CN106396093B - 一种促进活性污泥颗粒化的方法 - Google Patents

一种促进活性污泥颗粒化的方法 Download PDF

Info

Publication number
CN106396093B
CN106396093B CN201611006179.7A CN201611006179A CN106396093B CN 106396093 B CN106396093 B CN 106396093B CN 201611006179 A CN201611006179 A CN 201611006179A CN 106396093 B CN106396093 B CN 106396093B
Authority
CN
China
Prior art keywords
sludge
activated sludge
modified
granulation
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611006179.7A
Other languages
English (en)
Other versions
CN106396093A (zh
Inventor
刘洁
信欣
管磊
印红玲
徐成华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University of Information Technology
Original Assignee
Chengdu University of Information Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University of Information Technology filed Critical Chengdu University of Information Technology
Priority to CN201611006179.7A priority Critical patent/CN106396093B/zh
Publication of CN106396093A publication Critical patent/CN106396093A/zh
Application granted granted Critical
Publication of CN106396093B publication Critical patent/CN106396093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明公开了一种促进活性污泥颗粒化的方法,将改性纳米球投加到活性污泥系统中构成;改性纳米球由表面活性剂、NaOH、水溶液、正硅酸乙酯和异硅源组成;按照摩尔比表面活性剂:NaOH:水溶液:正硅酸乙酯:异硅源=1:2.5:9500:7.4~7.8:0.2~0.6;改性纳米球的制备方法包括:将表面活性剂、NaOH、水溶液、正硅酸乙酯、异硅源按照摩尔比于60~80℃条件下混合搅拌12~48h;再于80~120℃下水热处理24~48h,将悬浊液抽滤、洗涤后80~120℃下干燥过夜,制得改性纳米球。本发明可加快颗粒化的进程,促进颗粒污泥不断成长;结构也会变得更加紧实,使微生物系统的传质过程更加稳定。

Description

一种促进活性污泥颗粒化的方法
技术领域
本发明属于污泥处理技术领域,尤其涉及一种促进活性污泥颗粒化的方法。
背景技术
颗粒污泥法具有沉降性能良好、结构密实、生物量浓度高、抗冲击能力强、可抵抗有毒有害物质等特性,是活性污泥法工艺的核心技术。污泥颗粒化不仅有助于微生物反应,有助于微生物积累,同时也是生物反应器高效运行的主要基础条件。好氧工艺是处理城市污水的主流工艺。然而,好氧颗粒污泥成核条件苛刻、生长周期较长,限制了好氧颗粒污泥在实际废水处理工程中的应用。晶核假说是目前较为主流的颗粒污泥成核原理。好氧污泥颗粒污泥的形成过程可以看成污泥胶团结晶的过程,在晶核的基础上,颗粒污泥不断的成长,直到最后形成成熟、稳定的颗粒污泥。而传统的晶核来源于接种污泥或者在污泥的生长发育过程中产生的无机盐、有机物等胞外聚合物。故越来越多的研究者将各种具有优良性能的材料当作晶核投加到污泥中。李冬、高阳等(中国环境科学,2016,36:25~28)发现在颗粒形成初期投加颗粒活性炭作为初始晶核,可以节省小颗粒形成的时间。国家发明专利(CN103708688 A)公开了一种水晶微粉促进好氧污泥颗粒化的方法。微晶粉的主要成分是微米级二氧化硅,然而二氧化硅是疏水材料,且对生物的亲和性较弱,有必要对其进行改性,促使形成具有坚实三维立体结构的好氧颗粒污泥。
综上所述,现有的水晶微粉促进好氧污泥颗粒化的方法存在对生物的亲和性较弱,在一定程度上限制了微生物细胞在其上的粘附,也不利于形成坚实的颗粒污泥。
发明内容
本发明的目的在于提供一种促进活性污泥颗粒化的方法,旨在解决现有的水晶微粉促进好氧污泥颗粒化的方法存在对生物的亲和性较弱的问题。
本发明是这样实现的,一种改性纳米球,所述改性纳米球按照摩尔比包括:表面活性剂:NaOH:水溶液:正硅酸乙酯:异硅源=1:2.5:9500:7.4~7.8:0.2~0.6;
所述表面活性剂为十六烷基三甲基溴化胺、十二烷基胺三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基三甲基氯化铵中的一种或几种;
所述异硅源为3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、N-氨乙基-γ-氨丙基三乙氧基硅烷、3-(2-氨乙基)-氨丙基甲基二甲氧基硅烷、N-[3-(2-氨基乙基氨基)丙基]三甲氧基硅烷中的一种或几种。
进一步,所述改性纳米球直径为20~100nm、氨基改性的纳米硅球。
本发明的另一目的在于提供一种所述改性纳米球的制备方法,所述改性纳米球的制备方法包括以下步骤:
步骤一,将表面活性剂、NaOH、水溶液、正硅酸乙酯、异硅源按照1:2.5:9500:7.4~7.8:0.2~0.6的摩尔比于60~80℃条件下混合搅拌12~48h;
步骤二,再于80~120℃下水热处理24~48h,将悬浊液抽滤、洗涤后80~120℃下干燥过夜,制得改性纳米球。
本发明的另一目的在于提供一种应用所述改性纳米球的间歇流活性污泥系统。
本发明的另一目的在于提供一种应用所述改性纳米球的连续流活性污泥系统。
本发明提供的促进活性污泥颗粒化的方法,改性纳米硅球为直径为20~100nm、氨基改性的纳米硅球。好氧污泥颗粒污泥的形成过程可看成结晶的过程,以大比表面积的纳米硅球作为颗粒污泥附着的“核”,可加快颗粒化的进程,促进颗粒污泥不断成长,直到最后形成成熟、稳定的颗粒污泥。好氧颗粒污泥表面一般带有电负性,这种带电特性可以用Zeta点位来表示,Zeta电位越高,粒子间的静电斥力就越大。在一般情况下,微生物胶团是带负电荷的,能够与水溶液中的阳离子产生电中和反应,由此微生物胶团不断变大,同时结构也会变得更加紧凑。而胺改性材料给颗粒污泥胶团提供了更多的正电荷位点,与微生物细菌自身所带的负电荷相匹配,使改性材料与微生物菌胶团结合的更加紧密,从而促进颗粒化的进程。纳米硅球在水中有良好的分散性,微生物胶团聚集在纳米硅球上,可以使微生物系统的传质过程更加稳定。在生物系统中,微生物在适宜的条件下,相互聚集后形成共生体颗粒,活性和传质条件直接影响着颗粒的稳定性。
附图说明
图1是本发明实施例提供的促进活性污泥颗粒化的方法流程图。
图2是本发明实施例提供的纳米硅球(左)与改性纳米硅球(右)的结构示意图。
图3是本发明实施例提供的纳米硅球的TEM图。
图4是本发明实施例提供的#0、#3、#7、#none反应器内污泥形态变化(×4倍)。
图5是本发明实施例提供的#0、#3、#7、#none反应器内污泥SVI变化情况。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
本发明实施例提供的改性纳米球为直径为20~100nm、氨基改性的纳米硅球。改性纳米球按照摩尔比包括:表面活性剂:NaOH:水溶液:正硅酸乙酯(TEOS):异硅源=1:2.5:9500:(7.4~7.8):(0.2~0.6)。
如图1所示,本发明实施例提供的改性纳米球的制备方法包括以下步骤:
S101:将表面活性剂、NaOH、水溶液、正硅酸乙酯(TEOS)、异硅源按照1:2.5:9500:(7.4~7.8):(0.2~0.6)的摩尔比于60~80℃条件下混合搅拌12~48h;
S102:再于80~120℃下水热处理24~48h,将悬浊液抽滤、洗涤后80~120℃下干燥过夜,制得改性纳米球。
所述表面活性剂为十六烷基三甲基溴化胺、十二烷基胺三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基三甲基氯化铵中的一种或几种。
所述异硅源为3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、N-氨乙基-γ-氨丙基三乙氧基硅烷、3-(2-氨乙基)-氨丙基甲基二甲氧基硅烷、N-[3-(2-氨基乙基氨基)丙基]三甲氧基硅烷中的一种或几种。
所述的活性污泥系统为间歇或连续流活性污泥系统。
下面结合实验对本发明的应用效果作详细的描述。
将1.02g CTAB(十六烷基三甲基溴化铵)溶于480ml蒸馏水中,加入3.5ml NaOH溶液(2mol/L),80℃油浴条件下搅拌0.5h后,滴加一定质量的TEOS(正硅酸乙酯)和一定质量的APTS(氨丙基三乙氧基硅烷),80℃下继续搅拌24h,后于100℃水热处理48h,抽滤,洗涤,100℃干燥过夜,样品研磨备用。当APTS中硅的摩尔量占体系总硅量的0%、3%、7%时可制得SiO2、A3SiO2、A7SiO2样品。
本实验采用平行试验方案,建立四个构造相同的SBR反应器,控制反应器的运行控制参数(如表1),按0.5g/L的比例分别向#0、#3、#7反应器中添加SiO2、A3SiO2、A7SiO2样品,#none反应器不添加任何样品。本实验中所有的接种污泥均采于四川省成都市双流县科雅污水处理有限公司二沉池回流污泥。污泥培养的进水指标见表2。
表1反应器运行的控制参数
Figure BDA0001149784200000061
表2主要进水指标
Figure BDA0001149784200000062
实验中采用透射电镜(JEM-2010透射电子显微镜,日本电子JEOL公司,加速电压为160KV)观察纳米硅球的微观形貌,结果如图2所示。采用水热法制备的硅球粒径大小约30~100nm,具有较好的单分散性。
本实验采用光学显微镜观察污泥外表的形貌特征。接种的污泥外观为褐色絮状(以菌胶团为主),呈较松散蓬松的状态,丝状菌含量较多,沉降性能不好。在接种初期,4个反应器依然呈现为褐色,在曝气装置的作用下,污泥能够均匀的分散在水体中。培养11天时,通过光学显微镜看到#none、#0、#7反应器中的污泥无明显变化,而#3反应器中的污泥逐渐形成颗粒;培养24天时,#none、#0、#7反应器中有一些聚集态的污泥,但是其粒径还十分细小,仍然达不到颗粒污泥的大小,而#3反应器中的污泥粒径变化明显,估计最大粒径达400-550μm。
实验中采用重力沉降法测定污泥的沉降速率。随机地从反应器溶液中取出好氧污泥,将其放入500ml量筒中,让其自由沉降,记录沉降时间和距离,从而计算得到污泥的沉降速度。如附图5所示,由于接种污泥相同,初始的SVI值几乎相等。随着反应的进行,各试验装置的污泥体积指数(SVI)逐渐减小并最终趋于稳定。但#3反应器的沉降性能最佳,沉降时间最短,沉降体积最小。这与反应器中快速形成的颗粒污泥有直接关系。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种促进活性污泥颗粒化的方法,其特征在于,所述促进活性污泥颗粒化的方法采用改性纳米球;
所述改性纳米球的制备方法是将 1.02g十六烷基三甲基溴化铵溶于480ml蒸馏水中,加入3.5ml浓度为 2mol/L 的NaOH溶液,80℃油浴条件下搅拌0.5h后,滴加一定质量的正硅酸乙酯和一定质量的氨丙基三乙氧基硅烷,80℃下继续搅拌24h,后于100℃水热处理48h,抽滤,洗涤,100℃干燥过夜,样品研磨备用,其中氨丙基三乙氧基硅烷中硅的摩尔量占体系总硅量的3%;
将改性纳米球应用于间歇流活性污泥系统或连续流活性污泥系统。
CN201611006179.7A 2016-11-10 2016-11-10 一种促进活性污泥颗粒化的方法 Active CN106396093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611006179.7A CN106396093B (zh) 2016-11-10 2016-11-10 一种促进活性污泥颗粒化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611006179.7A CN106396093B (zh) 2016-11-10 2016-11-10 一种促进活性污泥颗粒化的方法

Publications (2)

Publication Number Publication Date
CN106396093A CN106396093A (zh) 2017-02-15
CN106396093B true CN106396093B (zh) 2020-01-21

Family

ID=59230409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611006179.7A Active CN106396093B (zh) 2016-11-10 2016-11-10 一种促进活性污泥颗粒化的方法

Country Status (1)

Country Link
CN (1) CN106396093B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902756B (zh) * 2017-11-21 2021-07-13 齐鲁工业大学 一种加速柠檬酸废水厌氧污泥颗粒化的方法
CN109701538A (zh) * 2018-12-28 2019-05-03 华东理工大学 一种纳米硅球的合成方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769777A (en) * 1994-02-25 1998-06-23 Zinke; Bernhard Method for absorbing organic pollutants
CN105174476A (zh) * 2015-09-28 2015-12-23 中国科学院城市环境研究所 用于废水处理的活性污泥与微藻耦合颗粒化系统及其构建和运行方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654253A (zh) * 2009-09-04 2010-02-24 上海交通大学 二氧化硅介孔空心球形材料的制备方法
CN102530972A (zh) * 2012-01-06 2012-07-04 上海交通大学 粒径30~80nm的二氧化硅空心球的制备方法
CN102965365B (zh) * 2012-11-30 2014-05-07 河海大学 一种用于水质净化的微生物纳米球的制备方法
CN104399427A (zh) * 2014-12-16 2015-03-11 莆田学院 一种多孔二氧化硅微球吸附剂的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769777A (en) * 1994-02-25 1998-06-23 Zinke; Bernhard Method for absorbing organic pollutants
CN105174476A (zh) * 2015-09-28 2015-12-23 中国科学院城市环境研究所 用于废水处理的活性污泥与微藻耦合颗粒化系统及其构建和运行方法

Also Published As

Publication number Publication date
CN106396093A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Zhao et al. Harvesting Chlorella vulgaris by magnetic flocculation using Fe3O4 coating with polyaluminium chloride and polyacrylamide
Honda et al. Development of chitosan-conjugated magnetite for magnetic cell separation
Jiang et al. The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant
Zheng et al. A rapid inoculation method for microalgae biofilm cultivation based on microalgae-microalgae co-flocculation and zeta-potential adjustment
CN106396093B (zh) 一种促进活性污泥颗粒化的方法
Shi et al. Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite
CN107583617B (zh) 一种吸附双氯酚酸钠的磁性微球
CN105771908B (zh) 一种用于重金属吸附的磁性二氧化硅核壳复合材料及其制备方法
CN106495317A (zh) 一种硝化好氧颗粒污泥的培养方法和用途
Ye et al. Metal-organic framework modified hydrophilic polyvinylidene fluoride porous membrane for efficient degerming selective oil/water emulsion separation
Dai et al. Structural insights into mechanisms of rapid harvesting of microalgae with pH regulation by magnetic chitosan composites: A study based on E-DLVO model and component fluorescence analysis
Liu et al. Improved biological wastewater treatment and sludge characteristics by applying magnetic field to aerobic granules
CN113908783B (zh) 一种磁性聚合物复合微粒及其制备方法和应用
CN101811779B (zh) 耐盐净污菌剂的制备方法及其菌剂
Liu et al. Synthesis of antibacterial polyaluminium silicate sulfate/sepiolitenano composite coagulant for oilfield sewage treatment
CN103045479A (zh) 利用磁性絮凝纳米微粒快速收集藻体的方法与应用
CN106365307A (zh) 一种磁性纳米硅基好氧颗粒污泥及其培养方法和应用
CN101117221A (zh) 单分散磁性二氧化硅纳米颗粒的制备方法
Zhang et al. Preparation of WPU-based super-amphiphobic coatings functionalized by in situ modified SiO x particles and their anti-biofilm mechanism
Mu et al. Desulfurization with Thialkalivibrio versutus immobilized on magnetic nanoparticles modified with 3-aminopropyltriethoxysilane
Huang et al. High-efficiency harvesting of microalgae enabled by chitosan-coated magnetic biochar
CN108993425A (zh) 一种复合型的生物吸附剂及其应用
Xu et al. Desulfurization of immobilized sulfur-oxidizing bacteria, Thialkalivibrio versutus, by magnetic nanaoparticles under haloalkaliphilic conditions
CN108587949B (zh) 一株中温好氧反硝化脱氮除磷菌及其分离方法和应用
Li et al. Preparation of magnetic macroporous polymer sphere for biofilm immobilization and biodesulfurization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant