CN106399283B - 一种提高肌酸酶热稳定性的方法 - Google Patents

一种提高肌酸酶热稳定性的方法 Download PDF

Info

Publication number
CN106399283B
CN106399283B CN201610865045.4A CN201610865045A CN106399283B CN 106399283 B CN106399283 B CN 106399283B CN 201610865045 A CN201610865045 A CN 201610865045A CN 106399283 B CN106399283 B CN 106399283B
Authority
CN
China
Prior art keywords
enzyme
mutant
creatine
kreatinase
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610865045.4A
Other languages
English (en)
Other versions
CN106399283A (zh
Inventor
张玲
杨海麟
高亚楠
辛瑜
王武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201610865045.4A priority Critical patent/CN106399283B/zh
Publication of CN106399283A publication Critical patent/CN106399283A/zh
Application granted granted Critical
Publication of CN106399283B publication Critical patent/CN106399283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/03Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amidines (3.5.3)
    • C12Y305/03003Creatinase (3.5.3.3), i.e. creatine amidinohydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/978Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种提高肌酸酶热稳定性的方法,属于基因工程和酶工程领域。本发明的突变体,是在Pseudomonas putida源的肌酸酶的基础上进行氨基酸替换突变得到的。本发明的突变体H125C/L130C与野生型肌酸酶相比Tm值增加了8.2℃,热稳定性得到了显著的提高。通过本发明的方法,有效提高了肌酸酶的热稳定性。

Description

一种提高肌酸酶热稳定性的方法
技术领域
本发明涉及一种提高肌酸酶热稳定性的方法,属于基因工程和酶工程领域。
背景技术
肌酸酶(creatinase;E 3.5.3.3;CRE;分类名为肌酸眯基水解酶,creatinaseamidinohydrolase)属于水解酶类,催化肌酸水解产生尿素和肌氨酸。肌酸水解酶是肌氨酸氧化酶法测定肌酸含量方法中的关键酶。
肌酐作为临床肾功能监测指标之一,一直以来备受关注。其测定方法随着科学的发展由最初的碱性苦味酸法(Jeffe氏反应)演变至今的酶法,可以说是一个巨大的进步,因后者可以克服前者固有的一些缺点而得到广泛地应用。肌酸测定所涉及的三种工具酶,即肌肝酶(creatininase,EC 3.5.2.10;分类名为肌酐酰胺水解酶,creatinineamidohydrolase)、肌酸酶、肌氨酸氧化酶(sarcosine oxidase,EC 1.5.3.1)。
目前在多种细菌中均发现肌酸水解酶的存在。这些细菌有假单胞菌属(Pseudomonas)、梭菌属(Clostridium)、黄杆菌属(Flavobacterium)、芽孢杆菌属(Bacillus)、产碱菌属(Alcaligenes)、副球菌属Paracoccus等。其中,对Pseudomonasputida的肌酸水解酶研究最多。Yoshimoto等人从恶臭假单胞菌中纯化出肌酸水解酶,并首次获得酶结晶。该酶的特性研究表明,酶的分子量为94KDa,由2个亚基组成,亚基分子量为47Kda。
各种来源肌酸酶的热稳定性都不太理想,目前临床应用的酶法测定试剂盒中肌酸酶用量都较大,其原因就在于该酶的稳定性较差。Schumann等研究了恶臭假单胞菌肌酸酶的稳定剂,发现在酶溶液中添加DTE、BSA或甘油能改善酶的稳定性,而进一步用随机突变的方法对酶分子结构进行改造,得到了A109V、V355M、V182I、A109V+V355M和A109V+V355M+V182I3等5种突变体,在稳定性上有所改善,但没有发现新的可以确定的化学键的形成。Berberich等用聚氨酯固定化修饰放线杆菌来源的肌酸酶,提高了酶的储存稳定性。
发明内容
为了肌酸酶的热稳定性不理想的问题,本发明提供了一种热稳定性提高的肌酸酶突变体。
所述突变体的氨基酸序列是在NCBI上GenBank:CAA00921.1的肌酸酶氨基酸序列的基础上,将第125位的组氨酸和第130位的亮氨酸替换成为半胱氨酸。
在本发明的一种实施方式中,所述突变体,是在Pseudomonas putida源的肌酸酶基础上进行氨基酸替换突变得到的。
在本发明的一种实施方式中,所述Pseudomonas putida源的肌酸酶(CRE)的氨基酸序列,是NCBI上GenBank:CAA00921.1所示的氨基酸序列。
在本发明的一种实施方式中,所述Pseudomonas putida源的肌酸酶(CRE)的核苷酸序列,如Genebank:A10619.1所示。
所述突变体与野生型肌酸酶相比Tm值增加了8.2℃。
本发明还要求保护编码所述肌酸酶突变体的核苷酸序列、表达所述突变体的载体、基因工程菌。
在本发明的一种实施方式中,所述基因工程菌是以大肠杆菌为宿主构建得到的。
本发明还要求保护所述突变体或者基因工程菌的应用。
在本发明的一种实施方式中,所述应用是用于制备测定肌酐含量的试剂。
本发明还提供一种提高Pseudomonas putida源的肌酸酶热稳定性的方法,所述方法是对Pseudomonas putida源的肌酸酶进行氨基酸替换突变。
在本发明的一种实施方式中,所述方法是根据来源于Pseudomonas putida源的肌酸酶(CRE)的空间结构设计突变H125C和L130C,H125C和L130C位于肌酸酶两个亚基的界面处,得到突变H125C/L130C。
所述Pseudomonas putida源的肌酸酶(CRE)的氨基酸序列,是NCBI上GenBank:CAA00921.1所示的氨基酸序列。
在本发明的一种实施方式中,所述Pseudomonas putida源的肌酸酶是NCBI上GenBank:Genebank:A10619.1所示的肌酸酶。
本发明的有益效果:
本发明提供了一种新型简便的通过添加亚基间二硫键提高肌酸酶热稳定性的方法,改造后得到的突变体热稳定性有了明显提高,为肌酸酶在医疗诊断等领域的应用提供了方便。
附图说明
图1:野生酶与肌酸酶突变体的最适温度比较;其中突变125-130即为肌酸酶突变体H125C/L130C;
图2:野生酶与肌酸酶突变体的温度稳定性比较;其中突变125-130即为肌酸酶突变体H125C/L130C;
图3:野生酶与肌酸酶突变体的Tm值比较。
具体实施方式
实施例1:突变株的构建
(1)化学合成CRE基因片段,序列如GenBank登录号为A10619.1(Pseudomonasputida来源的肌酸酶)所示,将该基因片段连接到pET28a(+),转化E.coli,得到表达野生酶的重组E.coli。提取重组E.coli,质粒,验证正确的质粒,即为重组质粒pET28a(+)-CRE。
(2)以pET28a(+)-CRE为模板,用重叠延伸PCR技术进行定点突变,然后酶切连接到pET28a(+)。得到相对于GenBank:CAA00921.1的胆固醇氧化酶的第125位及130位氨基酸发生替换的突变质粒pET28a(+)-H125C/L130C。
(3)将pET28a(+)-H125C/L130C转化到大肠杆菌E.coli BL21(DE3)中,验证重组转化子,验证正确的即为突变体菌株E.coli-H125C/L130C,突变体菌株所产肌酸酶即为H125C/L130C。
实施例2:突变株发酵产酶纯化
(1)粗酶液的制备及纯化
种子液的培养条件:采用250mL摇瓶培养,装液为20%的LB培养基,并在培养基中加入过滤除菌的100mg·mL-1硫酸卡那霉素50μL,取单菌落至培养基中,37℃,200rpm,过夜培养。
发酵液培养条件:采用500mL摇瓶培养,装液为20%的LB培养基,并加入过滤除菌100mg·mL-1的硫酸卡那霉素100μL,加入5%的种子液,37℃,200rpm,培养至OD达到0.6-0.8,加入终浓度为1mM的IPTG,16℃,200rpm,诱导培养16h。
菌体的收集及粗酶液的获得:将发酵液8000rpm离心5min,称得湿重,按1g湿菌体加入20mL pH7.5,50mmol·mL-1的磷酸缓冲液的比例重悬菌体,进行超声破碎,破壁后8000rpm离心10min,上清即为粗酶液。
采用载体上的组氨酸标签,将粗酶液用镍柱进行亲和层析,获得纯酶液。
实施例3:CRE的活力测定及突变前后肌酸酶的热稳定性比较
CRE酶活的测定:
在试管中加入900μL肌酸溶液,在室温中平衡5min后加入100μL待测酶液,在37℃反应10min,然后向反应体系中加入2mL对-二甲氨基苯甲醛溶液终止反应,并置于25℃温育20min,在435nm处测定吸光度值。空白管是在肌酸溶液中先加入对-二甲氨基苯甲醛,后加入待测酶液,其它步骤与测定管一致。
单位酶活定义:1min内将肌酸水解产生1μmol尿素所需要的酶量。
不同温度25℃-50℃下,每隔5℃测酶活,最适温度定义为最高酶活性(以相对活性100%计)所对应的温度。将野生酶和突变体H125C/L130C分别在25、30、35、40、45、50℃下处理30min,然后在冰上冷却测酶活来测定酶的稳定性。
如图1所示,突变前后酶的最适温度没有改变,都为40℃。如图2所示,野生酶和H125C/L130C在30℃处理30min酶活基本没有降低,表明在该温度下肌酸酶的热稳定性较好。野生酶在35℃-50℃的环境下酶活随着温度的升高而迅速降低,在40℃时酶活已下降为25%以下,而突变酶H125C/L130C在40℃处理30min,保留酶活仍在50%以上。表明H125C/L130C的热稳定性有了较大的提高。
使用MOS-450圆二色光谱仪变温实验确定蛋白的变性温度,激发波长为208nm,控制温度变化为20℃-80℃,以1℃·min-1的梯度进行扫描,以温度为横坐标,吸光值为纵坐标,作出曲线图,拟合扫描光谱,将拟合曲线微分,其拐点即为变性温度Tm。
如图3所示,突变酶H125C/L130C与野生型肌酸酶有相似的解折叠曲线,但是H125C/L130C的Tm值为63℃,而野生型的Tm值为54.8℃,比野生型的提高了8.2℃,表明在肌酸酶二聚体的界面处引入二硫键,通过亚基间的二硫键增加了肌酸酶的热稳定性。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (7)

1.一种肌酸酶突变体,其特征在于,所述突变体的氨基酸序列是在NCBI上GenBank:CAA00921.1的肌酸酶氨基酸序列的基础上将第125位和第130位的氨基酸替换为半胱氨酸。
2.编码权利要求1所述突变体的核苷酸序列。
3.携带编码权利要求1所述突变体的核苷酸序列的表达载体。
4.表达权利要求1所述突变体的基因工程菌。
5.根据权利要求4所述的基因工程菌,其特征在于,所述基因工程菌是以大肠杆菌为宿主构建得到的。
6.权利要求1所述突变体的应用,其特征在于,所述应用是用于制备测定肌酸含量的试剂。
7.权利要求1所述突变体的应用,其特征在于,所述应用是用于制备测定肌酐含量的试剂。
CN201610865045.4A 2016-09-29 2016-09-29 一种提高肌酸酶热稳定性的方法 Active CN106399283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610865045.4A CN106399283B (zh) 2016-09-29 2016-09-29 一种提高肌酸酶热稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610865045.4A CN106399283B (zh) 2016-09-29 2016-09-29 一种提高肌酸酶热稳定性的方法

Publications (2)

Publication Number Publication Date
CN106399283A CN106399283A (zh) 2017-02-15
CN106399283B true CN106399283B (zh) 2019-09-17

Family

ID=59229118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610865045.4A Active CN106399283B (zh) 2016-09-29 2016-09-29 一种提高肌酸酶热稳定性的方法

Country Status (1)

Country Link
CN (1) CN106399283B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957553A (zh) * 2019-04-04 2019-07-02 大连大学 一种产肌氨酸氧化酶的芽孢杆菌的发酵产酶方法
CN109957533A (zh) * 2019-04-04 2019-07-02 大连大学 一株产肌氨酸氧化酶的海洋细菌及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839164A (zh) * 2012-09-06 2012-12-26 江南大学 基于二硫键强化折叠的热稳定性脂肪酶突变体及其构建方法
CN105274080A (zh) * 2015-11-11 2016-01-27 江南大学 一种热稳定性提高的肌酸水解酶突变体
CN105907739A (zh) * 2016-05-04 2016-08-31 江南大学 一种热稳定性提高的肌酸水解酶突变体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839164A (zh) * 2012-09-06 2012-12-26 江南大学 基于二硫键强化折叠的热稳定性脂肪酶突变体及其构建方法
CN105274080A (zh) * 2015-11-11 2016-01-27 江南大学 一种热稳定性提高的肌酸水解酶突变体
CN105907739A (zh) * 2016-05-04 2016-08-31 江南大学 一种热稳定性提高的肌酸水解酶突变体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAA00921;NCBI;《Gene Bank》;19930917;全文
Crystal Structure Determination, Refinement and Molecular Model of Creatine Amidinohydrolase from Pseudomonas putida;Hans W. Hoeflken et al.;《JMB》;19881231;417-433
基于化学修饰及分子改造提高肌酸酶的稳定性;高亚楠;《中国优秀硕士学位论文全文数据库》;20180215;A006-224

Also Published As

Publication number Publication date
CN106399283A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Hennig et al. 2.0 Å structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability
Kang et al. Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes
Kim et al. The 2.0 Å crystal structure of cephalosporin acylase
Yun et al. Crystal structure and allosteric regulation of the cytoplasmic Escherichia coli L-asparaginase I
Zein et al. Structural insights into the mechanism of the PLP synthase holoenzyme from Thermotoga maritima
Kroemer et al. Structure and catalytic mechanism of L-rhamnulose-1-phosphate aldolase
Huang et al. Pseudouridine monophosphate glycosidase: a new glycosidase mechanism
CN106399283B (zh) 一种提高肌酸酶热稳定性的方法
Ban et al. Additional salt bridges improve the thermostability of 1, 4-α-glucan branching enzyme
Andrade et al. Structure of amidase from Pseudomonas aeruginosa showing a trapped acyl transfer reaction intermediate state
Dobson et al. L, L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development
Bakunova et al. The uncommon active site of D-amino acid transaminase from Haliscomenobacter hydrossis: biochemical and structural insights into the new enzyme
Nagar et al. Potent inhibition of mandelate racemase by a fluorinated substrate-product analogue with a novel binding mode
Guillet et al. Insight into structure-function relationships and inhibition of the fatty Acyl-AMP ligase (FadD32) orthologs from mycobacteria
Safo et al. X-ray structure of Escherichia coli pyridoxine 5′-phosphate oxidase complexed with FMN at 1.8 Å resolution
WO2021027390A1 (zh) 一种肝素裂解酶突变体及其重组表达的方法
Zhang et al. Improving the thermostability of alginate lyase FlAlyA with high expression by computer-aided rational design for industrial preparation of alginate oligosaccharides
Xi et al. Enhanced thermal and alkaline stability of L-lysine decarboxylase CadA by combining directed evolution and computation-guided virtual screening
Kneuttinger et al. Light-regulation of tryptophan synthase by combining protein design and enzymology
Jayaraman et al. Protein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase
Angelini et al. Structural and enzymatic characterization of HP0496, a YbgC thioesterase from Helicobacter pylori
Zhao et al. Isolation and biochemical characterization of a metagenome-derived 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase gene from subtropical marine mangrove wetland sediments
Simanshu et al. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: comparison with members of acetate and sugar kinase/heat shock cognate 70/actin superfamily
Chen et al. Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase
Wieteska et al. Improving thermal stability of thermophilic l-threonine aldolase from Thermotoga maritima

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant