CN106399101A - 一种基于磁响应Pickering乳液的厌氧菌发酵培养方法 - Google Patents
一种基于磁响应Pickering乳液的厌氧菌发酵培养方法 Download PDFInfo
- Publication number
- CN106399101A CN106399101A CN201610414954.6A CN201610414954A CN106399101A CN 106399101 A CN106399101 A CN 106399101A CN 201610414954 A CN201610414954 A CN 201610414954A CN 106399101 A CN106399101 A CN 106399101A
- Authority
- CN
- China
- Prior art keywords
- emulsion
- pickering emulsion
- particle
- nano
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Soft Magnetic Materials (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明公开了一种基于磁响应Pickering乳液的厌氧菌发酵培养方法,以厌氧菌菌液为水相,正辛烷或白油为油相,烷基硅烷改性的Fe3O4纳米颗粒为稳定剂,成乳形成磁响应Pickering乳液;将该Pickering乳液作为微型生物反应体系实现对厌氧菌的培养。在培养过程中,通过油包水乳液提供绝对厌氧环境,借助外界磁场引导厌氧菌培养体系定向移动到不同物理环境中进行发酵培养,或进行迁移集中、或分离挑选和富集。发酵结束后,通过磁铁的吸引使得Pickering乳液由油水界面层进入水相并发生破乳,通过重力分离油相和水相(菌液和代谢产物)。本发明操作简单,投入成本低,节约资源,在厌氧发酵培养工业应用中有很好的应用前景。
Description
技术领域
本发明涉及微生物发酵技术领域。具体的说,涉及一种厌氧菌发酵培养技术。
背景技术
由于厌氧菌需要在无氧的条件下生长,所以在实验室培养厌氧菌较为困难。目前最为常用的厌氧菌培养方法包括厌氧培养箱和厌氧袋培养。但使用厌氧箱就必须购置氢气、氮气、二氧化碳等特定气体,以交换厌氧箱中的空气达到厌氧的目的,而厌氧袋则为一次性应用。这两种培养方法投入成本高,对资源消耗大,不利于少量厌氧菌的培养。从而在一定程度上限制了对厌氧菌的研究。除此之外,对于厌氧菌转移来说,目前还很难做到在绝对厌氧条件下实现菌体的转移。
发明内容
本发明针对上述问题,设计出一种简单易行、投入成本低、易于厌氧菌种转移且能够提供绝对厌氧环境的Pickering乳液厌氧菌培养体系。
本发明的目的主要有以下技术方法实现:一种基于磁响应Pickering乳液的厌氧菌发酵培养方法,以厌氧菌菌液为水相,正辛烷或白油为油相,烷基硅烷改性的Fe3O4纳米颗粒为稳定剂,成乳形成磁响应Pickering乳液;将该Pickering乳液作为微型生物反应体系实现对厌氧菌的培养,发酵结束后,通过磁铁的吸引使得Pickering乳液由油水界面层进入水相发生破乳;借助磁响应将破乳后的Fe3O4纳米颗粒进行回收;利用重力作用对油水两相分离操作,可得到发酵培养后的菌液和微生物代谢产物。
进一步地,所述Fe3O4纳米颗粒稳定剂按照下述步骤制得:
1)以体积比1:1比例配制乙醇/水溶液,适量粒径20-30nm的Fe3O4纳米颗粒加入到乙醇/水溶液中,确保乙醇/水溶液完全浸没Fe3O4纳米颗粒,在25℃、40KHz下超声分散20分钟;用外部磁场将超声分散的Fe3O4纳米颗粒沉降至底部,移出上清液;向沉淀中加入适量上述乙醇/水溶液,超声处理后磁铁辅助沉降,重复上述洗涤操作3次;
2)洗涤完成后,向Fe3O4纳米颗粒沉淀中加入无水乙醇,电动搅拌分散30分钟,转速350-400rpm,再依次向搅拌状态下的分散液中加入烷基三氯硅烷和水,电动搅拌12小时,转速350-400rpm,在本步骤中Fe3O4纳米颗粒沉淀:无水乙醇:烷基三氯硅烷(烷基碳原子数12-18):水=1:24:1~2:30质量比;
3)待反应结束后,磁铁辅助沉降Fe3O4纳米颗粒,移出上清液,用无水乙醇对改性后的Fe3O4纳米颗粒进行3次洗涤;
4)将上述Fe3O4纳米颗粒在50℃条件下恒温烘干,即制得Fe3O4纳米颗粒稳定剂。
进一步地,所述乳液厌氧菌培养包括如下步骤:
1)将烷基硅烷改性Fe3O4纳米颗粒稳定剂,加入到正辛烷中,超声分散2分钟,配制成质量百分比为1-3wt%的纳米颗粒-正辛烷(或白油)分散液;2)将此分散液加入到按常规方法培养制得的菌液(厌氧菌+培养基)中;3)匀浆机在5000-13000rpm转速下乳化1分钟,所得包裹有菌液的乳液在恒定温度下用作厌氧发酵培养;在本步骤中菌液:正辛烷(或白油)=8:5~8:11质量比。
将包裹有菌液的乳液在恒温37℃下用作厌氧发酵培养。在培养过程中,通过油包水乳液提供绝对厌氧环境,借助外界磁场引导Fe3O4纳米颗粒稳定的Pickering乳液厌氧菌培养体系定向移动到不同物理环境中进行发酵培养,或进行迁移集中、或分离挑选和富集。经显微镜观察法和菌种生长显色法鉴定,本发明方法所培养菌种繁殖效果良好。将本发明方法与厌氧菌常规培养相对比,每隔0.5小时监测两体系的菌种生产浓度,绘制菌种生长曲线。结果显示本发明方法更早达到菌种生长平衡,缩短了菌种培养时间。
进一步地,所述Fe3O4纳米颗粒稳定剂与厌氧菌液的破乳分离过程包括:
1)外部磁场沿容器壁向下移动,Pickering乳液在磁驱动下由油水界面转移进入水相并发生乳液破裂,多次上下移动磁铁操作,直到体系中不再存在乳液;
2)在外部磁场的吸引下,将破乳后的Fe3O4纳米颗粒进行回收;
3)利用重力作用进行油水两相分离操作,得到发酵培养后的菌液和微生物代谢目标产物。
采用本发明的基本方法,还可根据研究、生产和使用的不同需求,灵活地适应更多的需求环境,通过磁响应对包裹有菌体的乳液进行定向转移,在培养过程中,通过油包水乳液提供绝对厌氧环境,借助外界磁场引导Fe3O4纳米颗粒稳定的Pickering乳液厌氧菌培养体系定向移动到不同物理环境中进行发酵培养、迁移集中、分离挑选和富集。
本发明磁响应Pickering乳液厌氧菌培养体系,能够提供绝对的厌氧环境并且体系长时间保持稳定;Fe3O4纳米颗粒接枝上碳链后,获得合适的浸润性,能够落在油水界面层,达到长时间稳定油包水乳液的效果。通过油相将厌氧菌液与外界空气隔离,使其处于绝对厌氧的环境中。同时,Fe3O4纳米颗粒具有很强的顺磁性,吸附于Pickering乳液表面后使Pickering乳液具有了磁响应性,从而实现菌种的定向转移。通过磁铁吸引使得乳液从油水界面进入水相中时,破乳分离菌液、油相和Fe3O4纳米颗粒。该方法简单易行、实用性强。
附图说明
附图1为本发明的磁响应Pickering乳液厌氧菌培养体系示意图。
具体实施方式
下面结合附图及实施例对本发明进行更为详尽的说明,但本发明的实施方式不限于此。工艺步骤中所涉及化学原料与试剂均为常规市售工业纯。
实施例一:
根据乳酸菌生长习性,以蛋白胨0.5wt%、葡萄糖0.5wt%、NaCl0.5wt%,水98.5wt%(质量百分比)为原料配制培养基并在121℃下灭菌20分钟。向50mL灭菌后的培养基中接入1mL的原始菌种,混匀成乳酸菌液待用。
配制60mL的体积比为1:1的乙醇/水溶液,称取1g的市售Fe3O4纳米颗粒,加入上述乙醇/水溶液中,在25℃、40KHz下超声处理20分钟。待超声分散的Fe3O4纳米颗粒自然沉降后,移出上清液。加入乙醇/水溶液重复上述洗涤操作3次,洗涤完成后,向Fe3O4纳米颗粒沉淀中加入30mL无水乙醇,电动搅拌分散30分钟(转速350-400rpm),再向搅拌状态下的分散液中依次加入1.2mL的十八烷基三氯硅烷和30mL水,电动搅拌12小时(转速350-400rpm),待反应结束后静置一段时间将固液分离,移出上清液,用无水乙醇进行3次洗涤。移除洗涤液后在50℃条件下恒温烘干,可得Fe3O4纳米颗粒稳定剂。
称取0.08g的Fe3O4纳米颗粒稳定剂于10mL正辛烷中,超声分散2分钟,将超声分散后的分散液加入到8mL配制好的乳酸菌液中;匀浆机在13000rpm转速下乳化1分钟,即得到包裹有乳酸菌的Pickering乳液。将包裹有乳酸菌的Pickering乳液在烧杯中恒温37℃下静置培养。在培养过程中,通过油包水乳液提供绝对厌氧环境,借助外界磁场引导Fe3O4纳米颗粒稳定的Pickering乳液厌氧菌培养体系定向移动到不同物理环境中进行发酵培养,或进行迁移集中、或分离挑选和富集。经显微镜观察法和乳酸菌种生长显色法(甲基红显色法)鉴定,本发明方法所培养菌种繁殖效果良好。将本发明方法与厌氧菌常规培养相对比,每隔0.5小时监测两体系的菌种生产浓度,绘制菌种生长曲线。结果显示本发明方法更早达到菌种生长平衡,缩短了菌种培养时间。
培养结束后,手持磁铁沿杯壁向下移动,多次操作直到体系中不再存在乳液。破乳后将混悬液静置,直到Fe3O4纳米颗粒都落至油水界面层。随后在磁铁的引导下,将Fe3O4纳米颗粒进行回收。最后,利用重力作用,油水相分层,除去上层的油相,即得到培养后的菌液。
实施例二:在(a)步骤中,Fe3O4纳米颗粒沉淀:无水乙醇:十二烷基三氯硅烷:水=1:24:1:30(质量比),在(b)步骤中菌液:正辛烷=8:5(质量比)其他生产条件如实施例一。
实施例三:在(a)步骤中,Fe3O4纳米颗粒沉淀:无水乙醇:十八烷基三氯硅烷:水=1:24:2:30(质量比),在(b)步骤中菌液:白油=8:11(质量比)其他生产条件如实施例一。
以上实施例可见,本发明基于磁响应Pickering乳液的厌氧菌发酵体系可实现对厌氧菌的培养和定向转移,具有广阔的应用前景。
Claims (5)
1.一种基于磁响应Pickering乳液的厌氧菌发酵培养方法,其特征在于,以厌氧菌菌液为水相,正辛烷或白油为油相,烷基硅烷改性的Fe3O4纳米颗粒为稳定剂,成乳形成磁响应Pickering乳液;将该Pickering乳液作为微型生物反应体系实现对厌氧菌的培养,发酵结束后,通过磁铁的吸引使得Pickering乳液由油水界面层进入水相发生破乳;借助磁响应将破乳后的Fe3O4纳米颗粒进行回收;利用重力作用对油水两相分离操作,可得到发酵培养后的菌液和微生物代谢产物。
2.根据权利要求1所述的基于磁响应Pickering乳液的厌氧菌发酵培养方法,所述Fe3O4纳米颗粒稳定剂按照下述步骤制得:
1)以体积比1:1比例配制乙醇/水溶液,适量粒径20-30nm的Fe3O4纳米颗粒加入到乙醇/水溶液中,确保乙醇/水溶液完全浸没Fe3O4纳米颗粒,在25℃、40KHz下超声分散20分钟;用外部磁场将超声分散的Fe3O4纳米颗粒沉降至底部,移出上清液;向沉淀中加入适量上述乙醇/水溶液,超声处理后磁铁辅助沉降,重复上述洗涤操作3次;
2)洗涤完成后,向Fe3O4纳米颗粒沉淀中加入无水乙醇,电动搅拌分散30分钟,转速350-400rpm,再依次向搅拌状态下的分散液中加入烷基三氯硅烷和水,电动搅拌12小时,转速350-400rpm,在本步骤中Fe3O4纳米颗粒沉淀:无水乙醇:烷基三氯硅烷(烷基碳原子数12-18):水=1:24:1~2:30质量比;
3)待反应结束后,磁铁辅助沉降Fe3O4纳米颗粒,移出上清液,用无水乙醇对改性后的Fe3O4纳米颗粒进行3次洗涤;
4)将上述Fe3O4纳米颗粒在50℃条件下恒温烘干,即制得Fe3O4纳米颗粒稳定剂。
3.根据权利要求1所述的基于磁响应Pickering乳液的厌氧菌发酵培养方法,所述乳液厌氧菌培养包括如下步骤:
1)将烷基硅烷改性Fe3O4纳米颗粒稳定剂,加入到正辛烷或白油中,超声分散2分钟,配制成质量百分比为1-3wt%的纳米颗粒-正辛烷或白油分散液;2)将此分散液加入到按常规方法培养制得的菌液(厌氧菌+培养基)中;3)匀浆机在5000-13000rpm转速下乳化1分钟,所得包裹有菌液的乳液在恒定温度下用作厌氧发酵培养;在本步骤中菌液:正辛烷或白油=8:5~8:11质量比。
4.根据权利要求1所述的基于磁响应Pickering乳液的厌氧菌发酵培养方法,所述Fe3O4纳米颗粒稳定剂与厌氧菌液的破乳分离过程包括:
1)外部磁场沿容器壁向下移动,Pickering乳液在磁驱动下由油水界面转移进入水相并发生乳液破裂,多次上下移动磁铁操作,直到体系中不再存在乳液;
2)在外部磁场的吸引下,将破乳后的Fe3O4纳米颗粒进行回收;
3)利用重力作用进行油水两相分离操作,得到发酵培养后的菌液和微生物代谢目标产物。
5.根据权利要求1所述的基于磁响应Pickering乳液的厌氧菌发酵培养方法,其特征在于,通过磁响应对包裹有菌体的乳液进行定向转移,在培养过程中,通过油包水乳液提供绝对厌氧环境,借助外界磁场引导Fe3O4纳米颗粒稳定的Pickering乳液厌氧菌培养体系定向移动到不同物理环境中进行发酵培养、迁移集中、分离挑选和富集。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610414954.6A CN106399101B (zh) | 2016-06-14 | 2016-06-14 | 一种基于磁响应Pickering乳液的厌氧菌发酵培养方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610414954.6A CN106399101B (zh) | 2016-06-14 | 2016-06-14 | 一种基于磁响应Pickering乳液的厌氧菌发酵培养方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106399101A true CN106399101A (zh) | 2017-02-15 |
CN106399101B CN106399101B (zh) | 2019-12-20 |
Family
ID=58006481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610414954.6A Active CN106399101B (zh) | 2016-06-14 | 2016-06-14 | 一种基于磁响应Pickering乳液的厌氧菌发酵培养方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106399101B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108753581A (zh) * | 2018-08-01 | 2018-11-06 | 江西中江环保股份有限公司 | 一种铁还原氨氧化菌富集装置和富集工艺 |
CN113729227A (zh) * | 2021-08-30 | 2021-12-03 | 华中农业大学 | 基于水包水乳液结构的益生菌微胶囊制剂及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102517234A (zh) * | 2011-12-27 | 2012-06-27 | 四川大学 | 一株克雷伯氏菌株及其处理土壤和果蔬表面毒死蜱农药残留的方法 |
CN103920471A (zh) * | 2014-01-17 | 2014-07-16 | 江苏大学 | 一种酵母菌磁性印迹复合微球吸附剂的制备方法 |
-
2016
- 2016-06-14 CN CN201610414954.6A patent/CN106399101B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102517234A (zh) * | 2011-12-27 | 2012-06-27 | 四川大学 | 一株克雷伯氏菌株及其处理土壤和果蔬表面毒死蜱农药残留的方法 |
CN103920471A (zh) * | 2014-01-17 | 2014-07-16 | 江苏大学 | 一种酵母菌磁性印迹复合微球吸附剂的制备方法 |
Non-Patent Citations (1)
Title |
---|
XIUYING QIAO ET AL: "Magnetorheological behavior of Pickering emulsions stabilized by surface-modified Fe3O4 nanoparticles", 《COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108753581A (zh) * | 2018-08-01 | 2018-11-06 | 江西中江环保股份有限公司 | 一种铁还原氨氧化菌富集装置和富集工艺 |
CN108753581B (zh) * | 2018-08-01 | 2023-11-03 | 江西中江环保股份有限公司 | 一种铁还原氨氧化菌富集装置和富集工艺 |
CN113729227A (zh) * | 2021-08-30 | 2021-12-03 | 华中农业大学 | 基于水包水乳液结构的益生菌微胶囊制剂及其制备方法 |
CN113729227B (zh) * | 2021-08-30 | 2023-09-12 | 华中农业大学 | 基于水包水乳液结构的益生菌微胶囊制剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106399101B (zh) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Besson et al. | High-pH-induced flocculation–flotation of the hypersaline microalga Dunaliella salina | |
Pham et al. | Cultivation of unculturable soil bacteria | |
Araujo et al. | Magnetotactic bacteria as potential sources of bioproducts | |
Zhang et al. | A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets | |
Gerde et al. | Microalgae flocculation: impact of flocculant type, algae species and cell concentration | |
Powell et al. | Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137 | |
Hu et al. | Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles | |
Travieso et al. | A helical tubular photobioreactor producing Spirulina in a semicontinuous mode | |
Hristov | Magnetic field assisted fluidization–a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses | |
Hønsvall et al. | Continuous harvesting of microalgae by new microfluidic technology for particle separation | |
Cheng et al. | Strengthening mass transfer of carbon dioxide microbubbles dissolver in a horizontal tubular photo-bioreactor for improving microalgae growth | |
Abu-Reesh et al. | Biological responses of hybridoma cells to hydrodynamic shear in an agitated bioreactor | |
Hu et al. | Improvement of panaxnotoginseng cell culture for production of ginseng saponin and polysaccharide by high density cultivation in pneumatically agitated bioreactors | |
Hanišáková et al. | The historical development of cultivation techniques for methanogens and other strict anaerobes and their application in modern microbiology | |
CN106399101A (zh) | 一种基于磁响应Pickering乳液的厌氧菌发酵培养方法 | |
Chakravarty et al. | A kinetic model for microbial growth on solid hydrocarbons | |
Potocar et al. | Cooking oil-surfactant emulsion in water for harvesting Chlorella vulgaris by sedimentation or flotation | |
Mooij et al. | Influence of silicate on enrichment of highly productive microalgae from a mixed culture | |
Jajan et al. | Effects of environmental conditions on high-yield magnetosome production by Magnetospirillum gryphiswaldense MSR-1 | |
Sandhu et al. | Surface properties and adherence of bradyrhizobium diazoefficiens to glycine max roots are altered when grown in soil extracted nutrients | |
Savvidou et al. | Magnetic Immobilization and Growth of Nannochloropsis oceanica and Scenedasmus almeriensis | |
CN106365324B (zh) | 一种利用纳米磁性硅油强化正己烷生物降解的方法 | |
Fadlallah et al. | Effects of shear stress on the growth rate of micro-organisms in agitated reactors | |
Neelwarne et al. | Bioreactor for cultivation of red beet hairy roots and in situ recovery of primary and secondary metabolites | |
Gutiérrez-Arnillas et al. | Ionic liquids for the concomitant use in extremophiles lysis and extremozymes extraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |