CN106381471A - 一种硬度宽变的耐磨涂层及其制备方法及应用 - Google Patents
一种硬度宽变的耐磨涂层及其制备方法及应用 Download PDFInfo
- Publication number
- CN106381471A CN106381471A CN201610830915.4A CN201610830915A CN106381471A CN 106381471 A CN106381471 A CN 106381471A CN 201610830915 A CN201610830915 A CN 201610830915A CN 106381471 A CN106381471 A CN 106381471A
- Authority
- CN
- China
- Prior art keywords
- wear
- resistant coating
- hardness
- coating
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种硬度宽变的耐磨涂层及其制备方法,所述的耐磨涂层的组成为CrxSiyN1‑x‑y,其中x=0.45~0.55,y=0.03~0.15,x,y为原子比率;所述的耐磨涂层呈长短不一的柱状晶生长结构,每个柱状晶的宽度为40~150nm,柱状晶的长宽比为15~55,沿涂层生长方向,在所述柱状晶长度的30~75%处出现了分离存在孔隙,孔隙宽度为2~10nm。所述的耐磨涂层的硬度可在较大范围内变动,而所述的耐磨涂层的耐磨性几乎不受影响。所述的耐磨涂层可应用于摩擦传动部件。由于所述的耐磨涂层硬度在较大范围内可调,可使主副摩擦部件保持同样的硬度,这样不会由于硬度的差异,使得较低硬度的部件易被磨损,进而改善主副摩擦部件之间的融合性。
Description
技术领域
本发明属于氮化物陶瓷涂层领域,具体涉及一种摩擦性能随硬度改变变化小的耐磨涂层及其制备方法及应用。
背景技术
摩擦传动由于易实现无级变速,过载不会损坏装置等优点,是目前常见的一种传动方式,分为带传动,绳传动,摩擦轮传动。这些传动中,一方面要求传动部件与被传动部件两者之间有足够的摩擦力来传递动能;另一方面要求传动部件与被传动部件相互摩擦过程中,磨损率要低。高磨损率意味着部件易被磨损,寿命短。若通过降低摩擦来减小部件之间的磨损,必然导致因摩擦力减小所带来的传动能量不足,这二者本身存在着矛盾。
目前,为了提高摩擦传动部件的使用寿命。大部分做法都是在易磨损部位安转衬板,利用衬板的磨损来换取主要摩擦部件高的使用寿命。但更换衬板存在工序复杂(如更换位于高空、复杂形状的衬板)。另一种常见的做法是提高主摩擦部件材料的硬度,通过耗损副摩擦部件来提高主摩擦部件的使用寿命,如电梯摩擦轮的硬度常比钢绳的硬度高,通过定期更换磨损的钢绳来使电梯安全运行。一般同种材料硬度越高耐磨损能力也越强,故常将硬度值作为衡量材料耐磨性的重要指标之一。
材料的耐磨能力是通过测定磨损率来直接衡量的。磨损率高,材料耐磨能力弱,反之耐磨能力强。磨损率:被磨试样的体积与磨擦功的比值,即单位摩擦功所磨试样的体积,常用磨损体积除以载荷和滑动距离来表示,单位:m3/N·m。
综上,摩擦传动技术领域目前还缺少一种简单有效的防护方法来降低传动部件之间的磨损。
发明内容
本发明的目的是提供一种硬度宽变的耐磨涂层。所述的耐磨涂层的硬度可在较大范围内变动(10~36GPa),而所述的耐磨涂层的耐磨性几乎不受影响,表现为所述的耐磨涂层的磨损率几乎不发生变化(2.0×10-16~5.3×10-16m3/N·m)。
本发明的目的通过以下技术方案实现的:
一种硬度宽变的耐磨涂层,所述的耐磨涂层的组成为CrxSiyN1-x-y,其中x=0.45~0.55,y=0.03~0.15,x,y为原子比率;
所述的耐磨涂层呈长短不一的柱状晶生长结构,每个柱状晶的宽度为40~150nm,柱状晶的长宽比为15~55,沿涂层生长方向,在所述柱状晶长度的30~75%处出现了分离存在孔隙,孔隙宽度为2~10nm。
所述的耐磨涂层形成顶部柱状晶之间相互分离存在孔隙,底部柱状晶相连的涂层结构,上部孔隙可使涂层在受力过程中产生一定的塑性变形,并通过控制孔隙的尺寸大小来控制塑性变形的程度,这样可使所述的耐磨涂层硬度在一定范围内可变。底部柱状晶相连可使涂层在摩擦过程中产生的裂纹扩展发生拐弯和桥接的现象,进而消耗裂纹扩展所需的能量,从而使得涂层在硬度可变的情况下仍然保持同样的耐磨性。
所述的耐磨涂层为面心立方体结构,所述的耐磨涂层沿(200)晶面择优生长,晶粒尺寸为6~10nm。
所述的耐磨涂层的厚度为4~8μm,所述的耐磨涂层的压应力为0~2GPa。
本发明还提供了一种上述硬度宽变的耐磨涂层的制备方法,采用磁控反应溅射法制备,具体步骤包括:
(1)基体清洗;
(2)连接电源:将Si靶与射频辅助的直流电源相连,Cr靶与中频电源相连;
(3)涂层沉积:将清洗后的基体装入真空腔室中,当腔室的真空度为5.6×10-6~5×10-5Pa时,充入氩气和氮气的混合气体,并控制总气压为0.5~1.0Pa,调整靶材的溅射功率密度为3.6~8.5W/cm2,之后开启样品挡板,对基体的表面进行沉积,得到具有硬度宽变的耐磨涂层。
作为优选,涂层的基体材料选用硅片、不锈钢、合金钢或陶瓷。
所述步骤(1)中,基体清洗包括化学清洗和等离子体辉光刻蚀清洗中的至少一种。其中,化学清洗包括:将基体或工件依次放入浓度为30~60%去污粉水溶液,饱和Na2CO3水溶液、丙酮、无水乙醇、去离子水中各超声清洗10~20min,然后在温度为80~100℃的干燥箱里鼓风干燥1~2h,或采用纯度为99.99%的高纯氮气吹干。
等离子体辉光刻蚀清洗包括:将化学清洗后的基体或工件放入真空室中的样品台上,当真空低于1×10-3Pa以后,通入氩气并维持气压在0.5~2Pa,然后开启电源并同时给基板施加负偏压,利用氩气产生的等离子体对基底刻蚀10~20min。经等离子体辉光刻蚀清洗后,基体表面附着的水分子、气体分子或者微尘颗粒被完全轰击掉。
所述步骤(2)中,将Si靶与射频辅助的直流电源相连,Cr靶与中频电源相连。该连接方式可使成膜原子数量、能量大幅度提高,在满足高成膜速率的同时并保持较好的成膜质量,制备的耐磨涂层致密,贯穿性孔隙少,是使所述的耐磨涂层柱状晶沿涂层生长方向在30%~75%处能分离的关键因素。
所述步骤(3)中,氩气和氮气的流量比为4:3。
作为优选,所述步骤(3)中,涂层沉积过程对基体进行了加热,加热温度为400~550℃。
作为优选,所述步骤(3)中,涂层沉积过程对基体施加了负偏压,所述负偏压为-20V~-50V。基体施加负偏压可以在成膜时提高等离子对膜层的轰击力,提高膜层的密实度,但偏压过高会使膜层产生过多的应力而导致膜层产生裂纹,严重时会产生膜层脱落。
本发明还提供了一种上述硬度宽变的耐磨涂层的应用,所述的耐磨涂层可应用于摩擦传动部件。由于所述的耐磨涂层硬度在较大范围内可调,可使主副摩擦部件保持同样的硬度,这样不会由于硬度的差异,使得较低硬度的部件易被磨损,进而改善主副摩擦部件之间的融合性。
与现有技术相比,本发明具有如下优点:
(1)本发明开发了一种硬度宽变的耐磨涂层,所述的耐磨涂层的硬度可从10GPa变化到36GPa,而涂层的耐磨性几乎不受影响,表现为所述的耐磨涂层的磨损率只发生轻微的变化,仅从2.0×10-16m3/N·m变化到5.3×10-16m3/N·m。
(2)所述硬度宽变的耐磨涂层应用于摩擦传动部件,在可使主副摩擦部件保持同样的硬度,这样不会由于硬度的差异,使得较低硬度的部件易被磨损,进而改善主副摩擦部件之间的融合性。
附图说明
图1为本发明对比例1和实施例1~5制备的涂层的结构示意图;(a)对比例1,(b)实施例1~5;
图2为本发明实施例3制备的硬度宽变的耐磨涂层截面显微形貌图;(a)截面SEM形貌图,(b)A处的局部放大TEM形貌图;
图3为本发明实施例3制备的硬度宽变的耐磨涂层磨损后,磨损区域的聚焦离子束(FIB)原位切片SEM显微形貌图;(a)切片位置,(b)位置B处切片后形成的凹槽,(c)C处磨损后产生的裂纹沿膜内扩展形貌图,(d)D处磨损后产生的裂纹沿膜内扩展形貌图。
具体实施方式
以下实例中的涂层成分、涂层晶体结构、涂层形貌、涂层硬度、涂层残余应力、涂层磨损率均按下述方法测定:
1、涂层成分
利用FEI QuantaTM 250FEG的EDS功能测量涂层的成分组成,配置EDAX Si(Li)探头,通过ZAF校准,每个样品选定一个面积不小于70mm2区域,测量其成分的平均值。
2、涂层晶体结构
采用德国Bruker D8Advance X射线衍射仪(XRD),利用Cu Kα射线入射,波长为0.154nm,θ/θ模式,X射线管控制在40kV和40mA,测量涂层的晶体结构,利用镍滤波装置过滤掉Kβ射线,设置探测角2θ为35°~65°,步长设定为0.01°。
3、涂层形貌
采用日立-S4800扫描电镜(SEM,发射枪电压8KV),对涂层的表面、截面形貌特征进行观察;利用FEI Tecnai透射电子显微镜(TEM)在更小的尺度下对该涂层的截面形貌特征进行更高分辨率的观察。
4、涂层硬度
采用MTS NANO G200纳米压痕仪、Berkovich金刚石压头,为了消除基片效应和表面粗糙度的影响,压入深度为300~350nm(在涂层厚度的10%~20%)载荷随压入深度而改变,每个样品测量10个矩阵点后取平均值,泊松比为0.18。
5、涂层残余应力
采用JLCST022残余应力测试仪表征应力,主要是利用激光束测量涂层沉积前后基体的弯曲差值,然后运用Stoney’s equation计算应力大小。该设备的测试范围为0.01~100GPa,分辨率为0.01GPa,扫描长度为30mm。用于进行测试的应力条长度、宽度和厚度分别为35mm、3.5mm和250μm。
6、涂层磨损率
磨损率是指被磨试样的体积与磨擦功的比值,即单位摩擦功所磨试样的体积,常用磨损体积除以载荷和滑动距离来表示,单位:m3/N·m。采用多功能摩擦磨损试验机(CETR牌,型号为UMT-3)测试,对偶材料采用直径6.0mm、硬度RC=62的Al2O3轴承球,载荷5N,频率5Hz,滑行速度5cm/,湿度50%~60%,测试时间3h。
对比例1
(1)基体清洗
化学清洗:选用抛光后的合金钢为基体,对其进行清洗,依次放入浓度为40%去污粉水溶液,饱和Na2CO3水溶液、丙酮、无水乙醇、去离子水中各超声清洗15min,然后在温度为100℃的干燥箱里鼓风干燥2h。
等离子体辉光刻蚀清洗:将化学清洗好的基体,装入真空室中的样品台上,当真空低于1×10-2Pa以后,通入氩气并维持气压在1Pa,然后开启电源并同时给基板施加负偏压,利用氩气产生的利用等离子体辉光对其刻蚀清洗10min。
(2)涂层沉积
将清洗后的合金钢基体装入真空室中可旋转的样品台上。将Si靶与直流电源相连,Cr靶与中频电源相连。当腔室真空度小于1×10-5Pa,通入氩气和氮气,氩气和氮气的流量比为4:3,调节溅射气压为0.5Pa,调整电源使得Si靶材的溅射功率密度为5W/cm2,Cr靶材的溅射功率密度为5W/cm2,基体加热400℃,不施加偏压。之后开启样品挡板,对基体的主表面进行沉积50min,得到CrxSiyN1-x-y涂层,其中x=0.374,y=0.12,涂层厚度5μm,经测定涂层的残余应力为3GPa。
本对比例制备的涂层的结构示意图如图1(a)所示,耐磨涂层为柱状晶生长结构,存在较多孔隙,每个柱状晶宽度为30~50nm,长宽比为30~50,柱状晶沿涂层生长方向未出现分离,柱状晶之间的孔隙宽度为5~10nm。经测定,该涂层硬度为25GPa,涂层的磨损率为5×10-14m3/N·m。
对比例2
与对比例1相比,其余条件不变,仅改变涂层制备时基体加热的温度为500℃并且施加-20V的偏压。得到的涂层结构仍为柱状晶生长结构,仍存在较多孔隙,每个柱状晶宽度为40~70nm,长宽比为35~55,柱状晶沿涂层生长方向仍未出现分离,柱状晶之间的孔隙宽度为3~7nm。经测定,该涂层硬度为35GPa,涂层的磨损率为5×10-16m3/N·m。
通过比较对比例1和对比例2可见,若柱状晶沿涂层生长方向未出现分离,稍微缩小柱状晶孔隙之间的宽度,就会带来硬度的显著改善,但磨损率也发生显著变化,这说明了该制备条件下得到的涂层结构,其磨损性能会随涂层硬度的变化而变化,不存在硬度宽变的现象。
实施例1~5
(1)基体清洗
化学清洗:选用抛光后的合金钢为基体,对其进行清洗,依次放入浓度为40%去污粉水溶液,饱和Na2CO3水溶液、丙酮、无水乙醇、去离子水中各超声清洗15min,然后在温度为100℃的干燥箱里鼓风干燥2h。
等离子体辉光刻蚀清洗:将化学清洗好的基体,装入真空室中的样品台上,当真空低于1×10-2Pa以后,通入氩气并维持气压在1Pa,然后开启电源并同时给基板施加负偏压,利用氩气产生的利用等离子体辉光对其刻蚀清洗10min。
(2)涂层沉积
将清洗后的合金钢基体装入真空室中可旋转的样品台上。将Si靶与射频辅助的直流电源相连,Cr靶与中频电源相连。当腔室真空度小于1×10-5Pa,通入氩气和氮气,氩气和氮气的流量比为4:3,调节溅射气压为0.5Pa。按照表1所示的参数调整靶材的溅射功率密度、基体加热温度和基体偏压。之后开启样品挡板,对基体的主表面进行沉积50min,得到硬度宽变的耐磨CrxSiyN1-x-y涂层。
表1
经测定,实施例1制备的耐磨涂层成分为CrxSiyN1-x-y,其中x=0.45,y=0.08,呈柱状晶生长结构,每个柱状晶宽度为40~80nm,长宽比为30~55,其结构示意图如图1(b)所示,沿涂层生长方向,在柱状晶长度的50~60%处出现了分离,柱状晶之间的孔隙宽度为3~7nm。利用XRD测定,涂层晶体结构为面心立方体,涂层沿(200)晶面择优生长,力学性能测定,该涂层硬度为25GPa,涂层的磨损率为5×10-16m3/N·m,压应力为0.5GPa。
实施例2制备的耐磨涂层成分为CrxSiyN1-x-y,其中x=0.55,y=0.03,呈柱状晶生长结构,每个柱状晶宽度为50~70nm,长宽比为40~55,其结构示意图如图1(b)所示,沿涂层生长方向,在柱状晶长度的55~70%处出现了分离,柱状晶之间的孔隙宽度为2~4nm。利用XRD测定,涂层晶体结构为面心立方体,涂层沿(200)晶面择优生长,经力学性能测定,该涂层硬度为35GPa,涂层的磨损率为2×10-16m3/N·m,压应力为1GPa。
实施例3制备的耐磨涂层成分为CrxSiyN1-x-y,其中x=0.50,y=0.12,其截面SEM显微形貌图如图2(a)所示,该涂层致密,呈柱状晶生长结构。位置A处的TEM高倍放大图如图2(b)所示,每个柱状晶宽度为80~120nm,长宽比为25~45,沿涂层生长方向,在柱状晶长度的30~50%处出现了分离,柱状晶之间的孔隙宽度为2~5nm。利用XRD测定,涂层晶体结构为面心立方体,涂层沿(200)晶面择优生长,经力学性能测定,该涂层硬度为35GPa,涂层的磨损率为2×10-16m3/N·m,压应力为2GPa。人为给该涂层引入划痕后,其切片位置的SEM显微形貌图如图3(a)所示,在涂层方框标记的B处进行FIB原位切片形成凹槽,其SEM显微形貌图如图3(b)所示,分别在凹槽的侧壁选择两处观察划痕引入后产生的裂纹发展,C处磨损后产生的裂纹沿膜内扩展形貌图如图3(c)所示,D处磨损后产生的裂纹沿膜内扩展形貌图如图3(d)所示,可以看到裂纹分叉和裂纹桥接的现象,应力得到释放,更多的能量被消耗,从而裂纹的扩展被抑制,而裂纹的分叉和桥接正是由该涂层的结构所导致,期初产生的裂纹首先沿图1(b)所示的裂孔处扩展,遇到底部较大的晶粒后,就会产生分叉和桥接现象,正是由于这种现象消耗了裂纹扩展所需的能量,从而使得涂层有较好的耐磨能力。
实施例4制备的耐磨涂层成分为CrxSiyN1-x-y,其中x=0.48,y=0.12,呈柱状晶生长结构,每个柱状晶宽度为100~150nm,长宽比为15~30,其结构示意图如图1(b)所示,沿涂层生长方向,在柱状晶长度的45~60%处出现了分离,柱状晶之间的孔隙宽度为3~5nm。利用XRD测定,涂层晶体结构为面心立方体,涂层沿(200)晶面择优生长,经力学性能测定,该涂层硬度为28GPa,涂层的磨损率为3.9×10-16m3/N·m,压应力为2GPa。
实施例5制备的耐磨涂层成分为CrxSiyN1-x-y,其中中x=0.49,y=0.07,呈柱状晶生长结构,每个柱状晶宽度为60~100nm,长宽比为35~45,其结构示意图如图1(b)所示,沿涂层生长方向,在柱状晶长度的70~75%处出现了分离,柱状晶之间的孔隙宽度为8~10nm。利用XRD测定,涂层晶体结构为面心立方体,涂层沿(200)晶面择优生长,经力学性能测定,该涂层硬度为16GPa,涂层的磨损率为7.9×10-16m3/N·m,压应力为0GPa。
通过比较实施例1~5,若柱状晶沿涂层生长方向出现树杈式分离而存在孔隙,稍微缩小柱状晶之间的孔隙宽度,就会带来硬度的显著改善,但涂层的磨损率不会发生较大的改变,这说明了该制备条件下得到的涂层结构,其磨损性不会随硬度的变化而改变,存在硬度宽变的现象。这一现象正是由于柱状晶分离后产生的裂孔起到了塑性变形的作用,而底部的较大晶粒起到了阻碍裂纹扩展的作用。当涂层受到外力的作用,塑性变形的大小可以使涂层硬度产生变化,而底部较大晶粒阻止裂纹扩展可以保持涂层磨损性能不变。
Claims (8)
1.一种硬度宽变的耐磨涂层,其特征在于,所述的耐磨涂层的组成为CrxSiyN1-x-y,其中x=0.45~0.55,y=0.03~0.15,x,y为原子比率;
所述的耐磨涂层呈长短不一的柱状晶生长结构,每个柱状晶的宽度为40~150nm,柱状晶的长宽比为15~55,沿涂层生长方向,在所述柱状晶长度的30~75%处出现了分离存在孔隙,孔隙宽度为2~10nm。
2.根据权利要求1所述的硬度宽变的耐磨涂层,其特征在于,所述的耐磨涂层为面心立方体结构,所述的耐磨涂层沿(200)晶面择优生长,晶粒尺寸为6~10nm。
3.根据权利要求1所述的硬度宽变的耐磨涂层,其特征在于,所述的耐磨涂层的厚度为4~8μm,所述的耐磨涂层的压应力为0~2GPa。
4.一种根据权利要求1~3任一项所述的硬度宽变的耐磨涂层的制备方法,其特征在于,采用磁控反应溅射法制备,具体步骤包括:
(1)基体清洗;
(2)连接电源:将Si靶与射频辅助的直流电源相连,Cr靶与中频电源相连;
(3)涂层沉积:将清洗后的基体装入真空腔室中,当腔室的真空度为5.6×10-6~5×10- 5Pa时,充入氩气与氮气的混合气体,并控制总气压为0.5~1.0Pa,调整靶材的溅射功率密度为3.6~8.5W/cm2,之后开启样品挡板,对基体的表面进行沉积,得到具有硬度宽变的耐磨涂层。
5.根据权利要求4所述的硬度宽变的耐磨涂层的制备方法,其特征在于,所述的耐磨涂层沉积过程中对基体进行了加热,加热温度为400~550℃。
6.根据权利要求4所述的硬度宽变的耐磨涂层的制备方法,其特征在于,所述的耐磨涂层沉积过程中,对基体施加了负偏压,所述负偏压为-20V~-50V。
7.根据权利要求4所述的硬度宽变的耐磨涂层的制备方法,其特征在于,所述基体选用硅片、不锈钢、合金钢或陶瓷。
8.一种根据权利要求1~3任一项所述的硬度宽变的耐磨涂层的应用,其特征在于,所述的耐磨涂层在摩擦传动部件中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610830915.4A CN106381471B (zh) | 2016-09-19 | 2016-09-19 | 一种硬度宽变的耐磨涂层及其制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610830915.4A CN106381471B (zh) | 2016-09-19 | 2016-09-19 | 一种硬度宽变的耐磨涂层及其制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106381471A true CN106381471A (zh) | 2017-02-08 |
CN106381471B CN106381471B (zh) | 2018-11-23 |
Family
ID=57936587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610830915.4A Active CN106381471B (zh) | 2016-09-19 | 2016-09-19 | 一种硬度宽变的耐磨涂层及其制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106381471B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108486537A (zh) * | 2018-03-09 | 2018-09-04 | 中国科学院宁波材料技术与工程研究所 | 一种用于锆合金的非晶防护涂层及其制备方法和应用 |
CN109487209A (zh) * | 2018-12-13 | 2019-03-19 | 中国科学院宁波材料技术与工程研究所 | 一种高硬度max相陶瓷涂层及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007121954A1 (de) * | 2006-04-21 | 2007-11-01 | Cemecon Ag | Beschichteter körper |
CN103014621A (zh) * | 2011-09-23 | 2013-04-03 | 中国核动力研究设计院 | 一种Cr-Si-C-N纳米复合涂层的制备方法 |
CN103009704A (zh) * | 2011-09-21 | 2013-04-03 | 中国农业机械化科学研究院 | 一种纳米/类柱状晶混合结构热障涂层及其制备方法 |
CN103382548A (zh) * | 2013-06-27 | 2013-11-06 | 中国科学院宁波材料技术与工程研究所 | 一种基体表面纳米复合Me-Si-N超硬涂层的制备方法 |
CN105274485A (zh) * | 2015-11-16 | 2016-01-27 | 南京航空航天大学 | 一种Cr-Si-C-N纳米复合薄膜的制备方法 |
-
2016
- 2016-09-19 CN CN201610830915.4A patent/CN106381471B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007121954A1 (de) * | 2006-04-21 | 2007-11-01 | Cemecon Ag | Beschichteter körper |
CN103009704A (zh) * | 2011-09-21 | 2013-04-03 | 中国农业机械化科学研究院 | 一种纳米/类柱状晶混合结构热障涂层及其制备方法 |
CN103014621A (zh) * | 2011-09-23 | 2013-04-03 | 中国核动力研究设计院 | 一种Cr-Si-C-N纳米复合涂层的制备方法 |
CN103382548A (zh) * | 2013-06-27 | 2013-11-06 | 中国科学院宁波材料技术与工程研究所 | 一种基体表面纳米复合Me-Si-N超硬涂层的制备方法 |
CN105274485A (zh) * | 2015-11-16 | 2016-01-27 | 南京航空航天大学 | 一种Cr-Si-C-N纳米复合薄膜的制备方法 |
Non-Patent Citations (1)
Title |
---|
贾丛丛等: ""Si含量对CrSiN涂层结构和性能的影响"", 《表面技术》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108486537A (zh) * | 2018-03-09 | 2018-09-04 | 中国科学院宁波材料技术与工程研究所 | 一种用于锆合金的非晶防护涂层及其制备方法和应用 |
CN108486537B (zh) * | 2018-03-09 | 2020-05-12 | 中国科学院宁波材料技术与工程研究所 | 一种用于锆合金的非晶防护涂层及其制备方法和应用 |
CN109487209A (zh) * | 2018-12-13 | 2019-03-19 | 中国科学院宁波材料技术与工程研究所 | 一种高硬度max相陶瓷涂层及其制备方法 |
CN109487209B (zh) * | 2018-12-13 | 2020-08-04 | 中国科学院宁波材料技术与工程研究所 | 一种高硬度max相陶瓷涂层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106381471B (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV) Nx films by reactive magnetron sputtering | |
Al-Abboodi et al. | The dry sliding wear rate of a Fe-based amorphous coating prepared on mild steel by HVOF thermal spraying | |
Qiao et al. | The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC–Co coatings with very fine structures | |
Wang et al. | The parameters optimization and abrasion wear mechanism of liquid fuel HVOF sprayed bimodal WC–12Co coating | |
Babu et al. | The influence of erodent hardness on the erosion behavior of detonation sprayed WC-12Co coatings | |
Lin et al. | The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering | |
Lin et al. | Effect of asynchronous pulsing parameters on the structure and properties of CrAlN films deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) | |
Hones et al. | Mechanical properties of hard chromium tungsten nitride coatings | |
JP5815709B2 (ja) | 硬質合金および切削工具 | |
Ji et al. | Characterization of cold-sprayed multimodal WC-12Co coating | |
Dück et al. | Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties | |
Lu et al. | Effect of doping level on residual stress, coating-substrate adhesion and wear resistance of boron-doped diamond coated tools | |
CN105026082B (zh) | 表面包覆切削工具 | |
Czyżniewski et al. | Deposition and some properties of nanocrystalline, nanocomposite and amorphous carbon-based coatings for tribological applications | |
Cheng et al. | Microstructure and mechanical property evaluation of pulsed DC magnetron sputtered Cr–B and Cr–B–N films | |
Qi et al. | Mechanical, microstructural and tribological properties of reactive magnetron sputtered Cr–Mo–N films | |
Klyatskina et al. | A study of the influence of TiO2 addition in Al2O3 coatings sprayed by suspension plasma spray | |
Lee et al. | Effect of the Cr content on the mechanical properties of nanostructured TiN/CrN coatings | |
CN106381471A (zh) | 一种硬度宽变的耐磨涂层及其制备方法及应用 | |
CN107723511B (zh) | 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法 | |
Alidokht et al. | Microstructure and tribology of cold spray additively manufactured multimodal Ni-WC metal matrix composites | |
Ye et al. | Correlation between plasma particle fluxes, microstructure and properties of titanium diboride thin films | |
Li et al. | Hard and tough sub-stoichiometric B1 Ta-Mo-Nx films by regulating N content | |
Yuan et al. | Effect of Tungsten Inert Gas Arc Remelting on Microstructure and Wear Properties of Plasma-Sprayed NiCr-Cr 3 C 2 Coating | |
JP5098657B2 (ja) | 硬質皮膜被覆部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |