CN106372273B - One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method - Google Patents

One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method Download PDF

Info

Publication number
CN106372273B
CN106372273B CN201610668815.6A CN201610668815A CN106372273B CN 106372273 B CN106372273 B CN 106372273B CN 201610668815 A CN201610668815 A CN 201610668815A CN 106372273 B CN106372273 B CN 106372273B
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610668815.6A
Other languages
Chinese (zh)
Other versions
CN106372273A (en
Inventor
陈志平
黄淞
唐小雨
苏文强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610668815.6A priority Critical patent/CN106372273B/en
Publication of CN106372273A publication Critical patent/CN106372273A/en
Application granted granted Critical
Publication of CN106372273B publication Critical patent/CN106372273B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Abstract

The invention discloses one kind to face hydrogen heavy wall cylindrical shell elastic limit loading prediction method, the HELP of this method application hydrogen embrittlement is theoretical, according to the relation between the elastic response of cylindrical shell under hydrogen environment and atmospheric environment, the elastic limit load of hydrogen cylindrical shell is determined by solving Nonlinear System of Equations.It is excessively high that this method solves existing method application threshold, it is excessively complicated the defects of, while influence of the hydrogen to material mechanical performance is considered in prediction limits load, to engineering design with some reference value.

Description

One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method
Technical field
The present invention relates to the elastic responses for facing hydrogen bearing structure to predict field, the HELP theoretical predictions specifically based on hydrogen embrittlement The elastic limit load of heavy wall cylindrical shell.
Background technology
Cylindrical shell is the key that pressure restraining element during hydrogen storage and defeated hydrogen in hydrogen system, determines heavy wall cylindrical shell in hydrogen environment Under elastic limit load be the problem of design hydrogen container, hydrogenation reactor must take into consideration when hydrogen-contacting equipments.Existing prediction The method of cylindrical shell ultimate load does not take into account influence of the hydrogen environment to cylindrical shell, simultaneously because hydrogen damage constitutive relation Complexity, ultimate load and its complexity of the cylindrical shell under hydrogen environment are predicted using traditional method of addition, it is difficult in engineering Upper popularization.Therefore propose that a kind of method that hydrogen cylindrical shell elastic limit load is faced in simple prediction has engineering significance.The present invention Plasticity localization theoretical (HELP) is promoted to be applied to heavy wall cylindrical shell the hydrogen of hydrogen embrittlement, it is proposed that it is pre- that one kind faces hydrogen heavy wall cylindrical shell Survey the simplification method of elastic limit load.
The content of the invention
In view of the above-mentioned deficiencies in the prior art, it is an object of the present invention to provide a kind of simplification faces hydrogen heavy wall cylindrical shell elasticity pole Limit for tonnage lotus Forecasting Methodology, this method is according to the relation in atmospheric environment between the stress response of cylindrical shell in hydrogen environment, directly Construction faces the governing equation of hydrogen cylindrical shell elastic limit loading problem.Hydrogen environment is considered in prediction limits load to cylindrical shell The influence of performance.
The purpose of the present invention is what is be achieved through the following technical solutions:One kind faces hydrogen heavy wall cylindrical shell elastic limit load Forecasting Methodology comprises the following steps:
Step 1:The initial value for making the ultimate load p of heavy wall cylindrical shell is p=0;
Step 2:Circumferential stress σ is calculated according to below equationθWith radial stress σr
σr=-p
Wherein a is cylindrical shell inside radius, and b is cylindrical shell outer radius.
Step 3:Hydrogen concentration c is calculated according to below equation group;
Wherein, E be material elasticity modulus, ν be material Poisson's ratio, VHRepresent partial molar volume of the hydrogen in base material, VM For the molal volume of base material, α is the hydrogen trap number of per unit lattice, the interstitial void binding site number of β per unit lattices, NL= NA/VMFor the metallic atom quantity of per unit volume, NAFor Avgadro constant, NTRepresent the trap number of per unit volume. R is ideal gas constant, and T is Kelvin's thermometric scale, c0For no-load when cylindrical shell in hydrogen concentration, WBIt is combined for the hydrogen trap of material Energy.
Step 4:Calculate axial stress σz
Step 5:Calculate functional value g
Wherein σ0For the initial yield intensity of material, ξ is the parameter of characterization hydrogen damage degree.
Step 6:Judge g value sizes, if | g | >=εerr, then step 7 is performed to step 8, is otherwise terminated to calculate, is obtained facing hydrogen Heavy wall cylindrical shell elastic limit load, wherein εerrFor convergence tolorence, ε can useerr=10-6
Step 7:Design ultimate load p according to the following formula1
Wherein
Step 8:Make p=p1, return to step 2.
Further, the step 3 uses Newton Algorithm hydrogen concentration c, specifically includes following sub-step:
Step 301:Hydrogen concentration initial value c=c is set0
Step 302:According to current hydrogen concentration c, parameters are calculated according to the following formula:
Step 303:Calculate following functional value g:
Step 304:Judge g value sizes, if | g | >=εerr, then step 305 is performed to step 306, is otherwise terminated to calculate, be obtained To hydrogen concentration c, wherein εerrFor convergence tolorence, ε can useerr=10-6
Step 305:Hydrogen concentration c is calculated according to the following formula1
Wherein
Step 306:Make c=c1, return to step 302.
The present invention has the following advantages:Hydrogen heavy wall cylindrical shell is faced using the method directly prediction for solving Nonlinear System of Equations Elastic limit load need not write the finite element program of the constitutive model of hydrogen damage material.Consider in prediction limits load Damaging action of the hydrogen to material, the ultimate load that present invention prediction obtains are partial to safety compared to existing method.
Description of the drawings
Fig. 1 is the objective for implementation schematic diagram of the present invention;
Fig. 2 is the elastic limit load and initial hydrogen concentration c that present example is calculated0Relation.
Specific embodiment
Below using the example shown in Fig. 1 and table 1 as objective for implementation, the invention will be further described.
Example shown in FIG. 1 is the heavy wall cylindrical shell of both ends constraint, and inside radius and outer radius are respectively a and b, Concentration is c under unstress state0Hydrogen be uniformly distributed in cylindrical shell.The present invention can predict the cylindrical shell in hydrogen environment Elastic limit load.
The material parameter and geometric parameter that 1 example of table is used
Parameter Numerical value
Inside radius a 0.5m
Outer radius b 0.75m
Elastic modulus E 115GPa
Poisson's ratio υ 0.34
The partial molar volume V of hydrogenH 1.18×10-6m3/mole
The molal volume V of metalM 10.825×10-6m3/mole
Yield strength σ0 400MPa
Trap density NT 4.2855×1019
Interstitial void number of sites β 1.0
Hydrogen trap number α 1.0
Temperature T 300K
Hydrogen damage factor ξ 0.1
Mean bindind energy WB 29.3KJ/mole
The realization process of the method for the present invention is as follows:
Step 1:Give an initial hydrogen concentration c0, such as c0=0.1, the initial value for making the ultimate load p of heavy wall cylindrical shell is P=0;
Step 2:It brings current ultimate load p into below equation and calculates circumferential stress σθWith radial stress σr
σr=-p
Wherein cylindrical shell inside radius a, outer radius b press value in table 1;
Step 3:Hydrogen concentration c is calculated according to below equation group;
Wherein each parameter presses value in table 1, and step 3 specifically includes following sub-step:
Step 301:Hydrogen concentration initial value c=c is set0
Step 302:Following formula is brought into according to current hydrogen concentration c and calculates parameters:
Step 303:The parameter that step 202 is obtained brings following functional value into, calculates functional value g:
Step 304:Judge g value sizes, if | g | >=εerr, then step 205 is performed to step 206, is otherwise terminated to calculate, be obtained To hydrogen concentration c, wherein convergence tolorence takes εerr=10-6
Step 305:Hydrogen concentration c is calculated according to the following formula1
Wherein
Required each parameter is calculated by step 302;
Step 306:Make c=c1, return to step 302.
Step 4:The circumferential stress σ that step 2 is obtainedθWith radial stress σrAnd the hydrogen concentration c that step 3 obtains is brought into down Formula calculates axial stress σz
Step 5:The circumferential stress σ that step 2 is obtainedθWith radial stress σr, hydrogen concentration c and step 4 that step 3 obtains Obtain axial stress σzIt brings following formula into and calculates functional value g
The wherein initial yield intensity σ of material01 value of table is pressed with hydrogen damage factor ξ.
Step 6:Judge g value sizes, if | g | >=εerr, then step 7 is performed to step 8, is otherwise terminated to calculate, is obtained facing hydrogen Heavy wall cylindrical shell elastic limit load p, wherein convergence tolorence take εerr=10-6
Step 7:Design ultimate load p according to the following formula1
Wherein
Step 8:Make p=p1, return to step 2.
Using different initial hydrogen concentration c0(0≤c0≤ 1) repeating step 1 to step 8 can obtain facing hydrogen cylindrical shell elasticity Relation between ultimate load and initial hydrogen concentration, as shown in Figure 2.

Claims (2)

1. one kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method, which is characterized in that comprises the following steps:
Step 1:The initial value for making the ultimate load p of heavy wall cylindrical shell is p=0;
Step 2:Circumferential stress σ is calculated according to below equationθWith radial stress σr
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mi>p</mi> </mrow>
σr=-p
WhereinFor cylindrical shell inside radius, b is cylindrical shell outer radius;
Step 3:Hydrogen concentration c is calculated according to below equation group;
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>c</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>&amp;beta;K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;alpha;N</mi> <mi>T</mi> </msub> </mrow> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>W</mi> <mi>B</mi> </msub> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>&amp;beta;</mi> </mrow>
Wherein, E be material elasticity modulus, ν be material Poisson's ratio, VHRepresent partial molar volume of the hydrogen in base material, VMFor mother The molal volume of material, α be per unit lattice hydrogen trap number, the interstitial void binding site number of β per unit lattices, NL=NA/VM For the metallic atom quantity of per unit volume, NAFor Avgadro constant, NTRepresent the trap number of per unit volume;R is reason Think gas constant, T is Kelvin's thermometric scale, c0For no-load when cylindrical shell in hydrogen concentration, WBFor the hydrogen trap combination energy of material;
Step 4:Calculate axial stress σz
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>=</mo> <mi>v</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
Step 5:Calculate functional value g
<mrow> <mi>g</mi> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> </mrow>
Wherein σ0For the initial yield intensity of material, ξ is the parameter of characterization hydrogen damage degree;
Step 6:Judge g value sizes, if | g | >=εerr, then step 7 is performed to step 8, is otherwise terminated to calculate, is obtained facing hydrogen heavy wall Cylindrical shell elastic limit load, wherein εerrFor convergence tolorence, ε can useerr=10-6
Step 7:Design ultimate load p according to the following formula1
<mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>p</mi> <mo>-</mo> <mfrac> <mi>g</mi> <msup> <mi>g</mi> <mo>&amp;prime;</mo> </msup> </mfrac> </mrow>
Wherein
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mi>g</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>e</mi> </msub> </mrow> </mfrac> <mfrac> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>e</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>e</mi> </msub> </mrow> </mfrac> <mfrac> <mrow> <mn>2</mn> <msup> <mi>va</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mi>e</mi> </msub> </mrow> </mfrac> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mfrac> <mrow> <mi>d</mi> <mi>c</mi> </mrow> <mrow> <mi>d</mi> <mi>P</mi> </mrow> </mfrac> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>d</mi> <mi>c</mi> </mrow> <mrow> <mi>d</mi> <mi>p</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mfrac> <mrow> <mi>d</mi> <mi>c</mi> </mrow> <mrow> <mi>d</mi> <mi>p</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <mi>&amp;beta;</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mfrac> <msub> <mi>N</mi> <mi>T</mi> </msub> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <msub> <mi>K</mi> <mi>T</mi> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>&amp;rsqb;</mo> <mfrac> <mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mo>&amp;lsqb;</mo> <mi>&amp;beta;</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mfrac> <msub> <mi>N</mi> <mi>T</mi> </msub> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <msub> <mi>K</mi> <mi>T</mi> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>&amp;rsqb;</mo> <mfrac> <mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> </mrow> </mfrac> </mrow>
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>W</mi> <mi>B</mi> </msub> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>&amp;beta;</mi> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> </mrow>
Step 8:Make p=p1, return to step 2.
2. one kind according to claim 1 faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method, which is characterized in that institute It states step 3 and uses Newton Algorithm hydrogen concentration c, specifically include following sub-step:
Step 301:Hydrogen concentration initial value c=c is set0
Step 302:According to current hydrogen concentration c, parameters are calculated according to the following formula:
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>W</mi> <mi>B</mi> </msub> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>&amp;beta;</mi> </mrow>
Step 303:Calculate following functional value g:
<mrow> <mi>g</mi> <mo>=</mo> <mi>c</mi> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;beta;K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;alpha;N</mi> <mi>T</mi> </msub> </mrow> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
Step 304:Judge g value sizes, if | g | >=εerr, then step 305 is performed to step 306, is otherwise terminated to calculate, is obtained hydrogen Concentration c, wherein εerrFor convergence tolorence, ε can useerr=10-6
Step 305:Hydrogen concentration c is calculated according to the following formula1
<mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>c</mi> <mo>-</mo> <mfrac> <mi>g</mi> <msup> <mi>g</mi> <mo>&amp;prime;</mo> </msup> </mfrac> </mrow>
Wherein
<mrow> <msup> <mi>g</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mo>&amp;lsqb;</mo> <mi>&amp;beta;</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mfrac> <msub> <mi>N</mi> <mi>T</mi> </msub> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <msub> <mi>K</mi> <mi>T</mi> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>&amp;rsqb;</mo> <mfrac> <mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> </mrow>
Step 306:Make c=c1, return to step 302.
CN201610668815.6A 2016-08-15 2016-08-15 One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method Active CN106372273B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610668815.6A CN106372273B (en) 2016-08-15 2016-08-15 One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610668815.6A CN106372273B (en) 2016-08-15 2016-08-15 One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method

Publications (2)

Publication Number Publication Date
CN106372273A CN106372273A (en) 2017-02-01
CN106372273B true CN106372273B (en) 2018-05-29

Family

ID=57877935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610668815.6A Active CN106372273B (en) 2016-08-15 2016-08-15 One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method

Country Status (1)

Country Link
CN (1) CN106372273B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108491589B (en) * 2018-03-05 2022-03-22 张家港氢云新能源研究院有限公司 Design method of frame structure of vehicle-mounted hydrogen supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342694A (en) * 2001-05-17 2002-11-29 Araco Corp Method and device for structural analysis of elastic material
CN100569552C (en) * 2008-07-11 2009-12-16 清华大学 The concentration dilution device that is used for the hydrogen of fuel battery passenger car discharging
CN102141466A (en) * 2010-12-21 2011-08-03 浙江大学 Boundary simulation device and method for thin-walled cylindrical shell structure experiment
CN103154703A (en) * 2010-10-05 2013-06-12 株式会社普利司通 Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342694A (en) * 2001-05-17 2002-11-29 Araco Corp Method and device for structural analysis of elastic material
CN100569552C (en) * 2008-07-11 2009-12-16 清华大学 The concentration dilution device that is used for the hydrogen of fuel battery passenger car discharging
CN103154703A (en) * 2010-10-05 2013-06-12 株式会社普利司通 Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
CN102141466A (en) * 2010-12-21 2011-08-03 浙江大学 Boundary simulation device and method for thin-walled cylindrical shell structure experiment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多层不等厚组合圆柱壳屈曲数值模拟分析;陈志平 等;《浙江大学学报(工学版)》;20090930;第43卷(第9期);第1679-1683页 *

Also Published As

Publication number Publication date
CN106372273A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
CN105117536B (en) A kind of simplification elastic-plastic fracture mechanics analysis methods of RPV containing crack defect
CN106372273B (en) One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method
CN106295021B (en) A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress
Wu et al. Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident
CN111027237B (en) Thermal analysis and critical control simulation calculation method for spent fuel storage and transportation container
Ure et al. Verification of the linear matching method for limit and shakedown analysis by comparison with experiments
Zheng et al. Damage performance analysis of prestressed concrete containments following a loss of coolant accident considering different external temperatures
Hall Jr et al. Stress state dependence of in-reactor creep and swelling. Part 2: Experimental results
Hwang et al. Evaluation of flow stresses of tubular materials considering anisotropic effects by hydraulic bulge tests
Almomani et al. Ductile tearing criteria and failure probability estimation of hydrided Zircaloy-4 cladding under axial loads
Cox et al. Dissimilar metal weld pipe fracture testing: experimental procedures and results
Mao et al. Investigation on structural behaviors of reactor pressure vessel with the effects of critical heat flux and internal pressure
CN103323323A (en) Establishing method of concrete breaking strength prediction model considering loading rate influence
Yan et al. Stability performance of steel liner domes of nuclear reactor containment during construction
Kwon et al. Optimization of gap sizes for the high performance of annular nuclear fuels
Ando et al. Verification of the Estimation Methods of Strain Range in Notched Specimens Made of Mod. 9Cr-1Mo Steel
Aquaro et al. Experimental and numerical analyses on LiSO4 and Li2TiO3 pebble beds used in a ITER test blanket module
Burchell AGC-1 Irradiation Creep Strain Data Analysis
Huang et al. Deterministic and Probabilistic Fracture Mechanics Analysis for Structural Integrity Assessment of Pressurized Water Reactor Pressure Vessel
Koo et al. Creep-fatigue design studies for a sodium-cooled fast reactor with tube sheet-to-shell structure subjected to elevated temperature service
Tallavo et al. A Comparative Evaluation of Finite Element Modeling of Creep Deformation of Fuel Channels in CANDU® Nuclear Reactors
Aravind et al. Structural safety of coolant channel components under excessively high pressure tube diametral expansion rate at garter spring location
Rao et al. Probabilistic characterization of AHWR inner containment using high dimensional model representation
CN117954139A (en) Nuclear power station containment prestress measuring device and calculation evaluation method
Guo et al. Optimization of non-prestressing reinforcement around the equipment hatch of a prestressed concrete containment vessel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant