CN106385026A - 一种电力系统运行状态协调优化方法 - Google Patents

一种电力系统运行状态协调优化方法 Download PDF

Info

Publication number
CN106385026A
CN106385026A CN201610882041.7A CN201610882041A CN106385026A CN 106385026 A CN106385026 A CN 106385026A CN 201610882041 A CN201610882041 A CN 201610882041A CN 106385026 A CN106385026 A CN 106385026A
Authority
CN
China
Prior art keywords
cascading failure
power system
electric power
risk
coordination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610882041.7A
Other languages
English (en)
Other versions
CN106385026B (zh
Inventor
张爽
沈沉
姚锐
梅生伟
杨超平
焦龙
李旭涛
李宏强
任勇
罗海荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Original Assignee
Tsinghua University
Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Electric Power Research Institute of State Grid Ningxia Electric Power Co Ltd filed Critical Tsinghua University
Priority to CN201610882041.7A priority Critical patent/CN106385026B/zh
Publication of CN106385026A publication Critical patent/CN106385026A/zh
Application granted granted Critical
Publication of CN106385026B publication Critical patent/CN106385026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开一种电力系统运行状态协调优化方法,包括:确定电力系统连锁故障的目标函数;设置所述目标函数的约束条件;根据所述目标函数和约束条件,建立连锁故障风险协调优化模型;采用连锁故障风险协调优化模型确定最优目标函数值;确定所述最优目标函数值对应的操作;根据所述操作调整所述电力系统。通过利用连锁故障模型进行连锁故障模拟,并进行风险评估,得到的风险指标具有明确的物理意义,即损失负荷量或经济损失,与传统的基于严重度函数的方法相比,具有更高的实用性,另外,通过利用多级连锁故障相关性的函数作为风险约束,更能反映实际多级连锁故障的发展特征及风险分布,准确性更高。

Description

一种电力系统运行状态协调优化方法
技术领域
本发明涉及电力系统安全防护技术领域,特别是涉及一种电力系统运行状态协调优化方法。
背景技术
电力系统连锁故障是由任意位置处故障引发的电力系统元件不受控的相继退出运行,连锁故障在系统运行分区间扩散并引发系统中大范围的不可遏制的供电中断。电力系统连锁故障可能导致大停电,因而对电力系统运行安全具有极大威胁。因此有必要对连锁故障进行建模与模拟、分析与控制。连锁故障的控制对应着系统安全性的提升,可以通过及时调整运行状态来实现。然而电力系统作为社会经济运行的重要生产工具,其运行的经济性同样至关重要。电力系统的经济性和安全性存在此消彼长的矛盾关系,因此在进行连锁故障防治时,需要在保障系统安全性的同时兼顾运行的经济性,实现安全性与经济性的协调,避免因过度加强安全性而造成浪费。
合理的连锁故障控制方法首先应当充分考虑连锁故障的重要特性(如各级故障之间的相关性等),然而目前尚未有考虑多级连锁故障相关性的实用连锁故障控制方法。
发明内容
本发明的目的是提供一种有效降低连锁故障风险的电力系统运行状态协调优化方法,通过快速连锁故障风险评估和优化模型,实现协调的连锁故障风险控制。
为实现上述目的,本发明提供了如下方案:
一种电力系统运行状态协调优化方法,其特征在于,包括以下步骤:
确定电力系统连锁故障的目标函数;
设置所述目标函数的约束条件;
根据所述目标函数和约束条件,建立连锁故障风险协调优化模型;
采用连锁故障风险协调优化模型确定最优目标函数值;
确定所述最优目标函数值对应的操作;
根据所述操作调整所述电力系统。
可选的,所述确定电力系统连锁故障的目标函数,具体为确定操作成本函数,采用如下公式表达:
f=CD T(Pd 0-Pd)+CG T|Pg-Pg 0| (1)
其中,f为操作成本,用C表示,Pd 0,Pg 0为调度前系统各节点的负荷功率与发电功率,Pd,Pg为待求变量,为调度后系统各节点的负荷功率与发电功率组成的列向量,CD,CG分别为单位功率切负荷和单位发电机调整所产生的成本。
可选的,设置所述目标函数的约束条件,具体包括:设置潮流约束、支路潮流约束、多级连锁故障相关性约束。
可选的,所述设置潮流约束的表达式为:
Bθ=Pg-Pd; (2)
其中,θ为节点相角,N为节点数,B为支路电抗的N×N矩阵。
可选的,所述支路潮流约束的表达式为:
-Fmax≤F(θ)≤Fmax; (3)
其中,Fmax为支路潮流限值列向量,F(θ)=[F1(θ),...,FNL(θ)]T,NL为运行的支路数,若支路k的首末节点分别为i和j,则Fk(θ)=(θij)/xij
可选的,所述支路多级连锁故障相关性约束的表达式为:
- ▿ R F . [ P d - P d 0 P g - P g 0 ] ≤ R E - R F ( x 0 ) ; - - - ( 4 )
其中,RF为后续连锁故障风险,为后续连锁故障风险梯度,RE为期望的风险上限,Pd0,Pg0分别为采用公式(1)(2)(3)所得到的调整后负荷与发电功率。
可选的,所述确定所述最优目标函数值对应的操作,具体包括:调整发电功率和调整负荷功率。
可选的,所述采用连锁故障风险协调优化模型确定最优目标函数值,具体包括:采用连锁故障风险协调优化模型确定目标函数的最小值。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
1、通过利用连锁故障模型进行连锁故障模拟,并进行风险评估,得到的风险指标具有明确的物理意义,即损失负荷量或经济损失,与传统的基于严重度函数的方法相比,具有更高的实用性。
2、通过利用多级连锁故障相关性的函数作为风险约束,更能反映实际多级连锁故障的发展特征及风险分布,准确性更高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种有效降低连锁故障风险的电力系统运行状态协调优化方法,通过快速连锁故障风险评估和优化模型,实现协调的连锁故障风险控制。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
先参考图1所示本发明的电力系统运行状态协调优化方法。
步骤一,确定电力系统连锁故障的目标函数。
电力系统连锁故障故障的控制可以通过及时调整运行状态来实现,调度员操作可以调整发电功率,也可以切除一部分负荷,从而产生调整成本。为了实现安全性与经济性的协调,避免因过度加强安全性而造成浪费,本实施例以操作员成本为目标函数,具体表达式为:
f=CD T(Pd 0-Pd)+CG T|Pg-Pg 0|; (1)
其中,f为操作成本,用C表示,Pd 0,Pg 0为调度前系统各节点的负荷功率与发电功率,Pd,Pg为待求变量,为调度后系统各节点的负荷功率与发电功率组成的列向量,CD,CG分别为单位功率切负荷和单位发电机调整所产生的成本。
步骤二,设置所述目标函数的约束条件。
第一个为潮流约束,表达式为:
Bθ=Pg-Pd; (2)其中,θ为节点相角,矩阵B为N×N矩阵(N为节点数),其元素满足
B 0 ( i , i ) = Σ j ∈ i , j ≠ i 1 x i j B 0 ( i , j ) = - 1 x i j - - - ( 5 )
其中xij为连接节点i与节点j之间的支路电抗。
第二个为支路潮流约束,表达式为:
-Fmax≤F(θ)≤Fmax; (3)
其中,Fmax为支路潮流限值列向量,F(θ)=[F1(θ),...,FNL(θ)]T,NL为运行的支路数,若支路k的首末节点分别为i和j,则Fk(θ)=(θij)/xij
第三个为支路多级连锁故障相关性约束,推导过程如下:
(一)计算基于马尔科夫树表示的连锁故障风险评估
从初始故障发生后的状态起标记连锁故障发生的可能路径,即初始故障后的状态为树的根节点,称为0级节点,后续各级状态分别为1级、2级……节点,那么每一个连锁故障发展路径(即序列)都可以用经过的节点编号表示,如每个时间段内调度员会调整系统状态,以表示连锁故障序列发生后的系统状态下调度员操作的成本,可用负荷损失量或经济损失来度量。后级连锁故障的发生概率取决于之前的故障序列,因而第kn+1级故障的概率可用表示。以评估连锁故障负荷损失期望为例,故障风险表达式为
R = C 0 + Σ k 1 Pr ( i k 1 ) C ( i k 1 ) + Σ k 1 Pr ( i k 1 ) Σ k 2 Pr ( i k 2 | i k 1 ) C ( i k 1 i k 2 ) + Σ k 1 Pr ( i k 1 ) Σ k 2 Pr ( i k 2 | i k 1 ) Σ k 3 Pr ( i k 3 | i k 1 i k 2 ) C ( i k 1 i k 2 i k 3 ) + ... - - - ( 6 )
可见,该风险指标为马尔科夫树上各个状态对应风险项的和,那么连锁故障风险评估的过程即可看作在马尔科夫树上进行搜索,并将对应的风险项逐项累加。反复利用连锁故障模型进行连锁故障模拟,可以得到含式(6)部分项的风险展开式。
(二)计算近似风险梯度
提取连锁故障风险表达式(6)中的第一级状态风险公因式,可将其表示为
R = C 0 + Σ k 1 Pr ( i k 1 ) C ( i k 1 ) + Σ k 1 Pr ( i k 1 ) Σ k 2 Pr ( i k 2 | i k 1 ) C ( i k 1 i k 2 ) + Σ k 1 Pr ( i k 1 ) Σ k 2 Pr ( i k 2 | i k 1 ) Σ k 2 Pr ( i k 3 | i k 1 i k 2 ) C ( i k 1 i k 2 i k 3 ) + ... - - - ( 7 )
其中R,C0,Pr和C各项均与系统状态x有关,即可视为x的函数。令
C F ( i k 1 ) = C ( i k 1 ) + Σ k 2 Pr ( i k 2 | i k 1 ) C ( i k 1 i k 2 ) + Σ k 2 Pr ( i k 2 | i k 1 ) Σ k 2 Pr ( i k 3 | i k 1 i k 2 ) C ( i k 1 i k 2 i k 3 ) + ... - - - ( 8 )
令(7)的第二项记为RF,即
R F = Σ k 1 Pr ( i k 1 ) C F ( i k 1 ) - - - ( 9 )
为后续连锁故障风险,即除去初始故障后控制成本的风险,则后续连锁故障风险在状态变量空间中的梯度为
▿ R F = ∂ R F ∂ x = Σ k 1 ( ∂ Pr ( i k 1 ) ∂ x C F ( i k 1 ) + ∂ C F ( i k 1 ) ∂ x Pr ( i k 1 ) ) - - - ( 10 )
假设即不考虑系统状态变化对CF的影响,则后续连锁故障风险的梯度近似为
▿ R F = ∂ R F ∂ x = Σ k 1 ∂ Pr ( i k 1 ) ∂ x C F ( i k 1 ) - - - ( 11 )
其中已经通过连锁故障模拟和风险评估得到。而易求得,因此后续连锁故障风险的梯度可以通过计算得到。
建立的支路多级连锁故障相关性约束表达式为:
- ▿ R F . [ P d - P d 0 P g - P g 0 ] ≤ R E - R F ( x 0 ) ; - - - ( 4 )
其中,RF为后续连锁故障风险,为后续连锁故障风险梯度,RE为期望的风险上限,Pd0,Pg0分别为采用公式(1)(2)(3)所得到的调整后负荷与发电功率。
步骤三,根据所述目标函数和约束条件,建立连锁故障风险协调优化模型:
min f = c D T ( P d 0 - P d ) + c G T | P g - P g 0 | s . t . B θ = P g - P d - F max ≤ F ( θ ) ≤ F max - ▿ R F · P d - P d 0 P g - P g 0 ≤ R E - R F ( x 0 ) - - - ( 12 )
步骤四,采用连锁故障风险协调优化模型确定最优目标函数值:求得f的最小值,用Cmin表示,即为目标函数的最优值。
步骤五,确定所述最优目标函数值对应的操作:由Cmin的值,根据公式(1)确定Pd,Pg的值。
步骤六,根据所述操作调整所述电力系统:根据Pd,Pg调整电力系统。
本发明基于连锁故障模型的得到物理意义明确的多级连锁故障风险,计算控制变量空间的风险下降梯度,并建立协调的连锁故障控制优化模型。通过求解该模型可以实现在有效降低风险的条件下最小化系统运行成本,实现了安全性与经济型的协调。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种电力系统运行状态协调优化方法,其特征在于,包括以下步骤:
确定电力系统连锁故障的目标函数;
设置所述目标函数的约束条件;
根据所述目标函数和约束条件,建立连锁故障风险协调优化模型;
采用所述连锁故障风险协调优化模型确定最优目标函数值;
确定所述最优目标函数值对应的操作;
根据所述操作调整所述电力系统。
2.根据权利要求1所述的电力系统运行状态协调优化方法,其特征在于,所述确定电力系统连锁故障的目标函数,具体为确定操作成本函数,采用如下公式表达:
f=CD T(Pd 0-Pd)+CG T|Pg-Pg 0|; (1)
其中,f为操作成本,Pd 0,Pg 0为调度前系统各节点的负荷功率与发电功率,Pd,Pg为待求变量,为调度后系统各节点的负荷功率与发电功率组成的列向量,CD,CG分别为单位功率切负荷和单位发电机调整所产生的成本。
3.根据权利要求1所述的电力系统运行状态协调优化方法,其特征在于,设置所述目标函数的约束条件,具体包括:设置潮流约束、支路潮流约束、多级连锁故障相关性约束。
4.根据权利要求3所述的电力系统运行状态协调优化方法,其特征在于,所述设置潮流约束的表达式为:Bθ=Pg-Pd; (2)
其中,θ为节点相角,N为节点数,B为支路电抗的N×N矩阵。
5.根据权利要求3所述的电力系统运行状态协调优化方法,其特征在于,所述支路潮流约束的表达式为:
-Fmax≤F(θ)≤Fmax; (3)
其中,Fmax为支路潮流限值列向量,F(θ)=[F1(θ),...,FNL(θ)]T,NL为运行的支路数,若支路k的首末节点分别为i和j,则Fk(θ)=(θij)/xij
6.根据权利要求3所述的电力系统运行状态协调优化方法,其特征在于,所述支路多级连锁故障相关性约束的表达式为:
- ▿ R F · [ P d - P d 0 P g - P g 0 ] ≤ R E - R F ( x 0 ) ; - - - ( 4 )
其中,RF为后续连锁故障风险,为后续连锁故障风险梯度,RE为期望的风险上限,Pd0,Pg0分别为采用公式(1)(2)(3)所得到的调整后负荷与发电功率。
7.根据权利要求1所述的电力系统运行状态协调优化方法,其特征在于,所述确定所述最优目标函数值对应的操作,具体包括:确定所述最优目标函数值对应的发电功率和负荷功率。
8.根据权利要求1所述的电力系统运行状态协调优化方法,其特征在于,所述采用连锁故障风险协调优化模型确定最优目标函数值,具体包括:采用连锁故障风险协调优化模型确定目标函数的最小值。
CN201610882041.7A 2016-10-10 2016-10-10 一种电力系统运行状态协调优化方法 Active CN106385026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610882041.7A CN106385026B (zh) 2016-10-10 2016-10-10 一种电力系统运行状态协调优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610882041.7A CN106385026B (zh) 2016-10-10 2016-10-10 一种电力系统运行状态协调优化方法

Publications (2)

Publication Number Publication Date
CN106385026A true CN106385026A (zh) 2017-02-08
CN106385026B CN106385026B (zh) 2019-02-22

Family

ID=57937127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610882041.7A Active CN106385026B (zh) 2016-10-10 2016-10-10 一种电力系统运行状态协调优化方法

Country Status (1)

Country Link
CN (1) CN106385026B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465959A (zh) * 2017-12-07 2020-07-28 西门子股份公司 用于设计多模态能量系统的方法和多模态能量系统
CN111817293A (zh) * 2020-07-06 2020-10-23 北京汇思慧能科技有限公司 安全性与经济性协调的连锁故障阻断技术

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214920A (zh) * 2011-06-10 2011-10-12 华北电力大学 基于线路集群的电网连锁故障分析方法
CN104766141A (zh) * 2015-04-20 2015-07-08 国家电网公司 一种基于连锁故障序列的电网风险防控系统
CN104901306A (zh) * 2015-06-02 2015-09-09 福建工程学院 一种考虑连锁故障的电网运行安全裕度计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214920A (zh) * 2011-06-10 2011-10-12 华北电力大学 基于线路集群的电网连锁故障分析方法
CN104766141A (zh) * 2015-04-20 2015-07-08 国家电网公司 一种基于连锁故障序列的电网风险防控系统
CN104901306A (zh) * 2015-06-02 2015-09-09 福建工程学院 一种考虑连锁故障的电网运行安全裕度计算方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465959A (zh) * 2017-12-07 2020-07-28 西门子股份公司 用于设计多模态能量系统的方法和多模态能量系统
CN111817293A (zh) * 2020-07-06 2020-10-23 北京汇思慧能科技有限公司 安全性与经济性协调的连锁故障阻断技术

Also Published As

Publication number Publication date
CN106385026B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN104901306B (zh) 一种考虑连锁故障的电网运行安全裕度计算方法
CN104809311B (zh) 一种基于多因素融合修正的结构件剩余寿命预测方法
CN102638040B (zh) 电力系统安全稳定紧急控制定值在线整定方法
CN103996147A (zh) 配电网综合评估方法
CN102214919A (zh) 一种静态安全分析设备越限辅助决策方法
CN106127303A (zh) 一种面向多源数据的短期负荷预测方法
CN106355308B (zh) 一种基于决策树辨识风电接入系统关键设备的方法
CN106339541A (zh) 大型风力发电机组中塔筒门框的焊缝疲劳强度分析方法
Hosseini et al. Flow production of construction processes through implementing lean construction principles and simulation
CN103762590A (zh) 电力系统低频减载基本轮减载量在线整定方法
CN106021709A (zh) 一种混凝土早期开裂风险的评估和控制方法
CN106385026A (zh) 一种电力系统运行状态协调优化方法
CN104091289A (zh) 基于接线模式规则的大规模配电网n-1快速校验方法
CN105356465A (zh) 一种经济性与安全性协调的输电网规划平台及应用
CN104766142A (zh) 基于eeac和轨迹灵敏度的暂态稳定约束最优潮流计算方法
CN105243232A (zh) 将场分析集成到电网络求解的电磁暂态仿真方法及系统
CN106505624A (zh) 确定配电网分布式电源最优吸纳能力的调控系统及方法
CN104573861A (zh) 基于内点半定规划的拟直流最优潮流方法
CN108090626A (zh) 一种配电网网格化规划的网格划分方法
CN113346489B (zh) 一种新能源空间耦合性建模评估方法及系统
CN104578050B (zh) 一种电网暂态稳定强相关输电断面的识别方法
CN110460085A (zh) 一种考虑风电和负荷特性对电力系统影响的方法
CN107045558A (zh) 基于时变灵敏度分析的风力发电机组多学科稳健设计方法
CN103632308B (zh) 基于专家系统的涉网电厂继电保护定值风险评估系统
CN107729602A (zh) 一种离子推力器工作性能参数最优化设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant