计算NaCl溶液实际配比及配量:根据计算的致密油藏模型宽度Wm和电解质溶液深度hm计算蒸馏水体积Vw=Lm×Wm×hm;根据NaCl溶液电导率与浓度的关系式ρ=0.007+1.47C换算NaCl质量m=C×Vw,其中:C代表NaCl溶液浓度、单位为g/L;
5)启动压力测定:调节可调电阻,使电流不超过电流表的最大额定电流值I,测定二极管正向压降,即为启动压力;
6)逐点测试电压/电流:打开电源,将电源电压调到预设值,移动探针,且测点间距为2~3cm,测定各测点处的电压U及电流I;
7)获取渗流规律及产量:依据确定的相似参数,把各点处电压值换算成压力,由压力相似系数换算:p=U/Cp,电流换算成产量,由流量相似系数换算:Q=I/Cq
进一步地,改变二极管型号,重复步骤6)~7),获取不同启动压力下的渗流规律。
本发明与现有技术相比,具有以下优点:采用二极管模拟致密油体积压裂启动压力,更加符合真实情况;采用大铜片模拟主裂缝、小铜片模拟次裂缝,进而构成体积压裂单簇缝网,可近似模拟真实情况下致密油的渗流规律并预测产能。
附图说明
图1为本发明致密油体积压裂启动压力渗流规律电模拟装置的结构示意图;
图2为图1中水平井井筒铜丝与体积压裂单簇缝网的结构示意图。
其中:电源1、开关2、二极管3、电压表4、探针5、水平井井筒铜丝6、NaCl溶液7、储液槽8、可调电阻9、电流表10、体积压裂单簇缝网11(其中:次裂缝铜片11a、主裂缝铜片11b)。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明,但它们不对本发明构成限定,仅作举例而已,同时通过说明本发明的优点将变得更加清楚和容易理解。
如图1所示致密油体积压裂启动压力渗流规律电模拟装置,包括串联形成闭合回路的电源1、开关2、水平井体积压裂缝网模拟装置及电流表10,以及伸入至水平井体积压裂缝网模拟装置内的探针5、并联于探针5和水平井体积压裂缝网模拟装置之间的电压表4及均串联在闭合回路中的二极管3和可调电阻9,即电压表4的一端与探针5相连,电压表4的另一端连接在二极管3与水平井体积压裂缝网模拟装置之间。本实施例中电流表10用于测试电流,换算真实产量;电压表4用于测试流体渗流的等压线;可调电阻9用于调节电流不超过电流表最大额定值;另外,启动压力模拟系统可依据不同实验要求,采用不同型号大小的二极管3来模拟致密油流动的启动压力。
水平井体积压裂缝网模拟装置包括外壁为绝缘外壁的储液槽8、水平设置在储液槽8内的水平井井筒铜丝6及体积压裂单簇缝网11,电源1的负极连接至储液槽8的内壁,电源1的正极连接至水平井井筒铜丝6的一端;储液槽1中盛有NaCl溶液7,且NaCl溶液7需要没过水平井井筒铜丝6及体积压裂单簇缝网11,由NaCl溶液电导率及体积换算成电阻模拟致密油多孔介质渗流通道阻力。结合图2所示,体积压裂单簇缝网11包括沿水平井井筒铜丝6长度方向垂直设置并与水平井井筒铜丝6相连通的多个主裂缝铜片11b、及每个主裂缝铜片11b上设置有沿主裂缝铜片11b的长度方向按照预设角度并与主裂缝铜片11b相连通的多个次裂缝铜片11a,且水平井井筒铜丝6的直径大于主裂缝铜片11b的厚度,主裂缝铜片11b的厚度大于次裂缝铜片11a的厚度。
本实施例中:多个主裂缝铜片11b中的一部分主裂缝铜片11b等间距地设置在水平井井筒铜丝6的一侧,剩余部分主裂缝铜片11b等间距地设置在水平井井筒铜丝6的另一侧,且两侧主裂缝铜片11b的个数相等成对称分布;每个主裂缝铜片11b上的多个次裂缝铜片11a中的一部分次裂缝铜片11a设置在主裂缝铜片11b的一侧,剩余部分次裂缝铜片11a设置在主裂缝铜片11b的另一侧,同理,每个主裂缝铜片11b两侧的多个次裂缝铜片11a个数相等成对称分布,另外,靠近水平井井筒铜丝6的次裂缝铜片11a均与水平井井筒铜丝6连通。次裂缝铜片11a与主裂缝铜片11b的预设角度α为锐角,一般为30°~60°,优选为45°。
上述致密油体积压裂启动压力渗流规律电模拟装置的测试方法,包括如下步骤:
1)获取致密油藏压后参数:基质渗透率K、油层长度LF、油层宽度WF、油层厚度hF、生产压差△P、水平井井筒长度L、水平井井眼直径r、压裂段数N、裂缝间距n、主裂缝长度Lmf、主裂缝高度hmf、主裂缝宽度wmf、等效次生裂缝长度Lcf、等效次生裂缝高度hcf、等效次生裂缝宽度wcf及原油黏度μ;
2)确定模型参数:致密油藏模型(即储液槽)尺寸一般最大为200cm×200cm×60cm,本模型具有如下特点:长度固定、宽度可调(最大200cm)、深(厚)度可调(最大60cm);
确定几何相似系数Cl=LF/Lm(本实施例中Lm=200cm),根据几何相似系数确定致密油藏模型宽度尺寸Wm和电解质溶液深度尺寸hm,分别为Wm=WF/Cl、hm=hF/Cl
确定水平井体积压裂缝网模拟装置参数:根据几何相似系数确定水平井井筒铜丝长度Lms=L/Cl、水平井井筒铜丝直径rms=r/Cl、主裂缝铜片间距mm=n/Cl、主裂缝铜片长度Lmmf=Lmf/Cl、主裂缝铜片宽度wmmf=wmf/Cl、主裂缝铜片厚度hmmf=hmf/Cl、次裂缝铜片长度Lmcf=Lcf/Cl、次裂缝铜片厚度hmcf=hcf/Cl、次裂缝铜片宽度hmcf=hcf/Cl
3)估算电解液电导率:根据致密油体积压裂水平井理论产量公式计算产量Q;设定模型最大额定电流值I(一般不超过0.2A),估算流量相似系数Cq=I/Q;设定压力相似系数Cp=ΔU/Δp=1V/0.2MPa,由相似参数满足的关系式得到Cr=Cp/Cq;根据相似参数关系式Cρ=1/CrCl及流动相似参数定义式Cρ=ρμ/K得到估算的溶液电导率ρ;
4)计算NaCl溶液实际配比及配量:根据计算的致密油藏模型宽度Wm和电解质溶液深度hm计算蒸馏水体积Vw=Lm×Wm×hm;根据NaCl溶液电导率与浓度的关系式ρ=0.007+1.47C换算NaCl质量m=C×Vw,其中:C代表NaCl溶液浓度、单位为g/L;
5)启动压力测定:调节可调电阻,使电流不超过电流表的最大额定电流值I(即0.2A),测定二极管正向压降,即为启动压力;
6)逐点测试电压/电流:打开电源,将电源电压调到预设值(一般小于12V,为人类可承受范围36V内),移动探针,且测点间距为2~3cm,测定各测点处的电压U及电流I;
7)获取渗流规律及产量:依据确定的相似参数,把各点处电压值换算成压力,由压力相似系数换算:p=U/Cp,电流换算成产量,由流量相似系数换算:Q=I/Cq
8)改变二极管型号,重复步骤6)~7),获取不同启动压力下的渗流规律。
其它未详细说明的均属于现有技术。

Claims (9)

1.一种致密油体积压裂启动压力渗流规律电模拟装置,包括串联形成闭合回路的电源、开关、水平井体积压裂缝网模拟装置及电流表,以及伸入至水平井体积压裂缝网模拟装置内的探针、及并联于探针和水平井体积压裂缝网模拟装置之间的电压表,其特征在于:还包括均串联在闭合回路中的二极管和可调电阻,且电压表的一端与探针相连,电压表的另一端连接在二极管与水平井体积压裂缝网模拟装置之间;所述水平井体积压裂缝网模拟装置包括外壁为绝缘外壁的储液槽、水平设置在储液槽内的水平井井筒铜丝及体积压裂单簇缝网,电源的负极连接至储液槽的内壁,电源的正极连接至水平井井筒铜丝的一端;体积压裂单簇缝网包括沿水平井井筒铜丝长度方向垂直设置并与水平井井筒铜丝相连通的多个主裂缝铜片、及每个主裂缝铜片上设置有沿主裂缝铜片的长度方向按照预设角度并与主裂缝铜片相连通的多个次裂缝铜片。
2.根据权利要求1所述致密油体积压裂启动压力渗流规律电模拟装置,其特征在于:多个所述主裂缝铜片中的一部分主裂缝铜片设置在所述水平井井筒铜丝的一侧,剩余部分主裂缝铜片设置在所述水平井井筒铜丝的另一侧;每个所述主裂缝铜片上的多个次裂缝铜片中的一部分次裂缝铜片设置在所述主裂缝铜片的一侧,剩余部分次裂缝铜片设置在所述主裂缝铜片的另一侧。
3.根据权利要求1或2所述致密油体积压裂启动压力渗流规律电模拟装置,其特征在于:所述水平井井筒铜丝两侧的主裂缝铜片呈对称分布,且每个所述主裂缝铜片两侧的次裂缝铜片呈对称分布。
4.根据权利要求3所述致密油体积压裂启动压力渗流规律电模拟装置,其特征在于:所述水平井井筒铜丝的直径大于所述主裂缝铜片的厚度,所述主裂缝铜片的厚度大于所述次裂缝铜片的厚度。
5.根据权利要求3所述致密油体积压裂启动压力渗流规律电模拟装置,其特征在于:所述储液槽为有机玻璃槽,且所述储液槽中的电解液为NaCl溶液。
6.根据权利要求3所述致密油体积压裂启动压力渗流规律电模拟装置,其特征在于:所述预设角度α为锐角。
7.根据权利要求3所述致密油体积压裂启动压力渗流规律电模拟装置,其特征在于:所述预设角度α为30°~60°。
8.如权利要求1~7任一权利要求所述致密油体积压裂启动压力渗流规律电模拟装置的测试方法,其特征在于:所述测试方法包括如下步骤:
1)获取致密油藏压后参数:基质渗透率K、油层长度LF、油层宽度WF、油层厚度hF、生产压差△P、水平井井筒长度L、水平井井眼直径r、压裂段数N、裂缝间距n、主裂缝长度Lmf、主裂缝高度hmf、主裂缝宽度wmf、等效次生裂缝长度Lcf、等效次生裂缝高度hcf、等效次生裂缝宽度wcf及原油黏度μ;
2)确定模型参数:确定几何相似系数Cl=LF/Lm,根据几何相似系数确定致密油藏模型宽度尺寸Wm和电解质溶液深度尺寸hm,分别为Wm=WF/Cl、hm=hF/Cl
确定水平井体积压裂缝网模拟装置参数:根据几何相似系数确定水平井井筒铜丝长度Lms=L/Cl、水平井井筒铜丝直径rms=r/Cl、主裂缝铜片间距mm=n/Cl、主裂缝铜片长度Lmmf=Lmf/Cl、主裂缝铜片宽度wmmf=wmf/Cl、主裂缝铜片厚度hmmf=hmf/Cl、次裂缝铜片长度Lmcf=Lcf/Cl、次裂缝铜片厚度hmcf=hcf/Cl、次裂缝铜片宽度hmcf=hcf/Cl
3)估算电解液电导率:根据致密油体积压裂水平井理论产量公式计算产量Q;设定模型最大额定电流值I,估算流量相似系数Cq=I/Q;设定压力相似系数Cp=ΔU/Δp,由相似参数满足的关系式得到Cr=Cp/Cq;根据相似参数关系式Cρ=1/CrCl及流动相似参数定义式Cρ=ρμ/K得到估算的溶液电导率ρ;
4)计算NaCl溶液实际配比及配量:根据计算的致密油藏模型宽度Wm和电解质溶液深度hm计算蒸馏水体积Vw=Lm×Wm×hm;根据NaCl溶液电导率与浓度的关系式ρ=0.007+1.47C换算NaCl质量m=C×Vw,其中:C代表NaCl溶液浓度、单位为g/L;
5)启动压力测定:调节可调电阻,使电流不超过电流表的最大额定电流值I,测定二极管正向压降,即为启动压力;
6)逐点测试电压/电流:打开电源,将电源电压调到预设值,移动探针,且测点间距为2~3cm,测定各测点处的电压U及电流I;
7)获取渗流规律及产量:依据确定的相似参数,把各点处电压值换算成压力,由压力相似系数换算:p=U/Cp,电流换算成产量,由流量相似系数换算:Q=I/Cq
9.根据权利要求8所述致密油体积压裂启动压力渗流规律电模拟装置的测试方法,其特征在于:改变二极管型号,重复步骤6)~7),获取不同启动压力下的渗流规律。
CN201610903135.8A 2016-10-17 2016-10-17 致密油体积压裂启动压力渗流规律电模拟装置及测试方法 Active CN106401550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610903135.8A CN106401550B (zh) 2016-10-17 2016-10-17 致密油体积压裂启动压力渗流规律电模拟装置及测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610903135.8A CN106401550B (zh) 2016-10-17 2016-10-17 致密油体积压裂启动压力渗流规律电模拟装置及测试方法

Publications (2)

Publication Number Publication Date
CN106401550A true CN106401550A (zh) 2017-02-15
CN106401550B CN106401550B (zh) 2022-12-23

Family

ID=58013267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610903135.8A Active CN106401550B (zh) 2016-10-17 2016-10-17 致密油体积压裂启动压力渗流规律电模拟装置及测试方法

Country Status (1)

Country Link
CN (1) CN106401550B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106869912A (zh) * 2017-03-01 2017-06-20 中国石油大学(华东) 基于泡沫复合材料的新型非均质储层渗流电模拟系统方法
CN110162906A (zh) * 2019-05-29 2019-08-23 中国石油大学(华东) 一种定产量条件下的致密油藏渗流等值渗流阻力法和水电模拟系统
CN113495045A (zh) * 2020-04-01 2021-10-12 中国石油化工股份有限公司 致密油藏启动压力梯度电模拟系统及计算方法
CN114233270A (zh) * 2021-12-14 2022-03-25 西安石油大学 底水稠油油藏水平井产能预测方法
CN114991747A (zh) * 2022-05-26 2022-09-02 长江大学 一种基于环形阵列探针测量的页岩油产量解释方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410015A (zh) * 2011-12-22 2012-04-11 中国石油大学(北京) 一种复杂结构井渗流规律的电模拟系统及方法
CN202220598U (zh) * 2011-07-26 2012-05-16 中国石油化工股份有限公司 一种水平井开采三维电模拟实验装置
CN104196527A (zh) * 2014-08-13 2014-12-10 中国石油大学(北京) 多分支井产能模拟系统与多分支井产能模拟实验方法
CN104453864A (zh) * 2014-11-25 2015-03-25 中国石油大学(北京) 用于衰竭开采的动态电模拟装置
CN104533401A (zh) * 2014-11-19 2015-04-22 中国石油大学(华东) 一种适用于稠油油藏渗流规律的电模拟装置
CN206144545U (zh) * 2016-10-17 2017-05-03 长江大学 致密油体积压裂启动压力渗流规律电模拟装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202220598U (zh) * 2011-07-26 2012-05-16 中国石油化工股份有限公司 一种水平井开采三维电模拟实验装置
CN102410015A (zh) * 2011-12-22 2012-04-11 中国石油大学(北京) 一种复杂结构井渗流规律的电模拟系统及方法
CN104196527A (zh) * 2014-08-13 2014-12-10 中国石油大学(北京) 多分支井产能模拟系统与多分支井产能模拟实验方法
CN104533401A (zh) * 2014-11-19 2015-04-22 中国石油大学(华东) 一种适用于稠油油藏渗流规律的电模拟装置
CN104453864A (zh) * 2014-11-25 2015-03-25 中国石油大学(北京) 用于衰竭开采的动态电模拟装置
CN206144545U (zh) * 2016-10-17 2017-05-03 长江大学 致密油体积压裂启动压力渗流规律电模拟装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106869912A (zh) * 2017-03-01 2017-06-20 中国石油大学(华东) 基于泡沫复合材料的新型非均质储层渗流电模拟系统方法
CN110162906A (zh) * 2019-05-29 2019-08-23 中国石油大学(华东) 一种定产量条件下的致密油藏渗流等值渗流阻力法和水电模拟系统
CN113495045A (zh) * 2020-04-01 2021-10-12 中国石油化工股份有限公司 致密油藏启动压力梯度电模拟系统及计算方法
CN114233270A (zh) * 2021-12-14 2022-03-25 西安石油大学 底水稠油油藏水平井产能预测方法
CN114233270B (zh) * 2021-12-14 2023-08-22 西安石油大学 底水稠油油藏水平井产能预测方法
CN114991747A (zh) * 2022-05-26 2022-09-02 长江大学 一种基于环形阵列探针测量的页岩油产量解释方法

Also Published As

Publication number Publication date
CN106401550B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN106401550A (zh) 致密油体积压裂启动压力梯度渗流规律电模拟装置及测试方法
Li et al. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media
CN106761733A (zh) 一种稠油油藏水平井蒸汽吞吐初期产能预测方法
CN104091069B (zh) 确定非均质储层各层位和位置驱油效率和波及系数的方法
Dou et al. Threshold pressure gradient of fluid flow through multi-porous media in low and extra-low permeability reservoirs
CN105822302A (zh) 一种基于井地电位法的油水分布识别方法
CN206144545U (zh) 致密油体积压裂启动压力渗流规律电模拟装置
CN108959767A (zh) 一种窄河道型气藏不同井型凝析油伤害数值模拟方法
CN104975827B (zh) 预测二氧化碳驱油藏指标的物质平衡方法
CN202084246U (zh) 水平井电模拟实验装置
CN203769767U (zh) 水平井物理模拟实验装置
CN108133087A (zh) 一种气-水两相渗流应力敏感储层原始渗透率反演方法
CN206192824U (zh) 一种石油钻井液粘度自动测定装置
CN114427432A (zh) 一种气藏剩余气开发潜力确定方法
CN106127604A (zh) 一种动态储量计算方法及装置
CN105863625A (zh) 一种致密油藏五元系数分类评价方法
Liu et al. Experimental study on the effect of hydrate reformation on gas permeability of marine sediments
CN103615239B (zh) 一种测井地层成像系统及其方法
CN106203699A (zh) 一种粗糙裂缝初始导流能力的预测方法
Gao et al. Nuclear magnetic resonance measurements of original water saturation and mobile water saturation in low permeability sandstone gas
CN106442269B (zh) 一种筛选室内物理模拟实验用非变量岩心的方法
CN108446511A (zh) 缝洞型油藏油、水的储量预测方法
CN108106687A (zh) 一种含软夹层的基岩地下水流网探究方法及双胶囊止水器
CN109557280A (zh) 一种储层应力敏感性的确定方法
TWI734029B (zh) 地熱井產能預估方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant